Previous Datasheet Index Next Data Sheet PD - 9.1137 IRGPH20M INSULATED GATE BIPOLAR TRANSISTOR Features Short Circuit Rated Fast IGBT C • Short circuit rated - 10µs @ 125°C, V GE = 15V • Switching-loss rating includes all "tail" losses • Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve VCES = 1200V VCE(sat) ≤ 4.6V G @VGE = 15V, I C = 4.5A E n-channel Description Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications. These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability. TO-247AC Absolute Maximum Ratings Parameter VCES IC @ T C = 25°C IC @ T C = 100°C ICM ILM tsc VGE EARV PD @ T C = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 1200 6.9 4.5 14 14 10 ±20 5.0 60 24 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight C-463 To Order Min. Typ. Max. — — — — — 0.24 — 6 (0.21) 2.1 — 40 — Units °C/W g (oz) Revision 1 Previous Datasheet Index Next Data Sheet IRGPH20M Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ Min. Typ. Max. Units Conditions 1200 — — V VGE = 0V, I C = 250µA 20 — — V VGE = 0V, IC = 1.0A — 1.3 — V/°C VGE = 0V, I C = 1.0mA — 3.1 4.6 IC = 4.5A V GE = 15V — 3.9 — V IC = 6.9A See Fig. 2, 5 — 4.0 — IC = 4.5A, T J = 150°C 3.0 — 5.5 VCE = VGE, IC = 250µA — -11 — mV/°C VCE = VGE, IC = 250µA 1.3 2.6 — S VCE = 100V, I C = 4.5A — — 250 µA VGE = 0V, V CE = 1200V — — 1000 VGE = 0V, V CE = 1200V, T J = 150°C — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — 10 — — — — — — — — — Typ. Max. Units Conditions 16 24 IC = 4.5A 4.4 7.0 nC VCC = 400V See Fig. 8 5.5 8.3 VGE = 15V 26 — TJ = 25°C 13 — ns IC = 4.5A, V CC = 960V 43 65 VGE = 15V, R G = 50Ω 430 640 Energy losses include "tail" 0.33 — 0.78 — mJ See Fig. 9, 10, 11, 14 1.1 1.7 — — µs VCC = 720V, T J = 125°C VGE = 15V, R G = 50Ω, VCPK < 1000V 32 — TJ = 150°C, 20 — ns IC = 4.5A, V CC = 960V 480 — VGE = 15V, R G = 50Ω 450 — Energy losses include "tail" 2.4 — mJ See Fig. 10, 14 13 — nH Measured 5mm from package 340 — VGE = 0V 25 — pF VCC = 30V See Fig. 7 4.7 — ƒ = 1.0MHz Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) Repetitive rating; pulse width limited by maximum junction temperature. VCC=80%(V CES), VGE=20V, L=10µH, R G= 50Ω, ( See fig. 13a ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-464 To Order Pulse width 5.0µs, single shot. Previous Datasheet Index Next Data Sheet IRGPH20M 12 F o r b o th : 9 Load Current (A) T ria n g u la r w a v e : D uty c y cle: 50% TJ = 125°C T sink = 90° C G ate driv e as spe c ified P o w e r D is s ip a tio n = 1 5 W C la m p v o lta g e : 8 0 % o f ra te d S q u a re w a v e : 6 0 % o f ra te d v o lta g e 6 3 Id ea l d io d e s A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=I RMS of fundamental; for triangular wave, I=I PK) 100 IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 100 TJ = 25°C 10 TJ = 150°C 1 TJ = 25°C TJ = 150°C 10 VGE = 15V 20µs PULSE WIDTH A 0.1 1 VCC = 100V 5µs PULSE WIDTH A 1 5 10 10 15 VGE, Gate-to-Emitter Voltage (V) VCE , Collector-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-465 To Order 20 Previous Datasheet Index Next Data Sheet IRGPH20M 15 VGE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 8 6 4 2 12 I C = 9.0A 9 6 I C = 4.5A 3 IC = 2.3A A 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH A 0 -60 150 TC , Case Temperature (°C) -40 -20 0 20 40 60 80 100 120 140 160 TC, Case Temperature (°C) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature T herm al Response (Z thJ C ) 10 1 D = 0.50 0 .2 0 0 .10 PD M 0.0 5 0.1 0.0 2 0 .01 t SIN G LE P U LS E (TH ER M AL R E SP O N SE ) t2 N o te s : 1 . D u ty fa c to r D = t 0.01 0.00001 1 1 / t 2 2 . P e a k TJ = P D M x Z th J C + T C 0.0001 0.001 0.01 0.1 1 t 1 , R ectangular Pulse D uration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case C-466 To Order 10 Previous Datasheet Index Next Data Sheet IRGPH20M 600 VGE , Gate-to-Emitter Voltage (V) 500 C, Capacitance (pF) 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc Cies 400 300 Coes 200 Cres 100 16 12 A 0 1 10 VCE = 400V I C = 4.5A 8 4 A 0 100 0 4 VCE, Collector-to-Emitter Voltage (V) 1.06 A 1.04 10 20 10 = 960V = 15V = 25°C = 4.5A 1.08 0 16 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage RG = 50Ω V GE = 15V V CC = 960V Total Switching Losses (mJ) Total Switching Losses (mJ) VCC VGE TC IC 12 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 1.10 8 20 30 40 50 I C = 9.0A I C = 4.5A I C = 2.3A 1 A 0.1 60 -60 -40 -20 0 20 40 60 80 100 120 140 160 TC , Case Temperature (°C) R G , Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Case Temperature C-467 To Order Previous Datasheet Index Next Data Sheet IRGPH20M RG TC V CC V GE 5.0 100 = 50Ω = 150°C = 960V = 15V IC , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 6.0 4.0 3.0 2.0 1.0 10 SAFE OPERATING AREA 1 0.1 A 0.0 0 2 4 6 8 VGE = 20V TJ = 125°C A 0 10 1 10 100 1000 VCE, Collector-to-Emitter Voltage (V) I C , Collector-to-Emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Refer to Section D for the following: Appendix G: Section D - page D-9 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 3 - JEDEC Outline TO-247AC C-468 To Order Section D - page D-13 10000