INFINEON TLE4473GV55-2

Dual Low Dropout Voltage Regulator
TLE 4473 GV55-2
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Stand-by output 190 mA; 5 V ± 2%
Main output: 300 mA, 5 V
tracked to the stand-by output
Low quiescent current consumption
Disable function separately for both outputs
Wide operation range: up to 42 V
Very low dropout voltage
2 independent reset circuits
Watchdog
Output protected against short circuit
Wide temperature range: -40 °C to 150 °C
Overtemperature protection
Overload protection
Green product (RoHS compliant)
AEC qualified
PG-DSO-12-11
Functional Description
The TLE 4473 is a monolithic integrated voltage regulator with two low dropout outputs,
a main output Q1 for loads up to 300 mA and a stand by output Q2 providing a maximum
of 190 mA. The stand-by regulator transforms an input voltage VI in the range of 5.6 V ≤
VI ≤ 42 V to an output voltage of VQ2 = 5.0 V (±2%). The main output is tracked to the
stand by output voltage and provides also 5 V. A versions of this device with 5 V/3.3 V
and 5 V/2.6 V are also available, please refer to the data sheet TLE 4473 G V53/
TLE 4473 G V52. The Inhibit input INH1 disables the output Q1 only, whereas Inhibit
input INH2 disables both, Q1 and Q2 output. The quiescent current then is 1 µA.
The TLE 4473 is designed to supply microprocessor systems and sensors under the
severe conditions of automotive applications and therefore is equipped with additional
protection functions against overload, short circuit and overtemperature. The device
operates in the wide junction temperature range of -40 °C to 150 °C.
Type
Package
Marking
TLE 4473 GV55-2
PG-DSO-12-11 (RoHS compliant)
TLE4473 GV55-2
Data Sheet
1
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
The device features a reset with adjustable power on delay for each of the outputs. In
addition the output for the microcontroller supply comes up with a watchdog in order to
supervise a connected microcontroller
Reset and Watchdog Behavior
The reset output RO2 is in high-state if the voltage on the delay capacitor CD2 is greater
or equal VDU2. The delay capacitor CD2 is charged with the current IDC2 for output
voltages greater than the reset threshold VRT2. If the output voltage gets lower than VRT2
(‘reset condition’) a fast discharge of the delay capacitor CD2 sets in and as soon as VD2
gets lower than VDL2 the reset output RO2 is set to low-level. The time for the delay
capacitor charge is the reset delay time. For the power-on case the charging process of
CD2 starts from 0 V, which leads to the equation:
C D2 × V DU2
t D, on = ---------------------------I DC2
(1)
for the power-on reset delay time.
When the voltage on the delay capacitor has reached VDU2 and reset was set to high, the
watchdog circuit is enabled and discharges CD2 with the constant current IDD2.
If there is no rising edge observed at the watchdog input, CD2 will be discharge down to
VDL2. Then reset output RO2 will be set to low and CD2 will be charged again with the
current IDC2 until VD2 reaches VDU2 and reset will be set high again.
If the watchdog pulse (rising edge at watchdog input WI) occurs during the discharge
period CD2 is charged again and the reset output stays high. After VD2 has reached VDU2,
the periodical cycle starts again.
The watchdog timing is shown in Figure 1. The maximum duration between two
watchdog pulses corresponds to the minimum watchdog trigger time TWI,tr. Higher
capacitances on pin D2 result in longer watchdog trigger times:
T WI,tr
max
= 0.34 ms/nF × C D2
(2)
If the output voltage Q1 decreases below VRT1 (typ. 4.65 V), the external capacitor CD1
is discharged by the reset generator of the main output. If the voltage on this capacitor
drops below VDL1, a reset signal is generated on pin 2 (RO1). If the output voltage rises
above the reset threshold, CD1 will be charged with the constant current IDC1. After the
power-on-reset time the voltage on the capacitor reaches VDU1 and the reset output will
be set high again. The value of the power-on-reset time can be set within a wide range
depending of the capacitance of CD1 using the above given equation (1) analogous for
Q1.
Data Sheet
2
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
VW Ι
t
VΙ
VQ
t
T WD, p
VD2
t
T WI, tr
VDU2
VDL2
t WD, L
VRO2
T WI, tr =
(VDU2 -VDL2 )
Ι DD2
C D2 ; T WD, p =
(VDU2 -VDL2 ) (Ι DC2 + Ι DD2 )
Ι DC2 x Ι DD2
C D2 ; t WD, L =
t
(VDU2 -VDL2 )
Ι DC2
t
C D2
AED03099_4473
Figure 1
Data Sheet
Watchdog Timing Schedule
3
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
TLE 4 4 7 3 GV5 5 -2
V Bat
Q2 4
7 I
10
µF
CI
100 nF
Ove rte mp e ra tu re
Sh u td o w n
Ba n d g a p
R e fe re n ce
Ig n itio n
9 IN H 2
C u rre n t a n d
Sa tu ra tio n
C o n tro l,
Ove rcu rre n t
Pro te ctio n
In h ib it
µC
Su p p ly
4 .7 kΩ
R e se t
Ge n e ra to r
Wa tch d o g
R O2 3
µC
R e se t
WI 1
Wa tch d o g
(fro m µC )
D2 11
100 nF
Q1 6
10
µF
C u rre n t a n d
Sa tu ra tio n
C o n tro l,
Ove rcu rre n t
Pro te ctio n
µC
8 IN H 1
e .g . Se n so r
Su p p ly
4 .7 kΩ
R e se t
Ge n e ra to r
e .g . Se n so r
R e se t
(to µC )
R O1 2
In h ib it
D1 10
100 nF
12
TL E4 4 7 3 G V5 5 -2 _ BL O CKDIAG RAM .VSD
Figure 2
Data Sheet
GN D
Block Diagram with Typical External Components
4
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Application Information
The output voltage is divided by a voltage divider and compared to an internal reference
voltage. A regulation loop controls the Q2 output in order to achieve a stable output
voltage at the Q2 pin. A second regulation loop controls the Q1 output. The reference
voltage for the Q1 is the regulated Q2 potential (tracking regulator).
Figure 2 includes the components needed for a typical application. Maintaining the
stability of the regulation loops requires a capacitor of 10 µF both outputs. A maximum
ESR of 5 Ω is permissible for the Q2 output, while the Q1 output requires a capacitor with
a maximum ESR of 3 Ω. For both output blocking capacitors it is recommended to use
tantalum types in order to stay in the permissible ESR range over the full operating
temperature range.
At the input of the regulator a capacitor is necessary for compensating line influences. A
minimum of 100 nF (ceramic capacitor) is recommended. In addition for compensation
of long input lines of several meters an electrolytic input capacitor of 47 µF … 220 µF
should be placed at the input.
TLE 4473 GV55-2
(P-DSO-12)
Figure 3
Data Sheet
1
12
GND
RO1
2
11
D2
RO2
3
10
D1
Q2
4
9
INH2
N.C.
5
8
INH1
Q1
6
7
I
TL E4 4 7 3 GV5 5 -2 _ PIN OU T.VSD
WI
Pin Configuration (top view)
5
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 1
Pin Definitions and Functions
Pin No. Symbol Function
1
WI
Watchdog input; input for watchdog pulses, positive edge
triggered.
2
RO1
Reset and watchdog output for Q1; open collector output.
Connect to pull-up resistor.
3
RO2
Reset output 2; open collector output. Connect to pull-up resistor.
4
Q2
Stand-by regulator output voltage; block to GND with a capacitor
CQ2 ≥ 10 µF, ESR < 5 Ω at 10 kHz.
5
N.C.
Internally not connected; connect to GND.
6
Q1
Main regulator output voltage; output voltage tracked to Q2
voltage; block to GND with a capacitor CQ1 ≥ 10 µF, ESR < 3 Ω at
10 kHz
7
I
Input voltage; block to ground directly at the IC with a ceramic
capacitor.
8
INH1
Inhibit input 1; low level disables Q1, integrated pull-down resistor.
9
INH2
Inhibit input 2; low level at INH2 and INH1 disables Q2 and Q1,
integrated pull-down resistor.
10
D1
Reset Delay 1; connect to ground via a capacitor to set reset delay
for Q1.
11
D2
Reset Delay 2; connect to ground via a capacitor to set reset delay
and watchdog timing for Q2.
12
GND
Ground; connect to heatslug.
Heatslug
Data Sheet
Interconnect with PCB heatsink area and GND.
6
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 2
Absolute Maximum Ratings
-40 °C < Tj < 150 °C
Parameter
Symbol
Limit Values
Unit
Remarks
Min.
Max.
VI
II
-42
45
V
–
–
–
mA
Internally limited
VQ2
IQ2
-0.3
18
V
–
–
–
mA
Internally limited
VQ1
IQ1
-0.3
18
V
–
–
–
mA
Internally limited
VINH1
IINH1
-42
45
V
–
-2
2
mA
–
VINH2
IINH2
-42
45
V
–
-2
2
mA
–
VRO1
IRO1
-0.3
18
V
–
–
–
mA
Internally limited
VRO2
IRO2
-0.3
18
V
–
–
–
mA
Internally limited
VD1
ID1
-0.3
7
V
–
-5
5
mA
–
VD
ID
-0.3
7
V
–
-5
5
mA
–
Input I
Voltage
Current
Stand-by Output Q2
Voltage
Current
Main Output Q1
Voltage
Current
Inhibit Input INH1
Voltage
Current
Inhibit Input INH2
Voltage
Current
Reset Output RO1
Voltage
Current
Reset Output RO2
Voltage
Current
Reset Delay D1
Voltage
Current
Reset Delay D2
Voltage
Current
Data Sheet
7
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 2
Absolute Maximum Ratings (cont’d)
-40 °C < Tj < 150 °C
Parameter
Symbol
Limit Values
Unit
Remarks
Min.
Max.
VRADJ
IRADJ
-0.3
7
V
–
-5
5
mA
–
Tj
Tstg
-50
150
°C
–
-50
150
°C
–
Unit
Remarks
Watchdog Input WI
Voltage
Current
Temperatures
Junction temperature
Storage temperature
Table 3
Operating Range
Parameter
Symbol
Limit Values
Min.
Max.
5.6
42
V
–
-40
150
°C
–
–
4
K/W
–
Junction ambient
Rthj-pin
Rthj-a
–
115
K/W
PCB Heat Sink
Area 0 mm2 1)
Junction ambient
Rthj-a
–
100
K/W
PCB Heat Sink
Area 100 mm2 1)
Junction ambient
Rthj-a
–
60
K/W
PCB Heat Sink
Area 300 mm2 1)
Junction ambient
Rthj-a
–
48
K/W
PCB Heat Sink
Area 600 mm2 1)
Input voltage
Junction temperature
VI
Tj
Thermal Resistances PG-DSO-12-11
Junction pin
1) Package mounted on PCB 80 × 80 × 1.5 mm3; 35µ Cu; 5µ Sn; zero airflow.
Note: In the operating range the functions given in the circuit description are fulfilled.
Integrated protection functions are designed to prevent IC destruction under fault
conditions. Protection functions are not designed for continuous repetitive
operation.
Data Sheet
8
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 4
Electrical Characteristics
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit Test Condition
Stand-by Regulator
Output Q2
Output voltage
VQ2
4.90
5.0
5.10
V
1 mA < IQ2 < 190 mA;
6 V < VI < 28 V
Output current
limitation
IQ2
200
300
650
mA
VQ2 = 4.5 V
–
200
600
mV
IQ2 = 100 mA1)
Output drop voltage; VDRQ2
VDRQ1 = VI1 - VQ1
Load regulation
∆VQ2,Lo
–
15
50
mV
1 mA < IQ2 < 190 mA
Line regulation
∆VQ2,Li
–
5
20
mV
–
65
–
dB
IQ2 = 1 mA;
6 V < VI < 28 V
fr = 100 Hz;
Vr = 1 Vpp
–
170
220
µA
–
–
245
µA
–
–
280
µA
–
4.5
5
mA
–
0.1
1
µA
–
0.1
20
µA
Power Supply Ripple PSRR
Rejection
Current Consumption
Quiescent current;
stand-by
Iq = II - IQ2
Quiescent current;
inhibited
Data Sheet
Iq
Iq
9
IQ2 = 500 µA; Tj = 25 °C;
VINH1 < VINH1 OFF (Q1 off)
IQ2 = 500 µA; Tj = 85 °C;
VINH1 < VINH1 OFF (Q1 off)
IQ2 = 500 µA;
VINH1 < VINH1 OFF (Q1 off)
IQ2 = 100 mA;
VINH1 < VINH1 OFF (Q1 off)
VINH1 = VINH2 = 0 V;
Tj < 85 °C
VINH1 = VINH2 = 0 V
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 4
Electrical Characteristics (cont’d)
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter
Symbol
Limit Values
Unit Test Condition
Min.
Typ.
Max.
–
–
2.3
V
0.65
–
–
V
-1
3.2
6
µA
Inhibit Input INH2
Turn-on Voltage
Turn-off Voltage
H-input current
VINH2 ON
VINH2 OFF
IINH2 ON
VQ2 on
VQ2 off
VINH2 = 5.0 V (see
Page 13)
L-input current
IINH2 OFF
-1
0.1
1
µA
0 V < VINH2 < 0.8 V
Watchdog and Reset Timing D2
IDC2
IDD2
VDU2
6.5
9.0
14.0
µA
2.0
3.5
5.0
µA
VD2 = 1 V
VD2 = 1 V
1.5
1.85
2.4
V
–
Lower timing
threshold
VDL2
0.3
0.45
0.6
V
–
Saturation Voltage
VD2,SAT
TWI,tr
–
–
100
mV
34
42
51
ms
VQ2 < VRT2
CD2 = 100 nF
TRD2
Trr
15
20
25
ms
–
–
5.0
µs
CD2 = 100 nF
CD2 = 100 nF
VRT2
VRT2/VQ2
VR2HEAD
4.55
4.65
4.8
V
–
90
93
96
%
–
200
350
500
mV
VQ2 - VRT2
Reset output
sink current
IRO2
1.0
–
–
mA
Reset output
low voltage
VRO2L
–
0.15
0.3
V
Reset high voltage
VRO2H
4.5
–
–
V
VQ2 = 5 V, VD2 = 0 V;
VRO2 = 0.3 V
VQ2 ≥ 1 V;
IRO2 = 1 mA
RRO2,ext = 4.7 kΩ
Charge current
Discharge current
Upper timing
threshold
Watchdog trigger
time
Reset delay time
Reset reaction time
Reset Output RO2
Reset switching
threshold
Reset threshold
headroom
Data Sheet
10
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 4
Electrical Characteristics (cont’d)
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter
Symbol
Limit Values
Min.
Typ.
Unit Test Condition
Max.
Main (Tracked) Regulator
Output Q1
Output voltage
VQ1
5.125 V
1 mA < IQ1 < 200 mA;
6 V < VI < 28 V
Output voltage
tracking accuracy
-25
∆VQ =
VQ2 - VQ1
5
25
mV
1 mA < IQ1 < 200 mA;
6 V < VI < 28 V
Output voltage
tracking accuracy
-25
∆VQ =
VQ2 - VQ1
5
25
mV
1 mA < IQ1 < 300 mA;
8 V < VI < 28 V
Output current
limitation
IQ1
350
500
–
mA
VQ1 = 4.5 V
Output drop voltage
VDRQ1 = VI - VQ1
VDRQ1
–
300
600
mV
IQ1 = 200 mA1)
Load regulation
∆VQ1,Lo
–
5
50
mV
5 mA < IQ1 < 300 mA
Line regulation
∆VQ1,Li
–
5
25
mV
–
65
–
dB
IQ1 = 5 mA;
6 V < VI < 28 V
fr = 100 Hz;
Vr = 1 Vpp
Iq
–
10
20
mA
Iq
–
250
500
µA
–
–
2.3
V
0.7
–
–
V
H-input current
VINH1 ON
VINH1 OFF
IINH1 ON
-1
3.5
5
µA
3.0 V < VINH1 < 5 V;
(see Page 14)
L-input current
IINH1 OFF
-1
0.1
1
µA
0 V < VINH1 < 0.8 V
Power Supply Ripple PSRR
Rejection
4.875 5.0
Current Consumption
Quiescent current;
Iq = II - IQ1 - IQ2
Quiescent current;
Iq = II - IQ1 - IQ2
IQ1 = 300 mA;
IQ2 = 500 µA;
VQ1 and VQ2 on
IQ2 = IQ1 = 500 µA;
VQ1 and VQ2 on
Inhibit Input INH1
Turn-on Voltage
Turn-off Voltage
Data Sheet
11
VQ1 on
VQ1 off
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 4
Electrical Characteristics (cont’d)
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter
Symbol
Limit Values
Unit Test Condition
Min.
Typ.
Max.
IDC1
VDU1
4.0
8.0
14.0
µA
VD1 = 1 V
1.6
1.8
2.2
V
–
Lower timing
threshold
VDL2
0.3
0.4
0.6
V
–
Saturation Voltage
VD1,SAT
TRD1
Trr
–
–
100
mV
14
20
30
ms
–
–
10
µs
VQ1 < VRT1
CD1 = 100 nF
CD1 = 100 nF
VRT1
VRT1/VQ1
VR1HEAD
4.5
4.65
4.8
V
–
90
93
96
%
–
200
350
500
mV
VQ1 - VRT1
Reset output
sink current
IRO1
1.0
–
–
mA
Reset output
low voltage
VRO1L
–
0.15
0.3
V
Reset output high
voltage
VRO1H
4.5
–
–
V
VQ1 = 5.0 V; VQ2 = 5.0 V;
VD1 = 0 V; VRO1 = 0.3 V
VQ1 ≥ 1 V
IRO1 = 1 mA
RRO1,ext = 4.7 kΩ
Reset Timing D1
Charge current
Upper timing
threshold
Reset delay time
Reset reaction time
Reset Output RO1
Reset switching
threshold
Reset threshold
headroom
1) Drop voltage = VI - VQ (measured when the output voltage has dropped 100 mV from the nominal value
obtained at 13.5 V input)
Data Sheet
12
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Typical Performance Characteristics
Output Voltage VQ2 versus
Input Voltage VI
VQ2
Output Voltage VQ2 versus
Junction Temperature TJ
AED03353.VSD
8
V
VQ2
RLoad = 50 Ω
VINH2 = 5 V
7
AED03352.VSD
5.15
V
5.10
6
5
5.05
4
5.00
3
2
4.95
1
0
0
1
2
3
4
5
6
4.90
-40
V 8
0
40
80
°C
VI
Tj
Reset Thresholds VRT1, VRT2 versus
Junction Temperature TJ
VRT1, VRT2
INH2 Input Current versus
Inhibit Voltage
AED03354.VSD
4.80
V
160
IINH2
AED03351.VSD
8
µA
7
4.75
6
5
4.70
4
4.65
3
2
4.60
1
4.55
-40
0
40
80
°C
0
160
Tj
Data Sheet
0
1
2
3
4
5
6
V 8
VINH2
13
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
INH1 Input Current versus
Inhibit Voltage
IINH1
AED03350.VSD
8
µA
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
V 8
VINH1
Data Sheet
14
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
5˚±3˚
-0.035
7.5 ±0.1 1)
0.25 +0.075
2.6 MAX.
B
0.8
(Mold)
(1.55)
6.4 ±0.1 1)
A
(Body)
0 +0.1
STANDOFF
2.35 ±0.1
Package Outline
10.3 ±0.3
0.1
0.25 B
5x 1 = 5
CAB
7
(4.4 Mold)
12
M
(1.8 Mold)
12x
0.25
0.4 +0.13
5.1 ±0.1
(Metal)
7
12
1.6 ±0.1
(Metal)
4.2 ±0.1
(Metal)
1
Index Marking
1
6
7.8 ±0.1
6
1
Heatslug
(Heatslug)
GPS09349
Figure 4
1) Does not include plastic or metal protrusion of 0.15 max. per side
PG-DSO-12-11 (Plastic Dual Small Outline)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products
and to be compliant with government regulations the device is available as a green
product. Green products are RoHS-compliant (i.e Pb-free finish on leads and suitable for
Pb-free soldering according to IPC/JEDEC J-STD-020).
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/products.
Dimensions in mm
SMD = Surface Mounted Device
Data Sheet
15
Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Revision History
Version Date
Changes
Rev. 1.2 2008-10-28 Modification according to PCN No. 2007-117-A:
• “Watchdog and Reset Timing D2” on Page 10: Lower
timing threshold VDL2: Max limit change to 0.6V (was 0.5V)
and typ. limit change to 0.45V (was 0.4V).
The change does not impact watchdog or reset timing limits
Rev. 1.1 2007-12-19 Modification according to PCN No. 2007-117-A:
• Page 9: Quiescent current Iq; inhibited
(VINH1 = VINH2 = 0 V; Tj < 150 °C):
Max. limit changed to 20µA (was 15µA).
Rev 1.0
Data Sheet
2006-12-21 Initial version final datasheet
16
Rev. 1.2, 2008-10-28
Edition 2008-10-28
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.