INFINEON BFP640F_07

BFP640F
NPN Silicon Germanium RF Transistor*
• High gain low noise RF transistor
3
• Provides outstanding performance
2
4
1
for a wide range of wireless applications
• Ideal for CDMA and WLAN applications
• Outstanding noise figure F = 0.65 dB at 1.8 GHz
Outstanding noise figure F = 1.2 dB at 6 GHz
• High maximum stable gain
Top View
4
Gms = 23 dB at 1.8 GHz
3
XYs
• Gold metallization for extra high reliability
1
• 70 GHz fT -Silicon Germanium technology
2
Direction of Unreeling
• Pb-free (RoHS compliant) package 1)
• Qualified according AEC Q101
* Short term description
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFP640F
1Pb-containing
Marking
R4s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
TSFP-4
package may be available upon special request
2007-05-31
1
BFP640F
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA > 0°C
4
TA ≤ 0°C
3.7
Collector-emitter voltage
VCES
13
Collector-base voltage
VCBO
13
Emitter-base voltage
VEBO
1.2
Collector current
IC
50
Base current
IB
3
Total power dissipation1)
Ptot
200
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
mA
TS ≤ 92°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point 2)
RthJS
≤ 290
K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
Unit
min.
typ.
max.
V(BR)CEO
4
4.5
-
V
ICES
-
-
30
µA
ICBO
-
-
100
nA
IEBO
-
-
3
µA
hFE
110
180
270
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 13 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 30 mA, VCE = 3 V, puls measured
1T
S is measured on the collector lead at the soldering point to the pcb
2For calculation of R
thJA please refer to Application Note Thermal Resistance
2007-05-31
2
BFP640F
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Unit
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
30
40
-
Ccb
-
0.09
0.2
Cce
-
0.18
-
Ceb
-
0.5
-
GHz
IC = 30 mA, VCE = 3 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 3 V, f = 1 MHz, V BE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 3 V, f = 1 MHz, V BE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Noise figure
dB
F
IC = 5 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt
-
0.65
-
IC = 5 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt
-
1.2
-
G ms
-
23
-
dB
G ma
-
12
-
dB
Power gain, maximum stable1)
IC = 30 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Power gain, maximum available1)
IC = 30 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
|S21e|2
Transducer gain
dB
IC = 30 mA, VCE = 3 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
-
20.5
-
f = 6 GHz
-
10
-
IP 3
-
27.5
-
P-1dB
-
13.5
-
Third order intercept point at output2)
dBm
VCE = 3 V, I C = 30 mA, ZS =ZL=50 Ω, f = 1.8 GHz
1dB Compression point at output
IC = 30 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2
ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e |
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
2007-05-31
3
BFP640F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transistor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
TITF1
0.22
1000
2
2
1.8
2.707
227.6
1.8
0.4
0.6
0.2
0.27
3
fA
V
V
-
2
-0.0065
-
Ω
fF
ps
A
V
ns
-
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
XTB =
FC =
KF =
TITF2
450
0.15
55
3.8
3.129
0.6
0.8
10
0
0.5
93.4
-1.42
0.8
7.291E-11
1.0E-5
A
mA
Ω
V
deg
fF
-
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
1.025
21
1
400
1.522
3.061
0.3
1.5
67.43
1
0.6
1.078
298
fA
fA
mA
Ω
V
fF
V
eV
K
All parameters are ready to use, no scalling is necessary.
0.22
LBO =
0.28
LEO =
0.22
LCO =
LBI =
0.42
LEI =
0.26
LCI =
0.35
34
CBE =
2
CBC =
33
CCE =
KBO-EO =0.1
KBO-CO =0.01
KEO-CO =0.11
KCI-EI = 0.2
Package Equivalent Circuit:
KBI-CI =
KBI-EI =
RLBI =
RLEI =
RLCI =
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http://www.infineon.com
-0.08
-0.05
0.15
0.11
0.13
nH
nH
nH
nH
nH
nH
fF
fF
fF
Ω
Ω
Ω
Valid up to 6GHz
2007-05-31
4
BFP640F
Total power dissipation Ptot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(t p)
10 3
200
mW
160
K/W
RthJS
Ptot
140
120
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 2
100
80
60
40
20
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
s
TS
10
tp
Permissible Pulse Load
Collector-base capacitance Ccb= ƒ(VCB)
Ptotmax/P totDC = ƒ(tp)
f = 1MHz
10 1
Ptotmax / PtotDC
0.25
CCB
pF
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
0.15
0.1
0.05
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
2
4
6
8
10
V
14
VCB
2007-05-31
5
0
BFP640F
Third order Intercept Point IP3=ƒ(IC)
Transition frequency fT= ƒ(IC)
(Output, ZS=ZL=50Ω)
f = 1GHz
VCE = parameter, f = 1.8 GHz
VCE = parameter
30
45
dBm
GHz
4V
3V
24
35
3V
30
2V
fT
IP3
21
18
25
15
20
12
2V
15
9
1V
10
6
1V
3
5
0
0
0
0
0.5V
10
20
30
40
mA
60
10
20
30
40
mA
IC
IC
Power gain Gma, Gms = ƒ(IC)
Power Gain Gma, Gms = ƒ(f),
VCE = 3V
|S21|² = f (f)
f = parameter
VCE = 3V, IC = 30mA
55
30
0.9
dB
dB
26
45
24
40
1.8
22
G
G
60
20
2.4
3
18
35
30
Gms
25
16
4
14
20
12
Gma
15
6
10
10
8
0
|S21|²
5
10
20
30
40
mA
5
0
60
IC
1
2
3
4
GHz
6
f
2007-05-31
6
BFP640F
Power gain Gma, Gms = ƒ (VCE)
Noise figure F = ƒ(I C)
IC = 30mA
VCE = 3V, ZS = ZSopt
f = parameter
30
dB
0.9
2.5
24
1.8
2
f = 6GHz
f = 5GHz
f = 4GHz
20
2.4
18
3
16
4
14
5
6
f = 2.4GHz
f = 1.8GHz
f = 0.9GHz
1.5
12
F [dB]
G
22
1
10
8
6
0.5
4
2
0
0
0.5
1
1.5
2
2.5
3
3.5
V
4.5
0
0
VCE
Noise figure F = ƒ(IC )
VCE = 3V, f = 1.8 GHz
10
20
30
40
50
I [mA]
c
Noise figure F = ƒ(f)
VCE = 3V, ZS = Z Sopt
2.5
2
1.8
2
1.6
1.4
1.5
1.2
Z = 50Ω
S
F [dB]
F [dB]
Z =Z
S
Sopt
1
1
0.8
0.6
I = 30mA
C
0.5
IC = 5.0mA
0.4
0.2
0
0
0
10
20
30
40
50
0
I [mA]
1
2
3
4
5
6
7
f [GHz]
c
2007-05-31
7
BFP640F
Source impedance for min.
noise figure vs. frequency
VCE = 3 V, I C = 5 mA/ 30 mA
1
1.5
2
0.5
0.4
0.3
3
Ic = 5.0mA
4
0.2
5
3GHz
0.1
2.4GHz
0.1
0
0.2 0.3 0.4 0.5 5GHz
6GHz
10
1.8GHz 0.9GHz
4GHz
1
1.5
2
3
4 5
−0.1
−10
6GHz
−0.2
−5
−4
−0.3
−3
I = 30mA
c
−0.4
−0.5
−2
−1.5
−1
2007-05-31
8
Package TSFP-4
BFP640F
Package Outline
0.55 ±0.04
0.2 ±0.05
3
1
1.2 ±0.05
0.2 ±0.05
4
2
0.2 ±0.05
10˚ MAX.
0.8 ±0.05
1.4 ±0.05
0.15 ±0.05
0.5 ±0.05
0.5 ±0.05
Foot Print
0.9
0.45
0.35
0.5
0.5
Marking Layout (Example)
Manufacturer
BFP420F
Type code
Pin 1
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
1.4
8
4
Pin 1
0.7
1.55
2007-05-31
9
BFP640F
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office ( www.infineon.com ).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.
2007-05-31
10