HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 16 MBit Synchronous DRAM Advanced Information • High Performance: -8 -10 Units fCK(max.) 125 100 MHz tCK3 8 10 ns tAC3 6 7 ns tCK2 10 13.3 ns tAC2 6 8 ns • Fully Synchronous to Positive Clock Edge • 0 to 70 °C operating temperature • Dual Banks controlled by A11 ( Bank Select) • Programmable CAS Latency : 2, 3 • Programmable Wrap Sequence : Sequential or Interleave • Programmable Burst Length: 1, 2, 4, 8 • full page(optional) for sequencial wrap around • Multiple Burst Read with Single Write Operation • Automatic Command • Data Mask for Read / Write control (x4, x8) • Dual Data Mask for byte control ( x16) • Auto Refresh (CBR) and Self Refresh • Suspend Mode and Power Down Mode • 4096 refresh cycles / 64 ms • Random Column Address every CLK ( 1-N Rule) • Single 3.3V +/- 0.3V Power Supply • LVTTL Interface • Plastic Packages: P-TSOPI-44 400mil width ( x4, x8 ) P-TSOPII -50 400 mil width ( x 16 ) • -8 version for PC100 applications and Controlled Precharge The HYB39S16400/800/160BT are dual bank Synchronous DRAM’s based on the die revisions “D“, & “E” and organized as 2 banks x 2MBit x4, 2 banks x 1MBit x8 and 2 banks x 512kbit x16 respectively. These synchronous devices achieve high speed data transfer rates up to 125 MHz by employing a chip architecture that prefetches multiple bits and then synchronizes the output data to a system clock. The chip is fabricated with SIEMENS’advanced 16MBit DRAM process technology. The device is designed to comply with all JEDEC standards set for synchronous DRAM products, both electrically and mechanically. All of the control, address, data input and output circuits are synchronized with the positive edge of an externally supplied clock. Operating the two memory banks in an interleaved fashion allows random access operation to occur at higher rate than is possible with standard DRAMs. A sequential and gapless data rate of up to 125 MHz is possible depending on burst length, CAS latency and speed grade of the device. Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single 3.3V +/- 0.3V power supply and are available in TSOPII packages. These Synchronous DRAM devices are available with LV-TTL interfaces. Semiconductor Group 1 4.98 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Ordering Information Type Ordering Code Package Description HYB 39S16400BT-8 P-TSOPII-44 (400mil) 125MHz 2B x 2M x 4 SDRAM HYB 39S16400BT-10 P-TSOPII-44-(400mil) 100MHz 2B x 2M x 4 SDRAM HYB 39S16800BT-8 P-TSOPII-44-(400mil) 125MHz 2B x 1M x 8 SDRAM HYB 39S16800BT-10 P-TSOPII-44 (400mil) 100MHz 2B x 1M x 8 SDRAM HYB 39S16160BT-8 P-TSOPII-50 (400mil) 125MHz 2B x 512k x 16 SDRAM HYB 39S16160BT-10 P-TSOPII-50-(400mil) 100MHz 2B x 512k x 16 SDRAM LVTTL-version: Pin Description and Pinouts: CLK Clock Input DQ Data Input /Output CKE Clock Enable DQM, LDQM, UDQM Data Mask CS Chip Select Vdd Power (+3.3V) RAS Row Address Strobe Vss Ground CAS Column Address Strobe Vddq Power for DQ’s (+ 3.3V) WE Write Enable Vssq Ground for DQ’s A0-A10 Address Inputs NC not connected A11 (BS) Bank Select Semiconductor Group 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Vdd NC Vssq DQ0 Vddq NC Vssq DQ1 Vddq NC NC WE CAS RAS CS A11 A10 A0 A1 A2 A3 Vdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 Vdd DQ0 Vssq DQ1 Vddq DQ2 Vssq DQ3 Vddq NC NC WE CAS RAS CS A11 A10 A0 A1 A2 A3 Vdd Vss NC Vssq DQ3 Vddq NC Vssq DQ2 Vddq NC NC DQM CLK CKE NC A9 A8 A7 A6 A5 A4 Vss HYB39S16400BT 2 Bank x 2MBit x 4 TSOPII-44 ( 400 mil x 725 mil) 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 Vss DQ7 Vssq DQ6 Vddq DQ5 Vssq DQ4 Vddq NC NC DQM CLK CKE NC A9 A8 A7 A6 A5 A4 Vss HYB39S16800BT 2 Bank x 1MBit x 8 TSOPII-44 ( 400 mil x 725 mil ) Vdd DQ0 DQ1 Vssq DQ2 DQ3 Vddq DQ4 DQ5 Vssq DQ6 DQ7 Vddq LDQM WE CAS RAS CS A11 A10 A0 A1 A2 A3 Vdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 Vss DQ15 DQ14 Vssq DQ13 DQ12 Vddq DQ11 DQ10 Vssq DQ9 DQ8 Vddq NC UDQM CLK CKE NC A9 A8 A7 A6 A5 A4 Vss HYB39S16160BT 2 Bank x 512kbit x 16 TSOPII-50 ( 400 mil x 825 mil ) Semiconductor Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Signal Pin Description Pin Type Signal Polarity Function CLK Input Pulse CKE Input Level Active High Activates the CLK signal when high and deactivates the CLK signal when low, thereby inititiates either the Power Down mode, Suspend mode or the Self Refresh mode. CS Input Pulse Active Low CS enables the command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. RAS, CAS WE Input Pulse Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the command to be executed by the SDRAM. Positive The system clock input. All of the SDRAM inputs are sampled on the rising Edge edge of the clock. During a Bank Activate command cycle, A0-A10 defines the row address (RA0-RA10) when sampled at the rising clock edge. A0 A10 Input Level — During a Read or Write command cycle, A0-A9 defines the column address (CA0-CAn) when sampled at the rising clock edge.CAn depends from the SDRAM organisation. 4M x 4 SDRAM CAn = CA9 2M x 8 SDRAM CAn = CA8 1M x 16 SDRAM CAn = CA7 In addition to the column address, A10 is used to invoke autoprecharge operation at the end of the burst read or write cycle. If A10 is high, autoprecharge is selected and A11 defines the bank to be precharged (low=bank A, high=bank B). If A10 is low, autoprecharge is disabled. During a Precharge command cycle, A10 is used in conjunction with A11 to control which bank(s) to precharge. If A10 is high, both bank A and bank B will be precharged regardless of the state of A11. If A10 is low, then A11 is used to define which bank to precharge. A11 (BS) Input Level — Selects which bank is to be active. A11 low selects bank A and A11 high selects bank B. DQx Input Output Level — Data Input/Output pins operate in the same manner as on conventional DRAMs. Active High The Data Input/Output mask places the DQ buffers in a high impedance state when sampled high. In Read mode, DQM has a latency of two clock cycles and controls the output buffers like an output enable. In Write mode, DQM has a latency of zero and operates as a word mask by allowing input data to be written if it is low but blocks the write operation if DQM is high. DQM LDQM UDQM Input VDD, VSS Supply VDDQ VSSQ Supply Pulse Power and ground for the input buffers and the core logic. — Semiconductor Group — Isolated power supply and ground for the output buffers to provide improved noise immunity. 4 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Row Decoder CKE CKE Buffer 2048 2048 x 1024 Memory Bank A Self Refresh Clock 1024 Row Address Counter CLK Sense Amplifiers Bank A Row/Column Select CLK Buffer Column Decoder and DQ Gate 4 8 3 WE WE Buffer DQM Sequential Control Bank B Data Latches Predecode B 8 Bank B Row/Column Select Column Decoder and DQ Gate Sense Amplifiers 1024 CAS Buffer Command Decoder RAS Buffer Mode Register 11 CS Buffer CAS Data Latches 8 12 11 RAS Sequential Control Bank A 2048 DQM Buffer 2048 Memory Bank B 2048 x 1024 Block Diagram for HYB39S16400BT (2 banks x 4M x 4 SDRAM) Semiconductor Group 5 Data Input/Output Buffers 3 12 Row Decoder CS Address Buffers (12) 11 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 (BS) 8 Predecode A DQ0 DQ1 DQ2 DQ3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Row Decoder Row Decoder CKE CKE Buffer 2048 x 512 Memory Bank A 2048 Self Refresh Clock 8 Sense Amplifiers Sense Amplifiers Bank A Row/Column Select CLK Buffer Column Decoder and DQ Gate Column Decoder and DQ Gate 8 CS Address Buffers (12) 11 Predecode A A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 (BS) Sequential Control Bank A 3 12 8 8 12 Mode Register 11 8 CS Buffer 3 Sequential Control Bank B 8 Data Latches WE Buffer DQM 8 Bank B Row/Column Select Column Decoder and DQ Gate Sense Amplifiers 8 DQM Buffer 512 WE 8 Row Decoder Row Decoder CAS Buffer Command Decoder RAS Buffer CAS 8 Data Latches Data Latches 11 Predecode B RAS 8 8 2048 Memory Bank B Memory 2048Bank x 512B 2048 x 1024 Block Diagram for HYB39S16800BT (2 banks x 1M x 8 SDRAM) Semiconductor Group 6 Data Input/Output Buffers CLK 512 1024 Row Address Counter DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Row Decoder Row Decoder Row Decoder Row Decoder CKE Buffer 2048 Sense Amplifiers Sense Amplifiers Sense Amplifiers Column Decoder Sense and Amplifiers DQ Gate Column Decoder and DQ Gate Column Decoder and DQ Gate Column Decoder and DQ Gate 16 Bank A Row/Column Select CLK Buffer 8 16 CS Address Buffers (12) 3 12 Sequential Control Bank A 8 8 8 Data Latches Data Latches Data Latches Data Latches 11 Predecode A A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 (BS) 256 CLK 1024 Row Address Counter 16 512 1024 Self Refresh Clock 16 8 11 Mode Register 12 8 CS Buffer 3 Sequential Control Bank B 16 Data Latches Data Latches CAS CAS Buffer WE WE Buffer UDQM DQM Buffer LDQM DQM Buffer 16 Bank B Row/Column Select Column Decoder and DQ Gate Column Decoder and DQ Gate Sense Amplifiers Sense Amplifiers 16 256 RAS Buffer 8 Row Decoder Row Decoder Row Decoder Row Decoder RAS Command Decoder 11 Predecode B 2048 Memory Bank B Memory Bank B 2048 x 256 Memory Bank B 2048 x 1024 Memory Bank B 2048 x 512 2048 x 1024 Block Diagram for HYB39S16160BT (2 banks x 512k x 16 SDRAM) Semiconductor Group 7 Data Input/Output Buffers CKE 2048 x 512 Memory Bank A 2048 x 256 Memory Bank A DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Operation Definition All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at the positive edge of the clock. The following list shows the most important operation commands. Operation CS RAS CAS WE (L/U)DQM Standby, Ignore RAS, CAS, WE and Address H X X X X Row Address Strobe and Activating a Bank L L H H X Column Address Strobe and Read Command L H L H X Column Address Strobe and Write Command L H L L X Precharge Command L L H L X Burst Stop Command L H H L X Self Refresh Entry L L L H X Mode Register Set Command L L L L X Write Enable/Output Enable X X X X L Write Inhibit/Output Disable X X X X H No Operation (NOP) L H H H X Mode Register For application flexibility, a CAS latency, a burst length, and a burst sequence can be programmed in the SDRAM mode register. The mode set operation must be done before any activate command after the initial power up. Any content of the mode register can be altered by reexecuting the mode set command. Both banks must be in precharged state and CKE must be high at least one clock before the mode set operation. After the mode register is set, a Standby or NOP command is required. Low signals of RAS, CAS, and WE at the positive edge of the clock activate the mode set operation. Address input data at this timing defines parameters to be set as shown in the following table. Semiconductor Group 8 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Address Input for Mode Set (Mode Register Operation) BS A10 A9 A8 A7 A6 Operation Mode A5 A4 A3 A2 CAS Latency BT Burst Length Operation Mode A1 A0 Address Bus (Ax) Mode Register (Mx) Burst Type M11 M10 M9 M8 M7 Mode M3 Type 0 0 0 0 0 Normal 0 Sequential Interleave X 1 0 0 Multiple Burst with Single Write 1 X Burst Length CAS Latency M6 M5 M4 Latency 0 0 0 Reserve 0 0 1 1 0 1 0 2 0 1 1 3 1 0 0 Reserve 1 0 1 Reserve 1 1 0 Reserve 1 1 1 Reserve M2 M1 M0 0 0 0 0 Length Sequential Interleave 0 1 1 0 1 2 2 1 0 4 4 0 1 1 8 8 1 0 0 Reserve Reserve 1 0 1 Reserve Reserve 1 1 0 Reserve Reserve 1 1 1 Full Page*) Sequential Burst Addressing Interleave Burst Addressing 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 Semiconductor Group 2 3 4 5 6 7 0 1 3 4 5 6 7 0 1 2 4 5 6 7 0 1 2 3 5 6 7 0 1 2 3 4 6 7 0 1 2 3 4 5 7 0 1 2 3 4 5 6 9 1 0 3 2 5 4 7 6 2 3 0 1 6 7 4 5 3 2 1 0 7 6 5 4 4 5 6 7 0 1 2 3 5 4 7 6 1 0 3 2 6 7 4 5 2 3 0 1 7 6 5 4 3 2 1 0 Reserve *) optional HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Read and Write Access Mode When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle starts. According to address data, a word line of the selected bank is activated and all of sense amplifiers associated to the word line are fired. A CAS cycle is triggered by setting RAS high and CAS low at a clock timing after a necessary delay, tRCD, from the RAS timing. WE is used to define either a read (WE = H) or a write (WE = L) at this stage. SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or write operations are allowed at up to a 125 MHz data rate. The numbers of serial data bits are the burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page, where full page is an optional feature in this device. Column addresses are segmented by the burst length and serial data accesses are done within this boundary. The first column address to be accessed is supplied at the CAS timing and the subsequent addresses are generated automatically by the programmed burst length and its sequence. For example, in a burst length of 8 with interleave sequence, if the first address is 2’ ‘ , then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5 . Full page burst operation is only possible using the sequential burst type and page length is a function of the I/O organisation and column addressing. Full page burst operation do not self terminate once the burst length has been reached. In other words, unlike burst length of 2, 3 or 8, full page burst continues until it is terminated using another command. Similar to the page mode of conventional DRAM’s, burst read or write accesses on any column address are possible once the RAS cycle latches sense amplifiers. The maximum tRAS or the refresh interval time limits the number of random column accesses. A new burst access can be done even before the previous burst ends. The interrupt operation at every clock cycles is supported. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. An interrupt which accompanies with an operation change from a read to a write is possible by exploiting DQM to avoid bus contention. When two banks are activated sequentially, interleaved bank read or write operations are possible. With the programmed burst length, alternate access and precharge operations on two banks can realize fast serial data access modes among many different pages. Once two banks are activated, column to column interleave operation can be done between two different pages. Refresh Mode SDRAM has two refresh modes, a CAS before RAS (CBR) automatic refresh and a self refresh. All of banks must be precharged before applying any refresh mode. An on-chip address counter increments the word and the bank addresses and no bank information is required for both refresh modes. The chip enters the automatic refresh mode, when RAS and CAS are held low and CKE and WE are held high at a clock timing. The mode restores word line after the refresh and no external precharge command is necessary. A minimum tRC time is required between two automatic refreshes in a burst refresh mode. The same rule applies to any access command after the automatic refresh operation. The chip has an on-chip timer and the self refresh mode is available. It enters the mode when RAS, CAS, and CKE are low and WE is high at a clock timing. All of external control signals including the clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation. After the exit command, at least one tRC delay is required prior to any access command. Semiconductor Group 10 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM DQM Function DQM has two functions for data I/O read write operations. During reads, when it turns to high at a clock timing, data outputs are disabled and become high impedance after two clock delay (DQM Data Disable Latency t DQZ). It also provides a data mask function for writes. When DQM is activated, the write operation at the next clock is prohibited (DQM Write Mask Latency t DQW = zero clocks). Suspend Mode During normal access mode, CKE is held high and CLK is enabled. When CKE is low, it freezes the internal clock and extends data read and write operations. One clock delay is required for mode entry and exit (Clock Suspend Latency t CSL ). Power Down In order to reduce standby power consumption, a power down mode is available. Bringing CKE low enters the power down mode and all of receiver circuits are gated. All banks must be precharged before entering this mode. One clock delay is required for mode entry and exit. The Power Down mode does not perform any refresh operation. Auto Precharge Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS timing accepts one extra address, CA10, to determine whether the chip restores or not after the operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge function is initiated. The SDRAM automatically enters the precharge operation one clock after the Read Command is registered for CAS latencies of 1 and 2, and two clocks for CAS latencies of 3. If CAS10 is high when a Write Command is issued, the Write with Auto-Precharge function is initiated. The SDRAM automatically enters the precharge operation one clock delay form the last data-in for CAS latencies of 1 and 2 and two clocks for CAS latencies of 3. This delay is referenced as tDPL . Precharge Command If CA10 is low, the chip needs another way to precharge. In this mode, a separate precharge command is necessary. When RAS and WE are low and CAS is high at a clock timing, it triggers the precharge operation. Two address bits, A10 and A11, are used to define banks as shown in the following list. The precharge command may be applied coincident with the last of burst reads for CAS Latency = 1 and with the second to the last read data for CAS Latencies = 2 & 3. Writes require a time tDPL from the last burst data to apply the precharge command. Bank Selection by Address Bits A10 Semiconductor Group A11 Bank A Only Low Low Bank B Only Low High Both A and B High Don’t Care 11 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Burst Termination Once a burst read or write operation has been initiated, there are several methods in which to terminate the burst operation prematurely. These methods include using another Read or Write Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read or Write Command care must be taken to avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the easiest method to use when terminating a burst operation before it has been completed. If a Burst Stop command is issued during a burst write operation, then any residual data from the burst write cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is registered will be written to the memory. Power Up Procedure All Vdd and Vddq must reach the specified voltage no later than any of input signal voltages. An initial pause of 200 µsec is required after power on. All banks have to be precharged and a minimum of 2 auto-refresh cycles are required prior to the mode register set operation. Semiconductor Group 12 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Absolute Maximum Ratings Operating temperature range ......................................................................................... 0 to + 70 °C Storage temperature range...................................................................................... – 55 to + 150 °C Input/output voltage .............................................................................. – 0.5 to min(Vcc+0.5, 4.6) V Power supply voltage VDD / VDDQ.......................................................................... – 1.0 to + 4.6 V Power Dissipation............................................. ................................................................ ..........1 W Data out current (short circuit) ................................................................................................ 50 mA Note: Stresses above those listed under “Absolute Maximum Ratings ” may cause permanent damage of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Recommended Operation and Characteristics for LV-TTL versions: TA = 0 to 70 °C; VSS = 0 V; VDD,VDDQ = 3.3 V ± 0.3 V Parameter Symbol Limit Values Unit Notes min. max. Input high voltage VIH 2.0 Vcc+0.3 V 1, 2, 3 Input low voltage VIL – 0.3 0.8 V 1, 2, 3 Output high voltage ( IOUT = – 2.0 mA) VOH 2.4 – V 3 Output low voltage ( IOUT = 2.0 mA) VOL – 0.4 V 3 Input leakage current, any input (0 V < VIN < Vddq, all other inputs = 0 V) II(L) – 10 10 µA Output leakage current (DQ is disabled, 0 V < VOUT < VCC) IO(L) – 10 10 µA Notes: 1. All voltages are referenced to VSS. 2. Vih may overshoot to Vcc + 2.0 V for pulse width of < 4ns with 3.3V. Vil may undershoot to -2.0 V for pulse width < 4.0 ns with 3.3V. Pulse width measured at 50% points with amplitude measured peak to DC reference. Capacitance TA = 0 to 70 °C; VDD = 3.3 V ± 0.3 V, f = 1 MHz Parameter Symbol Values Unit min. max. Input capacitance (CLK) CI1 2.5 4.0 pF Input capacitance CI2 2.5 5.0 pF CIO 4.0 6.5 pF (A0-A12, BA0,BA1,RAS, CAS, WE, CS, CKE, DQM) Input / Output capacitance (DQ) Semiconductor Group 13 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Operating Currents (TA = 0 to 70oC, VCC = 3.3V ± 0.3V (Recommended Operating Conditions unless otherwise noted) Parameter Symbol Test Condition CAS Latency max. max. mA mA mA CKE<=VIL(max), tck>=tck(min.) 3 3 mA Icc2PS CKE<=VIL(max), 2 2 mA 20 20 mA CS= Precharge Standby Current in Power Down Mode Icc2P Active Standby Current in Power Down Mode Note 65 90 100 Icc1 Precharge Standby Current in Non-power down Mode -10 80 115 125 Operating Current Burst Length = 4 trc>=trc (min.) tck>=tck(min.), Io = 0mA 2 bank interleave operation 1 2 3 -8 1, 2 tCK=infinite Icc2N CKE>=VIH(min), tck>=tck(min.) input signals changed once in 3 cycles High Icc2NS CKE>=VIH(min), 10 10 mA CKE<=VIL(max), tck>=tck(min.) 3 3 mA Icc3PS CKE<=VIL(max), 2 2 mA 25 25 mA CS= tCK=infinite, input signals are stable Icc3P tCK=infinite, inpit signals are stable Active Standby Current in Nonpower Down Mode Icc3N CKE>=VIH(min), tck>=tck(min.), changed once in 3 cycles High, 1 Icc3NS CKE>=VIH(min), 15 15 mA tCK=infinite, input signals are stable Burst Operating Current Icc4 Burst Length = full page trc = infinite tck >= tck (min.), IO = 0 mA 2 banks activated 1 2 3 50 80 120 40 65 95 mA 1, 2 Auto (CBR) Refresh Current Icc5 trc>=trc(min) 1 2 3 75 95 115 60 75 90 mA mA mA 1, 2 Self Refresh Icc6 CKE=<0,2V 11 1 mA 1, 2 Notes: 1. The specified values are valid when addresses are changed no more than three times during trc(min.) and when No Operation commands are registered on every rising clock edge during tRC(min). 2. The specified values are valid when data inputs (DQ’s) are stable during tRC(min.). Semiconductor Group 14 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM AC Characteristics 1)2)3) TA = 0 to 70 °C; VSS = 0 V; VCC = 3.3 V ± 0.3 V, tT = 1 ns Parameter Limit Values Symbol -8 min Unit -10 max min max Clock and Clock Enable Clock Cycle Time CAS Latency = 3 tCK CAS Latency = 2 8 10 – – 10 12 – – CAS Latency = 3 tCK CAS Latency = 2 – – 125 100 – – 100 75 s ns ns Clock Frequency MHz MHz Access Time from Clock CAS Latency = 3 tAC CAS Latency = 2 – – 6 6 – – 7 8 ns ns Clock High Pulse Width tCH 3 – 3 – ns Clock Low Pulse Width tCL 3 – 3 – ns Transition time tT 0.5 10 0.5 10 ns Input Setup Time tIS 2 – 3 – ns 5 Input Hold Time tIH 1 – 1 – ns 5 CKE Setup Time tCKS 2 – 3 – ns 5 CKE Hold Time tCKH 1 – 1 – ns 5 Mode Register Set-up time tRSC 16 – 20 – ns Power Down Mode Entry Time tSB 0 8 0 10 ns Row to Column Delay Time tRCD 20 – 24 – ns 6 Row Active Time tRAS 45 100k 60 100k ns 6 Row to Column Delay Time tRCD 20 – 24 – ns 6 Row Precharge Time tRP 20 – 24 – ns 6 Row Cycle Time tRC 70 – 90 – ns 6 Activate(a) to Activate(b) Command period tRRD 16 – 20 – ns 6 2, 4 Setup and Hold Times Common Parameters Semiconductor Group 15 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Parameter Limit Values Symbol -8 Unit -10 min max min max tCCD 1 – 1 – CLK Refresh Period (4096 cycles) tREF – 64 – 64 ms Self Refresh Exit Time tSREX 10 Data Out Hold Time tOH 3 – 3 – ns Data Out to Low Impedance Time tLZ 0 – 0 – ns Data Out to High Impedance Time tHZ 3 8 3 10 ns DQM Data Out Disable Latency tDQZ 2 – 2 – CLK Write Recovery Time tWR 8 – 10 – ns DQM Write Mask Latency tDQW 0 – 0 – CLK Write Latency tWL 0 – 0 – CLK CAS(a) to CAS(b) Command period Refresh Cycle 10 ns Read Cycle 2 8 Write Cycle Frequency vs. AC Parameter Relationship Table: -8 -parts CL tRC tRAS tRP tRRD tRCD tCCD tWL tWR 125 MHz 3 9 6 3 2 3 1 0 1 100 MHz 2 7 5 2 2 2 1 0 1 CL tRC tRAS tRP tRRD tRCD tCCD WL tWR 100 MHz 3 8 6 3 2 3 1 0 1 75 MHz 2 7 5 2 2 2 1 0 1 -10 -parts: Semiconductor Group 16 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Notes for AC Parameters: 1. For proper power-up see the operation section of this data sheet. 2. AC timing tests for LV-TTL versions have V il = 0.4 V and V ih = 2.4 V with the timing referenced to the 1.4 V crossover point. The transition time is measured between V ih and Vil. All AC measurements assume t T=1ns with the AC output load circuit shown in fig.1. Specified tac and toh parameters are measured with a 50 pF only, without any resistive termination and with a input signal of 1V / ns edge rate between 0.8V and 2.0 V. tCH 2.4 V + 1.4 V CLOCK 0.4 V tCL tSETUP 50 Ohm tT tHOLD Z=50 Ohm I/O 1.4V INPUT 50 pF I/O tAC tAC tLZ 50 pF tOH 1.4V OUTPUT Measurement conditions for tac and toh fig.1 tHZ 3. If clock rising time is longer than 1 ns, a time (t T/2 - 0.5) ns has to be added to this parameter. 4. If tT is longer than 1 ns, a time (t T -1) ns has to be added to this parameter. 5. These parameter account for the number of clock cycle and depend on the operating frequency of the clock, as follows: the number of clock cycle = specified value of timing period (counted in fractions as a whole number) Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied once the Self Refresh Exit command is registered. Semiconductor Group 17 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Package Outlines: Plastic Package P-TSOPII-44 ( 400mil, 0.8mm lead pitch) Thin small outline package, SMD GLX05862 TSOP-44 (400).WMF 0.8 3 0.15 +0.06 -0.0 1.2 max 0.1 +0.05 1+0.05 - Plastic Package P-TSOPII-50 ( 400mil, 0.8mm lead pitch) Thin small outline package, SMD 10.16 +0.13 - 0.5+0.1 - 0.4 +0.05 -0.1 0.2 M 0.1 50x 50 11.76 +0.2 - 26 1 25 20.95 +0.13 1) - Index marking 1) Does not include plastic or metal protusion of 0.25 max. per side Semiconductor Group 18 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Timing Diagrams 1. Bank Activate Command Cycle 2. Burst Read Operation 3. Read Interrupted by a Read 4. Read to Write Interval 4.1 Read to Write Interval 4.2 Minimum Read to Write Interval 4.3 Non-Minimum Read to Write Interval 5. Burst Write Operation 6. Write and Read Interrupt 6.1 Write Interrupted by a Write 6.2 Write Interrupted by Read 7. Burst Read & Write with Auto-Precharge 7.1 Burst Write with Auto Precharge 7.2 Burst Read with Auto Precharge 8. Burst Termination 8.1 Termination of a Burst Read Operation 8.2 Termination of a Burst Write Operation 9. AC- Parameters 9.1 AC Parameters for a Write Timing 9.2 AC Parameters for a Read Timing 10. Mode Register Set 11. Power on Sequence and Auto Refresh (CBR) 12. Clock Suspension (using CKE) 12.1 Clock Suspension During Burst ReadCAS Latency = 1 12. 2 Clock Suspension During Burst ReadCAS Latency = 2 12. 3 Clock Suspension During Burst ReadCAS Latency = 3 12. 4 Clock Suspension During Burst Write CAS Latency = 1 12. 5 Clock Suspension During Burst Write CAS Latency = 2 12. 6 Clock Suspension During Burst Write CAS Latency = 3 13. Power Down Mode and Clock Suspend 14. Auto Refresh (CBR) 15. Self Refresh ( Entry and Exit) 16. Random Column Read ( Page within same Bank) 16.1 CAS Latency = 1 16.2 CAS Latency = 2 16.3 CAS Latency = 3 17. Random Column Write ( Page within same Bank) 17.1 CAS Latency = 1 17.2 CAS Latency = 2 17.3 CAS Latency = 3 Semiconductor Group 19 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Timing Diagrams (cont’d) 18. Random Row Read ( Interleaving Banks) 18.1 CAS Latency = 1 18.2 CAS Latency = 2 18.3 CAS Latency = 3 19. Random Row Write ( Interleaving Banks) 19.1 CAS Latency = 1 19.2 CAS Latency = 2 19.3 CAS Latency = 3 20. Full Page Read Cycle (optional feature) 20.1 CAS Latency = 1 20.2 CAS Latency = 2 20.3 CAS Latency = 3 21. Full Page Write Cycle (optional feature) 21.1 CAS Latency = 1 21.2 CAS Latency = 2 21.3 CAS Latency = 3 22. Precharge Termination of a Burst 22.1 CAS Latency = 1 22.2 CAS Latency = 2 22.3 CAS Latency = 3 Semiconductor Group 20 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 1. Bank Activate Command Cycle (CAS latency = 3) T0 T1 T T T T T CLK .......... ADDRESS Bank A Col. Addr. Bank A Row Addr. .......... tRCD COMMAND Bank A Activate NOP Bank A Row Addr. Bank B Row Addr. tRRD NOP Write A with Auto Precharge .......... Bank B Activate NOP Bank A Activate : “H” or “L” tRC 2. Burst Read Operation (Burst Length = 4, CAS latency = 1, 2, 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND READ A CAS latency = 1 tCK1, DQ’s CAS latency = 2 tCK2, DQ’s NOP NOP NOP NOP NOP DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 DOUT A 0 DOUT A 1 DOUT A 2 NOP CAS latency = 3 tCK3, DQ’s Semiconductor Group 21 DOUT A 3 NOP NOP HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 3. Read Interrupted by a Read (Burst Length = 4, CAS latency = 1, 2, 3) T0 T1 READ A READ B T2 T3 T4 T5 T6 T7 T8 CLK COMMAND CAS latency = 1 DOUT A 0 tCK1, DQ’s CAS latency = 2 tCK2, DQ’s NOP NOP NOP DOUT B 0 DOUT B 1 DOUT B 2 DOUT B 3 DOUT A 0 DOUT B 0 DOUT B 1 DOUT B 2 DOUT B 3 DOUT A0 DOUT B 0 DOUT B 1 DOUT B 2 NOP NOP NOP NOP CAS latency = 3 tCK3, DQ’s DOUT B 3 4.1 Read to Write Interval (Burst Length = 4, CAS latency = 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK Minimum delay between the Read and Write Commands = 4+1 = 5 cycles tDQW DQM tDQZ COMMAND NOP READ A NOP NOP NOP DQ’s WRITE B DIN B0 DOUT A 0 Must be Hi-Z before the Write Command : “H” or “L” Semiconductor Group NOP 22 NOP NOP DIN B1 DIN B2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 4 2. Minimum Read to Write Interval (Burst Length = 4, CAS latency = 1, 2) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK tDQW DQM tDQZ 1 Clk Interval NOP COMMAND NOP BANK A ACTIVATE NOP READ A WRITE A CAS latency = 1 tCK1, DQ’s NOP NOP NOP DIN A0 DIN A1 DIN A2 DIN A3 DIN A0 DIN A1 DIN A2 DIN A3 Must be Hi-Z before the Write Command CAS latency = 2 tCK2, DQ’s : “H” or “L” 4. 3. Non-Minimum Read to Write Interval (Burst Length = 4, CAS latency = 3 T0 T1 T2 T3 T4 T5 T6 T7 T8 NOP NOP DIN B0 DIN B1 DIN B2 DOUT A 1 DIN B0 DIN B1 DIN B2 DOUT A 0 DIN B0 DIN B1 DIN B2 CLK tDQW DQM tDQZ COMMAND NOP READ A NOP NOP READ A NOP WRITE B CAS latency = 1 tCK1, DQ’s CAS latency = 2 DOUT A 0 DOUT A1 DOUT A 2 Must be Hi-Z before the Write Command DOUT A 0 tCK2, DQ’s CAS latency = 3 tCK3, DQ’s : “H” or “L” Semiconductor Group 23 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 5. Burst Write Operation (Burst Length = 4, CAS latency = 1, 2, or 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND NOP DQ’s WRITE A DIN A0 NOP NOP NOP DIN A1 DIN A2 DIN A3 The first data element and the Write are registered on the same clock edge. NOP NOP NOP NOP don’t care Extra data is ignored after termination of a Burst. 6.1 Write Interrupted by a Write (Burst Length = 4, CAS latency = 1, 2, or 3) T0 T1 T2 WRITE A WRITE B T3 T4 T5 T6 T7 T8 CLK COMMAND NOP NOP NOP NOP DIN B1 DIN B2 DIN B3 1 Clk Interval DQ’s Semiconductor Group DIN A0 DIN B0 24 NOP NOP NOP HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 6.2 Write Interrupted by a Read (Burst Length = 4, CAS latency = 1, 2, 3) T0 T1 T2 WRITE A READ B T3 T4 T5 T6 T7 T8 CLK COMMAND NOP CAS latency = 1 DIN A0 tCK1, DQ’s CAS latency = 2 tCK2, DQ’s CAS latency = 3 tCK3, DQ’s DIN A0 don’t care DIN A0 don’t care NOP NOP NOP DOUT B 0 DOUT B 1 DOUT B2 DOUT B 3 DOUT B 0 DOUT B 1 DOUT B 2 DOUT B 3 DOUT B0 DOUT B 1 DOUT B 2 don’t care NOP NOP NOP DOUT B 3 Input data must be removed from the DQ’s at least one clock cycle before the Read dataAPpears on the outputs to avoid data contention. Input data for the Write is ignored. 7.1 Burst Write with Auto-Precharge Burst Length = 2, CAS latency = 1, 2, 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND BANK A ACTIVE NOP NOP WRITE A Auto-Precharge NOP NOP tDPL CAS latency = 1 DQ’s DIN A0 DIN A1 tDPL NOP NOP tRP * tRP CAS latency = 2 DQ’s DIN A0 DIN A1 tRP tDPL CAS latency = 3 DQ’s * DIN A0 DIN A1 * * Begin Autoprecharge Bank can be reactivated after trp Semiconductor Group 25 NOP HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 7.2 Burst Read with Auto-Precharge (Burst Length = 4, CAS latency = 1, 2, 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND READ A with AP NOP * CAS latency = 1 * CAS latency = 2 tCK2, DQ’s NOP NOP NOP DOUT A 1 DOUT A 2 DOUT A 3 DOUT A 1 DOUT A 2 DOUT A 3 DOUT A 1 DOUT A 2 NOP NOP NOP tRP DOUT A 0 tCK1, DQ’s NOP tRP DOUT A 0 * CAS latency = 3 tCK3, DQ’s tRP DOUT A 0 DOUT A 3 * Begin Autoprecharge Bank can be reactivated after trp 8.1 Termination of a Burst Read Operation (CAS latency = 1, 2, 3 / Burst Length = 8) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND READ A CAS latency = 1 tCK1, DQ’s CAS latency = 2 tCK2, DQ’s NOP NOP NOP Burst Stop DOUT A0 DOUT A 1 DOUT A 2 DOUT A 3 DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 DOUT A 0 DOUT A 1 DOUT A 2 NOP NOP Semiconductor Group NOP The burst ends after a delay equal to theCAS latency. CAS latency = 3 tCK3, DQ’s NOP 26 DOUT A 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 8.2 Termination of a Burst Write Operation (CAS Laency = 1, 2, 3, Burst Length = 8) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND NOP CAS latency = 1,2,3 DQ’s WRITE A DIN A0 NOP NOP DIN A1 DIN A2 Burst Stop NOP don’t care Input data for the Write is masked. Semiconductor Group 27 NOP NOP NOP Semiconductor Group 28 DQ DQM Addr AP BA WE CAS RAS CS CKE CLK Hi-Z tCH tAS tCKS T0 tRCD tAH T3 T4 Ax0 CAx tCK2 tCH tCS T2 Ax1 T5 Ax2 tRC RBx RBx T6 Ax3 T7 T9 T10 Bx0 CBx Bx1 Bx2 RAy RAy Bx3 tDS Begin Auto Precharge Bank A T8 Activate Write with Activate Write with Activate Command Auto Precharge Command Auto Precharge Command Bank A Command Bank B Command Bank A Bank A Bank B RAx RAx tCL T1 9.1 AC Parameters for Write Timing T13 T14 Write Command Bank A Ay0 Ay1 tDH Ay2 T16 Precharge Command Bank A tDPL T15 Ay3 Begin Auto Precharge Bank B T12 RAy T11 tRP tCKH T20 Activate Command Bank B RBy RBy T19 tRRD T18 Activate Command Bank A RAz RAz T17 T21 T22 Burst Length = 4, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 29 DQ DQM Addr AP BA WE CAS RAS CS CKE CLK Hi-Z tCKS tCH tCL T0 tAS RAx RAx tCS tRCD tAH tCH tCK2 T2 Activate Command Bank A T1 9.2 AC Parameters for Read Timing tRRD CAx T4 Read Command Bank A T3 tLZ tAC2 tAC2 Ax0 tOH tRAS RBx RBx T6 Activate Command Bank B T5 RBx T8 Read with Auto Precharge Command Bank B Ax1 tHZ tRC T7 T10 Precharge Command Bank A Bx0 Begin Auto Precharge Bank B T9 tHZ Bx1 tRP tCKH RAy RAy T12 Activate Command Bank A T11 T13 Burst Length = 2, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 30 Addr AP BA WE CAS RAS CS CKE CLK T0 T2 Precharge Command All Banks T1 10. Mode Register Set T5 Mode Register Set Command T6 Any Command 2 Clock min. T4 Address Key T3 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 31 DQ DQM Addr AP BA WE CAS RAS CS CKE CLK T T T Precharge 1st Auto Refresh Command Command All Banks tRP High level is required T Inputs must be stable for 200µs Hi-Z T0 T T T T T1 T T T 2nd Auto Refresh Command Minimum of 2 Refresh Cycles are required T 11. Power on Sequence and Auto Refresh (CBR) tRC T T T Mode Register Set Command T Any Command 2 Clock min. T Address Key T T T T HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 32 Hi-Z DQ T3 Read Command Bank A CAx T2 Activate Command Bank A RAx Addr DQM RAx tCK1 T1 AP BA WE CAS RAS CS CKE CLK T0 Ax0 Ax1 T5 T6 Clock Suspend 1 Cycle T4 Ax2 T8 Clock Suspend 2 Cycles T7 T9 Ax3 T11 tHZ T12 Clock Suspend 3 Cycles T10 12.1 Clock Suspension During Burst Read (Using CKE) (1 of 3) T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 Burst Length = 4, CAS Latency = 1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 33 DQ Activate Command Bank A RAx Addr Hi-Z RAx DQM T1 tCK2 AP BA WE CAS RAS CS CKE CLK T0 CAx T3 Read Command Bank A T2 T4 Ax0 Ax1 T6 T7 Clock Suspend 1 Cycle T5 Ax2 T9 Clock Suspend 2 Cycles T8 T10 Ax3 T12 tHZ T13 Clock Suspend 3 Cycles T11 12.2 Clock Suspension During Burst Read (Using CKE) (2 of 3) T14 T15 T16 T17 T18 T19 T20 T21 T22 Burst Length = 4, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 34 DQ Activate Command Bank A RAx Addr Hi-Z RAx DQM T1 tCK3 AP BA WE CAS RAS CS CKE CLK T0 T2 CAx T4 Read Command Bank A T3 T5 T6 Ax0 Ax1 T8 T9 Clock Suspend 1 Cycle T7 T11 Clock Suspend 2 Cycles Ax2 T10 12.3 Clock Suspension During Burst Read (Using CKE) (3 of 3) T12 Ax3 T14 tHZ T15 Clock Suspend 3 Cycles T13 T16 T17 T18 T19 T20 T21 T22 Burst Length = 4, CAS Latency = 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 35 Hi-Z DQ T3 DAx1 T4 Write Command Bank A Clock Suspend 1 Cycle DAx0 CAx T2 Activate Command Bank A RAx Addr DQM RAx tCK1 T1 AP BA WE CAS RAS CS CKE CLK T0 T6 T8 DAx2 T7 Clock Suspend 2 Cycles T5 T10 Clock Suspend 3 Cycles T9 T12 DAx3 T11 12.4 Clock Suspension During Burst Write (Using CKE) (1 of 3) T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 Burst Length = 4, CAS Latency = 1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 36 DQ Activate Command Bank A RAx Addr Hi-Z RAx DQM T1 tCK2 AP BA WE CAS RAS CS CKE CLK T0 T3 T4 Write Command Bank A T6 T7 Clock Suspend 2 Cycles T5 DAx1 Clock Suspend 1 Cycle DAx0 CAx T2 DAx2 T8 T10 Clock Suspend 3 Cycles T9 T12 DAx3 T11 12.5 Clock Suspension During Burst Write (Using CKE) (2 of 3) T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 Burst Length = 4, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 37 Hi-Z DQ tCK3 T1 Activate Command Bank A RAx Addr DQM RAx AP BA WE CAS RAS CS CKE CLK T0 T2 CAx T4 Write Command Bank A T7 T8 Clock Suspend 2 Cycles T6 DAx1 T5 Clock Suspend 1 Cycle DAx0 T3 DAx2 T9 T11 Clock Suspend 3 Cycles T10 T13 DAx3 T12 12.6 Clock Suspension During Burst Write (Using CKE) (3 of 3) T14 T15 T16 T17 T18 T19 T20 T21 T22 Burst Length = 4, CAS Latency = 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 38 DQ T2 T3 tCKSP Clock Suspend Mode Entry Activate Command Bank A RAx Addr Hi-Z RAx DQM T1 tCK2 AP BA WE CAS RAS CS CKE CLK T0 CAx T6 Read Command Bank A T5 Clock Suspend Mode Exit T4 13. Power Down Mode and Clock Suspend T7 Ax1 T9 Clock Mask Start Ax0 T8 T10 T12 Clock Mask End Ax2 T11 tHZ T13 T15 Precharge Command Bank A Ax3 T14 T16 T18 Power Down Mode Entry T17 tCKSP T19 T21 T22 Any Command Power Down Mode Exit T20 Burst Length = 4, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 39 Hi-Z Precharge Command All Banks T4 T5 tRC T6 T7 T9 Auto Refresh Command T8 T10 T12 tRC T11 T13 T14 T15 DQ DQM Auto Refresh Command (Minimum Interval) Activate Command Bank A RAx T3 Addr T2 RAx tRP tCK2 T1 AP BA WE CAS RAS CS CKE CLK T0 14. Auto Refresh (CBR) T17 Read Command Bank A CAx T16 T18 Ax0 T19 Ax1 T20 Ax2 T21 Ax3 T22 Burst Length = 4, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 40 DQ DQM A0 - A9 A10 A11(BS) WE CAS RAS CS CKE CLK All Banks must be idle Hi-Z T0 T1 T3 Self Refresh Entry T2 T4 15. Self Refresh (Entry and Exit) T5 T6 T8 T10 tRC T11 Begin Self Refresh Exit Command tSREX tCKSR T9 Self Refresh Exit Command issued T7 T Self Refresh Exit T T T T T T T T T T HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 41 DQ CAw T2 Activate Command Bank A Read Command Bank A RAw Addr Hi-Z RAw DQM T1 tCK1 AP BA WE CAS RAS CS CKE CLK T0 Aw0 T3 Aw1 T4 Aw3 CAx T6 Read Command Bank A Aw2 T5 Ax1 CAy T8 Read Command Bank A Ax0 T7 Ay0 T9 Ay1 T10 Ay3 T12 RAz RAz T14 CAz T13 T15 Az0 Precharge Read Command Command Bank A Bank A Activate Command Bank A Ay2 T11 16.1 Random Column Read (Page within same Bank) (1 of 3) Az1 T16 Az2 T17 Az3 T18 T19 T20 T21 T22 Burst Length = 4, CAS Latency = 1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 42 DQ Activate Command Bank A RAw Addr Hi-Z RAw DQM T1 tCK2 AP BA WE CAS RAS CS CKE CLK T0 CAw T3 Read Command Bank A T2 T4 Aw0 T5 Aw2 CAx T7 Read Command Bank A Aw1 T6 Ax0 CAy T9 Read Command Bank A Aw3 T8 Ax1 Ay2 T13 Precharge Command Bank A T12 Ay1 T11 Ay0 T10 16.2 Random Column Read (Page within same Bank) (2 of 3) Ay3 RAz RAz T15 Activate Command Bank A T14 T17 Read Command Bank A CAz T16 T18 Az0 T19 Az1 T20 Az2 T21 Az3 T22 Burst Length = 4, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 43 DQ Activate Command Bank A RAw Addr Hi-Z RAw DQM T1 tCK3 AP BA WE CAS RAS CS CKE CLK T0 T2 CAw T4 Read Command Bank A T3 T5 T6 Aw1 CAx T8 Read Command Bank A Aw0 T7 Aw3 CAy T12 Ax1 T11 Ax0 T10 Read Command Bank A Aw2 T9 16.3 Random Column Read (Page within same Bank) (3 of 3) Ay0 T13 Ay1 Precharge Command Bank A T16 Ay3 T15 Ay2 T14 T18 Activate Command Bank A RAz RAz T17 T19 T21 Read Command Bank A CAz T20 T22 Burst Length = 4, CAS Latency = 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 44 DQ T3 T4 T5 CBx T6 T7 CBy T8 T9 T10 T11 Write Command Bank B Write Command Bank B T12 RBz RBz T13 Precharge Command Bank B Activate Command Bank B DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3 CBw T2 Activate Command Bank B Write Command Bank B RBw Addr Hi-Z RBw DQM T1 tCK1 AP BA WE CAS RAS CS CKE CLK T0 17.1 Random Column Write (Page within same Bank) (1 of 3) T14 T15 T16 T18 T19 T20 T21 Write Command Bank B DBz0 DBz1 DBz2 DBz3 CBz T17 T22 Burst Length = 4, CAS Latency = 1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 45 DQ Bx0 tRCD tAC1 CBx tCK1 T1 Activate Command Bank B Read Command Bank B Hi-Z RBx A0 - A9 DQM RBx High A10 A11(BS) WE CAS RAS CS CKE CLK T0 Bx1 T2 Bx2 T3 T4 Bx3 Bx4 T5 T6 Bx5 Bx6 RAx RAx T8 Bx7 CAx T9 Ax0 Ax1 tRP RBy RBy T10 Ax2 T11 Activate Precharge Command Command Bank A Bank B Activate Read Command Command BankB Bank A T7 18.1 Random Row Read (Interleaving Banks) (1 of 3) Ax3 T12 Ax4 T13 Ax5 T14 Ax6 T15 Ax7 T16 T17 By0 T19 Read Command Bank B CBy T18 T22 By2 T21 Precharge Command Bank A By1 T20 Burst Length = 8, CAS Latency = 1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Semiconductor Group 46 DQ tRCD Activate Command Bank B Hi-Z RBx A0 - A9 DQM RBx High A10 A11(BS) WE CAS RAS CS CKE CLK T0 T2 Read Command Bank B CBx tCK2 T1 tAC2 T3 Bx0 T4 Bx1 T5 Bx2 T6 Bx4 RAx RAx T8 Activate Command Bank A Bx3 T7 Bx6 CAx Ax1 RBy RBy T13 Activate Command Bank B T12 Ax0 tRP T11 Bx7 T10 Precharge Command Bank B Read Command Bank A Bx5 T9 18.2 Random Row Read (Interleaving Banks) (2 of 3) Ax2 T14 Ax3 Ax6 T17 Ax5 T16 Ax4 T15 T19 Read Command Bank B Ax7 CBy T18 By0 T20 By1 T21 T22 Burst Length = 8, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Semiconductor Group 47 DQ Activate Command Bank B Hi-Z RBx A0 - A9 DQM RBx High A10 A11(BS) WE CAS RAS CS CKE CLK T0 tRCD tCK3 T1 CBx T3 Read Command Bank B T2 T4 tAC3 T5 Bx0 T6 Bx2 RAx RAx T8 Activate Command Bank A Bx1 T7 Bx3 T9 18. 3 Random Row Read (Interleaving Banks) (3 of 3) Bx4 Bx7 tRP RBy RBy Activate Command Bank B Ax3 T16 Ax2 T15 Ax1 T14 Ax0 T13 Precharge Command Bank B T12 Bx6 T11 Read Command Bank A Bx5 CAx T10 Ax4 T17 Ax6 T19 Read Command Bank B Ax5 CBy T18 By0 T21 Precharge Command Bank A Ax7 T20 T22 Burst Length = 8, CAS Latency = 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Semiconductor Group 48 DQ T1 tCK1 CAx T2 T3 T4 T5 T6 T7 RBx RBx T8 CBx T9 T10 T11 T12 tRP T13 RAy RAy T14 T15 tDPL T16 Write Command Bank A Write Command Bank B Activate Command Bank B Precharge Command Bank A Activate Command Bank A T17 T19 T20 T21 T22 Write Command Bank A DAy0 DAy1 DAy2 DAy3 CAy T18 Burst Length = 8, CAS Latency = 1 Precharge Command Bank B DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 tRCD Activate Command Bank A Hi-Z RAx A0 - A9 DQM RAx High A10 A11(BS) WE CAS RAS CS CKE CLK T0 19.1 Random Row Write (Interleaving Banks) (1 of 3) HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Semiconductor Group 49 DQ Activate Command Bank A Hi-Z RAx A0 - A9 DQM RAx High A10 A11(BS) WE CAS RAS CS CKE CLK T0 T3 T4 T5 T6 T7 RBx RBx T8 CBx tDPL T9 T10 T12 tRP T11 RAy RAy T13 T14 T15 T16 tDPL CAy T17 T18 T19 T20 T21 T22 Burst Length = 8, CAS Latency = 2 Activate Command Bank B Precharge Command Bank A Write Command Bank B Activate Command Bank A Precharge Command Bank B Write Command Bank A DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 DAy4 T2 Write Command Bank A tRCD CAy CAX tCK2 T1 19.2 Random Row Write (Interleaving Banks) (2 of 3) HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Semiconductor Group 50 DQ Activate Command Bank A Hi-Z RAx A0 - A9 DQM RAx High A10 A11(BS) WE CAS RAS CS CKE CLK T0 tRCD tCK3 T1 CAX T3 T4 T5 T6 T7 RBx RBx T8 T9 T11 tDPL CBx T10 T12 T13 tRP T14 T15 RAy RAy T16 T17 T19 tDPL CAy T18 T20 T21 T22 Burst Length = 8, CAS Latency = 3 Write Command Bank A Activate Command Bank B Write Command Bank B Precharge Command Bank A Activate Command Bank A Write Command Bank A Precharge Command Bank B DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 T2 19.3 Random Row Write (Interleaving Banks) (3 of 3) HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Semiconductor Group 51 DQ Activate Command Bank B RBz Addr Hi-Z RBz DQM T1 tCK2 AP BA WE CAS RAS CS CKE CLK T0 CBz T3 T4 T5 T6 CBx T7 T8 CBy T9 T10 T11 Write Command Bank B Write Command Bank B Write Command Bank B T13 Precharge Command Bank B T12 DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3 T2 17.2 Random Column Write (Page within same Bank) (2 of 3) T15 Activate Command Bank B RAw RBz RAw RBz T14 T17 T18 T19 T20 Write Command Bank B DBz0 DBz1 DBz2 DBz3 CAx CBz T16 T21 T22 Burst Length = 4, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 52 DQ Activate Command Bank B RBz Addr Hi-Z RBz DQM T1 tCK3 AP BA WE CAS RAS CS CKE CLK T0 T2 CBz T4 T5 T6 T7 CBx T8 T9 CBy T10 T11 T12 T13 Write Command Bank B Write Command Bank B Write Command Bank B DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3 T3 17.3 Random Column Write (Page within same Bank) (3 of 3) T15 Precharge Command Bank B T14 T16 T18 Activate Command Bank B RBz RBz T17 T19 T21 T22 Write Command Bank B DBz0 DBz1 CBz T20 Burst Length = 4, CAS Latency = 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 53 DQ tRRD CAx Ax RBx RBx tCK1 T1 T3 T4 Ax-2 T Ax-1 T Ax The burst counter wraps from the highest order page address back to zero during this time interval. Ax+1 Ax+2 T2 Activate Activate Command Command Bank B Bank A Read Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 20.1 Full Page Read Cycle (1 of 3) Ax+1 CBx T Read Command Bank B T Bx+1 Bx+2 T T Bx+3 T T Bx+4 Bx+5 T Bx+6 T Bx+7 tRP T RBy RBy T Activate Command Bank B Precharge Command Bank B T Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues Burst Stop bursting beginning with the starting address. Command Bx T T T T T Burst Length = Full Page, CAS Latency = 1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 54 DQ Activate Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 T2 Read Command Bank A CAx tCK2 T1 Ax RBx RBx Ax+1 T4 Activate Command Bank B T3 20.2 Full Page Read Cycle (2 of 3) T Ax-1 T Ax CBx T T Bx T Bx+1 T Bx+2 T T Bx+3 Bx+4 T T Bx+6 T Burst Stop Command Precharge Command Bank B Bx+5 Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address. Ax+1 Read Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval. Ax-2 T6 Ax+2 T5 tRP RBy RBy T Activate Command Bank B T T T T Burst Length = Full Page, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 55 DQ Activate Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 tCK3 T1 CAx T3 Read Command Bank A T2 RBx RBx T5 Activate Command Bank B T4 20.3 Full Page Read Cycle (3 of 3) Ax T8 T Ax-1 CBx T Ax T Ax+1 T Bx T Bx+1 T Bx+2 T T Bx+3 Bx+4 T Read Command Bank B tRRD T Bx+5 Full Page burst operation does not terminate when the length is Precharge satisfied; the burst counter Command increments and continues Bank B The burst counter wraps bursting beginning with from the highest order the starting address. page address back to zero Burst Stop during this time interval. Command Ax+2 Ax-2 T7 Ax+1 T6 RBy RBy T Activate Command Bank B T T T Burst Length = Full Page, CAS Latency = 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 56 DQ RBx T2 T3 T4 T T T CBx T T T T T T T T The burst counter wraps from the highest order page address back to zero during this time interval. Write Command Bank B Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address. T RBy RBy T Activate Command Bank B Precharge Command Bank B T T T T Page Length: 2Mb x 4I/O x 2 Banks = 1024 1Mb x 8I/O x 2 Banks = 512 512kb x 16I/O x 2 Banks = 256 T Burst Length = Full Page, CAS Latency = 1 Burst Stop Command Data is ignored. DAx DAx+1 DAx+2 DAx+2 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6 DBx+7 CAx RBx tCK1 T1 Activate Command Activate Bank B Command Bank A Write Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 21.1 Full Page Write Cycle (1 of 3) HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 57 DQ Activate Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 T2 T3 RBx RBx T4 T5 T T T CBx T T T T T T T Write Command Bank A T T RBy RBy T Activate Command Bank B T T T T Burst Length = Full Page, CAS Latency = 2 Activate Write Command Precharge Command Data is ignored. Command Bank B Bank B Bank B The burst counter wraps Full Page burst operation does not from the highest order terminate when the burst length is satisfied; page address back to zero Burst Stop the burst counter increments and continues during this time interval. bursting beginning with the starting address. Command DAx DAx+1 DAx+2 DAx+3 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6 CAx tCK2 T1 21.2 Full Page Write Cycle (2 of 3) HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 58 DQ Activate Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 tCK3 T1 CAx T3 T4 RBx RBx T5 T6 T T T CBx T T T T T T Write Command Bank A T T RBy RBy T Activate Command Bank B T Data is ignored. T T T Burst Length = Full Page, CAS Latency = 3 Activate Write Command Precharge Command Full Page burst operation does not Command Bank B Bank B terminate when the length is Bank B satisfied; the burst counter The burst counter wraps increments and continues from the highest order bursting beginning with page address back to zero Burst Stop the starting address. during this time interval. Command DAx DAx+1 DAx+2 DAx+3 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 T2 21.3 Full Page Write Cycle (3 of 3) HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 59 Hi-Z DQ CAx T3 T4 T5 T6 T7 Write Command Bank A tRP T8 RAy RAy T9 CAy T10 Read Precharge Command Command Bank A Bank A Precharge Termination Activate of a Write Burst. Command Write data is masked. Bank A DAx0 DAx1 DAx2 DAx3 DAx4 T2 Activate Command Bank A RAx Addr DQM RAx tCK1 T1 AP BA WE CAS RAS CS CKE CLK T0 22.1 Precharge Termination of a Burst (1 of 3) Ay0 T11 Ay2 tRP T13 RAz RAz CAz T15 T16 T17 T18 T19 T20 T21 T22 Write Command Bank A DAz0 DAz1 DAz2 DAz3 DAz4 DAz5 DAz6 DAz7 Precharge Termination of a Read Burst. T14 Activate Command Bank A Precharge Command Bank A Ay1 T12 Burst Length = Full Page, CAS Latency = 1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 60 DQ Activate Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 T2 T3 T4 T5 T6 Write Precharge Command Command Bank A Bank A Precharge Termination of a Write Burst. Write data is masked. DAx0 DAx1 DAx2 DAx3 CAx tCK2 T1 tRP RAy RAy T8 Activate Command Bank A T7 22.2 Precharge Termination of a Burst (2 of 3) CAy T10 Read Command Bank A T9 T11 Ay1 T13 Precharge Command Bank A Ay0 T12 RAz RAz T15 Activate Command Bank A Ay2 tRP T14 T17 T18 Az1 T21 Az2 tRP T20 Precharge Command Bank A Az0 T19 Precharge Termination of a Read Burst. Read Command Bank A CAz T16 T22 Burst Length = 8 or Full Page, CAS Latency = 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ Semiconductor Group 61 DQ Activate Command Bank A Hi-Z RAx Addr DQM RAx High AP BA WE CAS RAS CS CKE CLK T0 CAx T3 Write Command Bank A DAx0 T2 Write Data is masked tCK3 T1 T5 tRP T6 RAy RAy T8 Activate Command Bank A T7 Precharge Termination of a Write Burst. Precharge Command Bank A T4 22.3 Precharge Termination of a Burst (3 of 3) T9 T11 Read Command Bank A CAy T10 T12 T13 Ay1 T15 Precharge Command Bank A Ay0 T14 Ay2 tRP T16 T18 T19 T20 T21 Precharge Termination of a Read Burst. Activate Command Bank A RAz RAz T17 T22 Burst Length = 4,8 or Full Page, CAS Latency = 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Complete List of Operation Commands SDRAM FUNCTION TRUTH TABLE CURRENT STATE 1 CS RAS CAS WE BS Addr ACTION Idle H L L L L L L L X H H H L L L L X H H L H H L L X H L X H L H L X X BS BS BS BS X Op- X X X X RA AP X Code NOP or Power Down NOP ILLEGAL2 ILLEGAL2 Row (&Bank) Active; Latch Row Address NOP4 Auto-Refresh or Self-Refresh5 Mode reg. Access5 Row Active H L L L L L L X H H H L L L X H L L H H L X X H L H L X X X BS BS BS BS X X X CA,AP CA,AP X AP X NOP NOP Begin Read; Latch CA; DetermineAP Begin Write; Latch CA; DetermineAP ILLEGAL2 Precharge ILLEGAL Read H L L L L L L L X H H H H L L L X H H L L H H L X H L H L H L X X X BS BS BS BS BS X X X X CA,AP CA,AP X AP X NOP (Continue Burst to End;>Row Active) NOP (Continue Burst to End;>Row Active) Burst Stop Command > Row Active Term Burst, New Read, DetermineAP3 Term Burst, Start Write, DetermineAP3 ILLEGAL2 Term Burst, Precharge ILLEGAL Write H L L L L L L L X H H H H L L L X H H L L H H L X H L H L H L X X X BS BS BS BS BS X X X X CA,AP CA,AP X AP X NOP (Continue Burst to End;>Row Active) NOP (Continue Burst to End;>Row Active) Burst Stop Command > Row Active Term Burst, Start Read, DetermineAP3 Term Burst, New Write, DetermineAP3 ILLEGAL2 Term Burst, Precharge3 ILLEGAL Read with Auto Precharge H L L L L L L L X H H H H L L L X H H L L H H L X H L H L H L X X X BS BS X BS BS X X X X X X X AP X NOP (Continue Burst to End;> Precharge) NOP (Continue Burst to End;> Precharge) ILLEGAL2 ILLEGAL2 ILLEGAL ILLEGAL2 ILLEGAL2 ILLEGAL Semiconductor Group 62 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM SDRAM FUNCTION TRUTH TABLE(continued) CURRENT STATE 1 CS RAS CAS WE BS Addr ACTION Write with Auto Precharge H L L L L L L L X H H H H L L L X H H L L H H L X H L H L H L X X X BS BS X BS BS X X X X X X X AP X NOP (Continue Burst to End;> Precharge) NOP (Continue Burst to End;> Precharge) ILLEGAL2 ILLEGAL2 ILLEGAL ILLEGAL2 ILLEGAL2 ILLEGAL Precharging H L L L L L L X H H H L L L X H H L H H L X H L X H L X X X BS BS BS BS X X X X X X AP X NOP;> Idle after tRP NOP;> Idle after tRP ILLEGAL2 ILLEGAL2 ILLEGAL2 NOP4 ILLEGAL Row Activating H L L L L L L X H H H L L L X H H L H H L X H L X H L X X X BS BS BS BS X X X X X X AP X NOP;> Row Active after tRCD NOP;> Row Active after tRCD ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL Write Recovering H L L L L L L X H H H L L L X H H L H H L X H L X H L X X X BS BS BS BS X X X X X X AP X NOP NOP ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL Refreshing H L L L L X H H L L X H L H L X X X X X X X X X X X X X X X NOP;> Idle after tRC NOP;> Idle after tRC ILLEGAL ILLEGAL ILLEGAL Mode Register H L L L L X H H H L X H H L X X H L X X X X X X X X X X X X NOP NOP ILLEGAL ILLEGAL ILLEGAL Accessing Semiconductor Group 63 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM CLOCK ENABLE (CKE) TRUTH TABLE: STATE(n) CKE n-1 CKE n CS RAS CAS WE Addr ACTION SelfRefresh6 H L L L L L L X H H H H H L X H L L L L X X X H H H L X X X H H L X X X X H L X X X X X X X X X X INVALID EXIT Self-Refresh, Idle after tRC EXIT Self-Refresh, Idle after tRC ILLEGAL ILLEGAL ILLEGAL NOP (Maintain Self-Refresh) Power-Down H L L L L L L X H H H H H L X H L L L L X X X H H H L X X X H H L X X X X H L X X X X X X X X X X INVALID EXIT Power-Down, > Idle. EXIT Power-Down, > Idle. ILLEGAL ILLEGAL ILLEGAL NOP (Maintain Low-Power Mode) All. Banks Idle7 H H H H H H H H L H L L L L L L L L X H L L L L L L X X X H H H L L L X X X H H L H L L X X X H L X X H L X X X X X X X X X X Refer to the function truth table Enter Power- Down Enter Power- Down ILLEGAL ILLEGAL ILLEGAL Enter Self-Refresh ILLEGAL NOP Any State other than listed above H H L L H L H L X X X X X X X X X X X X X X X X X X X X Refer to the function truth table Begin Clock Suspend next cycle8 Exit Clock Suspend next cycle8. Maintain Clock Suspend. ABBREVIATIONS: RA = Row Address CA = Column Address BS = Bank Address AP = Auto Precharge Notes for SDRAM function truth table : 1. Current State is state of the bank determined by BS. All entries assume that CKE was active cycle. (HIGH) during the preced ing clock 2. Illegal to bank in specified state; Function may be legal in the bank indicated by BS, depending on the state of that bank. 3. Must satisfy bus contention, bus turn around, and/or write recovery requirements. 4. NOP to bank precharging or in Idle state. May precharge bank(s) indicated by BS (andAP). 5. Illegal if any bank is not Idle. 6. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT. 7. Power-Down and Self-Refresh can be entered only from the All Banks Idle State. 8. Must be legal command as defined in the SDRAM function truth table. Semiconductor Group 64