INFINEON TLE4291E

TLE4291
Low Drop Out Linear Voltage Regulator
TLE4291E
Data Sheet
Rev. 1.1, 2012-12-03
Automotive Power
TLE4291
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
5.3
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7
7.1
7.2
Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Description Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical Characteristics Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8
8.1
8.2
8.3
Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
17
20
21
9
9.1
9.2
9.3
Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Standard Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . .
22
22
24
25
10
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Data Sheet
2
7
7
8
8
Rev. 1.1, 2012-12-03
Low Drop Out Linear Voltage Regulator
TLE4291E
5 V Fixed Output Voltage
1
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Output Voltage 5 V ± 2%
Output Current up to 450 mA
Very low Current Consumption
Power-on and Undervoltage Reset with Programmable Delay Time
Integrated Standard Watchdog
Reset Low Down to VQ = 1 V
Very Low Dropout Voltage
Output Current Limitation
Reverse Polarity Protection
Overtemperature Protection
Suitable for Use in Automotive Electronics
Wide Temperature Range from -40 °C up to 150 °C
Input Voltage Range from -42 V to 45 V
Green Product (RoHS compliant)
AEC Qualified
PG-SSOP-14 EP
Description
The TLE4291 is a monolithic integrated low-dropout voltage regulator in a PG-SSOP-14 EP exposed pad
package, especially designed for automotive applications. An input voltage up to 42 V is regulated to an output
voltage of 5.0 V. The component is able to drive loads up to 450 mA. It is short-circuit protected by the
implemented current limitation and has an integrated overtemperature shutdown. The integrated reset and
watchdog function makes it suitable for supplying microprocessor systems in automotive environments. The
watchdog and the power-on reset delay timing can be programmed by the external delay capacitor.
Type
Package
Marking
TLE4291E
PG-SSOP-14 EP
TLE4291
Data Sheet
3
Rev. 1.1, 2012-12-03
TLE4291
Block Diagram
Block Diagram
Supply
TLE 4291
I
Q
Regulated Output Voltage
CQ
EN
RO
Internal
Supply
Protection
Circuits
Bandgap
Reference
Reset
and
Watchdog
Generator
GND
WO
Load
e. g.
Micro
Controller
XC22xx
WI
RADJ
GND
B lockD iagr am_A ppC ir cuit1.vsd
2
D
CD
Figure 1
Data Sheet
Block Diagram and Simplified Application Circuit
4
Rev. 1.1, 2012-12-03
TLE4291
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
I
EN
n.c.
RO
n.c.
RADJ
GND
14
13
12
11
10
9
8
1
2
3
4
5
6
7
Q
n.c.
WO
n.c.
WI
n.c.
D
PG -SSOP -14-1 .vsd
Figure 2
Pin Configuration PG-SSOP-14 EP
3.2
Pin Definitions and Functions
11
Pin
Symbol
Function
1
I
Regulator Input and IC Supply
For compensating line influences, a capacitor to GND close to the IC pins is recommended.
2
EN
Enable
High signal enables the regulator;
Low signal disables the regulator;
Connect to I, if the enable function is not needed.
3
n.c.
Not Connected
Internally not connected; Connection to PCB GND recommended.
4
RO
Reset Output
Open collector output with an internal pull-up resistor to the output Q.
An additional external pull-up resistor to the output Q is optional.
Leave open if the reset function is not needed.
5
n.c.
Not Connected
Internally not connected; Connection to PCB GND recommended.
6
RADJ
Reset Switching Threshold Adjust
For reset threshold adjustment connect to a voltage divider from output Q to GND.
For triggering the reset at the internally determined threshold, connect this pin directly to
GND.
Connect directly to GND if the reset function is not needed.
7
GND
Ground
Interconnect the GND pins on PCB.
Connect to heat sink area.
Data Sheet
5
Rev. 1.1, 2012-12-03
TLE4291
Pin Configuration
Pin
Symbol
Function
8
D
Reset Delay and Watchdog Timing
Connect a ceramic capacitor D (pin 6) to GND for reset delay and watchdog timing
adjustment.
Leave only open if both, the reset and the watchdog function are not needed.
9
n.c.
Not Connected
Internally not connected; Connection to PCB GND recommended.
10
WI
Watchdog Input
Positive edge triggered input, usable for microcontroller monitoring.
Connect to GND if the watchdog function is not needed.
11
n.c.
Not Connected
Internally not connected; Connection to PCB GND recommended
12
WO
Watchdog Output
Open collector output with an internal pull-up resistor to the output Q.
An additional external pull-up resistor to the output Q is optional.
Leave open if the watchdog function is not needed.
13
n.c.
Not Connected
Internally not connected; Connection to PCB GND recommended.
14
Q
5 V Regulator Output
Block to GND with a capacitor close to the IC pins, respecting capacitance and ESR
requirements given in the Chapter 4.2.
PAD
Heat sink
connect to PCB heat sink area and GND
Data Sheet
6
Rev. 1.1, 2012-12-03
TLE4291
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
VI
VEN
VQ
VWI
VWO
VRADJ
VRO
VD
-42
45
V
–
-42
45
V
–
-1
7
V
–
-0.3
7
V
–
-0.3
7
V
–
-0.3
7
V
–
-0.3
7
V
–
-0.3
7
V
–
Tj
Tstg
-40
150
°C
–
-55
150
°C
–
VESD
VESD
-4
4
kV
HBM2)
-750
750
V
CDM3)
Voltages
4.1.1
Supply Voltage
4.1.2
Enable Input EN
4.1.3
Regulator Output
4.1.4
Watchdog Input
4.1.5
Watchdog Output
4.1.6
Reset Adjust
4.1.7
Reset Output
4.1.8
Reset Delay
Temperatures
4.1.9
Junction Temperature
4.1.10
Storage Temperature
ESD Susceptibility PG-SSOP-14 EP
4.1.11
ESD Resistivity to GND
4.1.12
ESD Resistivity to GND
1) Not subject to production test, specified by design.
2) ESD susceptibility, HBM according to AEC-Q100-002-JESD 22-A114
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
7
Rev. 1.1, 2012-12-03
TLE4291
General Product Characteristics
4.2
Pos.
Functional Range
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
4.2.1
Input Voltage Range for Normal
Operation
VI
VQ + Vdr
42
V
1)
4.2.2
Extended Input Voltage Range
3.3
42
V
2)
4.2.3
Junction Temperature
-40
150
°C
–
4.2.4
Output Capacitor Requirements
VI
Tj
CQ
ESRCQ
22
–
µF
3)
–
3
4.2.5
4)
1) For specification of the output voltage VQ and the drop out voltage Vdr, see Chapter 5 Voltage Regulator.
2) The output voltage will follow the input voltage, but is outside the specified range.
For details see Chapter 5 Voltage Regulator.
3) The minimum output capacitance is applicable for a worst case capacitance tolerance of 30%
4) Relevant ESR value at f = 10 kHz
Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the Electrical Characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Pos.
Parameter
Symbol
4.3.1
Junction to Case1)
RthJC
RthJA
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
7
–
K/W
–
–
43
–
K/W
2)
4.3.3
–
120
–
K/W
Footprint only3)
4.3.4
–
59
–
K/W
300 mm2 heatsink
area on PCB3)
4.3.5
–
49
–
K/W
600 mm2 heatsink
area on PCB3)
4.3.2
Junction to Ambient
1)
1) Not subject to production test, specified by design.
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).
Data Sheet
8
Rev. 1.1, 2012-12-03
TLE4291
Voltage Regulator
5
Voltage Regulator
5.1
Description Voltage Regulator
The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass
transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass
element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and
the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance
and its equivalent series resistor ESR requirements given in Chapter 4.2 table “Functional Range” have to be
maintained. For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs.
Output Current IQ”. Also, the output capacitor shall be sized to buffer load transients.
An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences.
Connect the capacitors close to the IC terminals.
Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These
safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of
overtemperature.
In order to avoid excessive power dissipation that could never be handled by the pass element and the package,
the maximum output current is decreased at input voltages above VI = 28 V.
The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output
continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator
restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction
temperatures above 150 °C are outside the maximum ratings and therefore reduce the IC lifetime.
The TLE4291 allows a negative supply voltage. However, several small currents are flowing into the IC increasing
its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection
circuit is not operating during reverse polarity condition.
II
Supply
I
Q
+
VI
CQ
CI
Bandgap
Reference
VQ,nom
VI(ext),min
Data Sheet
LOAD
Block Diagram Voltage Regulator Circuit
VI
Vdr
VQ
dVQ
Iload
≈
CQ
dt
Diagram_Output-InputVoltage.svg
Figure 4
VQ
GND
BlockDiagram _VoltageRegulator .vsd
V
Regulated
Output Voltage
+
Saturation Control
Current Limitation
Temperature
Shutdown
Figure 3
IQ
dVQ
IQ,max - Iload
≈
CQ
dt
t
Output Voltage vs. Input Voltage
9
Rev. 1.1, 2012-12-03
TLE4291
Voltage Regulator
5.2
Electrical Characteristics Voltage Regulator
Electrical Characteristics: Voltage Regulator
VI = 13.5V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 3 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
5.2.1
Output Voltage
VQ
4.9
5.0
5.1
V
1 mA < IQ < 450 mA
9 V < VI < 28 V
5.2.2
Output Voltage
VQ
4.9
5.0
5.1
V
1 mA < IQ < 400 mA
6 V < VI < 28 V
5.2.3
Output Voltage
VQ
4.85
5.0
5.15
V
1 mA < IQ < 200 mA
6 V < VI < 40 V
5.2.4
Output Current Limitation
–
1100
mA
Load Regulation
steady-state
IQ,max
dVQ,load
451
5.2.5
-30
-15
–
mV
5.2.6
Line Regulation
steady-state
dVQ,line
–
5
15
mV
5.2.7
Power Supply Ripple
Rejection
PSRR
60
65
–
dB
5.2.8
Drop Out Voltage
Vdr
–
120
250
mV
5.2.9
Vdr = VI - VQ
–
250
500
mV
5.2.10
Overtemperature Shutdown
Threshold
151
–
200
°C
VQ =4.8 V
IQ = 5 mA to 400 mA;
VI = 8 V
VI = 8 V to 32 V;
IQ = 5 mA
fripple = 100 Hz;
Vripple = 1 Vpp1)
IQ = 100 mA2)
IQ = 300 mA2)
Tj increasing1)
Tj,sd
1) Parameter not subject to production test; specified by design.
2) Measured when the output voltage VQ has dropped 100 mV from its nominal value.
Data Sheet
10
Rev. 1.1, 2012-12-03
TLE4291
Voltage Regulator
5.3
Typical Performance Characteristics Voltage Regulator
Output Voltage VQ versus
Junction Temperature Tj
Output Current IQ versus
Input Voltage VI
01_VQ_TJ.vsd
5.20
02_IQmax_VI.vsd
1000
900
800
700
IQ,maxq [mA]
VQ [V]
5.10
5.00
VI = 7 V
I Q = 5 mA
500
400
300
4.90
4.80
600
Tj = -40 °C
200
Tj = 25 °C
100
Tj = 150 °C
0
-40
0
40
80
120
0
160
5
10
15
Tj [°C]
25
30
35
40
VI [V]
Output Current IQ versus
Input Voltage VI
Output Capacitor Series Resistor ESR(CQ) versus
Output Current IQ
04_ESR_IQ.vsd
100
03_IQmax_VI.vsd
1100
20
1000
Unstable
Region
900
10
700
ESR [䃈]
IQ,max [mA]
800
600
500
400
300
Tj = -40°C
200
Tj = 25°C
100
Tj = 150°C
2.5
3
3.5
4
4.5
CQ = 22 μF
Tj = -40..150 °C
VI = 6V..28 V
0.01
5
0
VI [V]
Data Sheet
Stable
Region
0.1
0
2
1
80
160
240
320
400
IQ [mA]
11
Rev. 1.1, 2012-12-03
TLE4291
Voltage Regulator
Line Regulation dVQ,line versus
Input Voltage Change dVI
Load Regulation dVQ,line versus
Output Current Change dIQ
05_DVQ_VI.vsd
14
06_DVQ_IQ.vsd
0
Tj = -40°C
Tj = 25°C
12
-5
Tj = 150°C
-10
d VQ [mV]
d VQ [mV]
10
8
6
-15
4
-20
Tj = -40 °C
Tj = 25 °C
T j = 150 °C
2
0
-25
5
10
15
20
25
30
35
40
0
100
VI [V]
Power Supply Ripple Rejection PSRR
07_VDR_TJ.vsd
450
350
08_PSRR_freq.vsd
90
IQ = 100 mA
I Q = 300 mA
IQ = 400 mA
80
70
60
PSRR [dB]
300
Vdr [mV]
400
300
IQ [mA]
Dropout Voltage Vdr versus
Output Current IQ
400
200
250
200
50
40
150
30
100
20
50
10
150°C
25°C
0
-40
0
40
80
120
0
160
0.01
Tj [°C]
Data Sheet
-40°C
12
0.1
1
10
freq [kHz]
100
1000
Rev. 1.1, 2012-12-03
TLE4291
Current Consumption
6
Current Consumption
6.1
Electrical Characteristics Current Consumption
Electrical Characteristics: Current Consumption
VI = 13.5V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, directions of currents as shown in Figure 5 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
Iq,OFF
–
2
5
μA
VEN = 0 V; Tj ≤ 105°C
Iq
–
220
300
μA
–
–
350
μA
6.1.4
–
6
15
mA
6.1.5
–
16
30
mA
VEN = 5V; IQ = 1mA; Tj ≤ 85 °C
VEN = 5V; IQ = 1mA; Tj ≤ 105 °C
VEN = 5V; IQ = 250 mA
VEN = 5V; IQ = 400 mA
6.1.1
Current Consumption
Iq,OFF = II
6.1.2
Current Consumption
Iq = II - IQ
6.1.3
Supply
+
II
I
IEN
EN
Q
IQ
Voltage Regulator
Regulated
Output Voltage
+
+
VI
CI
CQ
V EN
CurrentConsumption _ ParameterDefinition .vsd
VQ
LOAD
GND
Iq
Figure 5
Data Sheet
Parameter Definition
13
Rev. 1.1, 2012-12-03
TLE4291
Current Consumption
6.2
Typical Performance Characteristics Current Consumption
Current Consumption Iq versus
Output Current IQ
Current Consumption Iq versus
Input Voltage VI
02_Iq_Vi_50K_100Ohm.vsd
6.0
01_Iq_IQ.vsd
25.0
50mA
Tj = -40°C
T j = 25°C
Tj = 150°C
20.0
5.0
100μA
15.0
Iq [mA]
Iq [mA]
4.0
10.0
3.0
2.0
5.0
1.0
0.0
0.0
0
0
50 100 150 200 250 300 350 400
5
10
15
IQ [mA]
25
30
35
40
VI [V]
Current Consumption Iq versus
Input Voltage VI
03_Iq_lowVi_50K.vsd
5.0
T=-40°C
IQ = 100μA
4.5
T=25°C
4.0
T=150°C
3.5
Current Consumption Iq versus
Input Voltage VI
04_Iq_lowVi_100Ohm.vsd
7.0
T=-40°C
6.0
IQ = 50mA
T=25°C
T=150°C
5.0
3.0
Iq [mA]
Iq [mA]
20
2.5
2.0
1.5
4.0
3.0
2.0
1.0
1.0
0.5
0.0
0.0
0
1
2
3
4
5
6
7
8
0
VI [V]
Data Sheet
1
2
3
4
5
6
7
8
VI [V]
14
Rev. 1.1, 2012-12-03
TLE4291
Current Consumption
Current Consumption Iq versus
Junction Temperature Tj Regulator disabled
05_Iq_TJ_EN=0.vsd
5.0
4.0
Iq [uA]
3.0
2.0
1.0
0.0
-40
0
40
80
120
Tj [C]
Data Sheet
15
Rev. 1.1, 2012-12-03
TLE4291
Enable Function
7
Enable Function
7.1
Description Enable Function
The TLE4291 can be turned on or turned off via the EN Input. With voltage levels higher than VEN,high applied to
the EN Input the device will be completely turned on. A voltage level lower than VEN,low sets the device to low
quiescent current mode. In this condition the device is turned off and is not functional. The Enable Input has an
build in hysteresis to avoid toggling between ON/OFF state, if signals with slow slope are applied to the input.
7.2
Electrical Characteristics Enable Function
Electrical Characteristics: Enable Function
VI = 13.5V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in (unless
otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
7.2.1
Enable
Low Signal Valid
VEN,low
–
–
0.8
V
–
7.2.2
Enable
High Signal Valid
VEN,high
2
–
–
V
VQ settled
7.2.3
Enable
Threshold Hysteresis
VEN,hyst
30
–
–
mV
–
7.2.4
Enable
Input current
IEN
–
–
2
µA
VEN = 5 V
7.2.5
Enable
internal pull-down resistor
REN
3
4.5
6
MΩ
–
Data Sheet
16
Rev. 1.1, 2012-12-03
TLE4291
Reset Function
8
Reset Function
8.1
Description Reset Function
The reset function provides several features:
Output Undervoltage Reset:
An output undervoltage condition is indicated by setting the Reset Output “RO” to “low”. This signal might be used
to reset a microcontroller during low supply voltage.
Power-On Reset Delay Time
The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the
time period from exceeding the reset switching threshold until the reset is released by switching the reset output
“RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay capacitor CD
connected to pin “D” which is charged up by the delay capacitor charge current ID,ch starting from VD = 0 V.
In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay
capacitor’s value can be derived from the specified value given in Item 8.2.13:
CD = 100nF × td,PWR-ON / td,PWR-ON,100nF
(1)
with
td,PWR-ON: Desired power-on reset delay time
td,PWR-ON,100nF: Power-on reset delay time specified in Item 8.2.13
CD: Delay capacitor required.
The formula is valid for CD ≥ 10nF. For precise timing calculations consider also the delay capacitor’s tolerance.
•
•
•
Reset Reaction Time
In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the
delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay switching
threshold VDST,lo, the reset output “RO” will be set to “low”.
Additionally to the delay capacitor discharge time trr,d, an internal reaction time trr,int applies. Hence, the total reset
reaction rime trr,total becomes:
trr,total = trr,int + trr,d
(2)
with
•
•
•
trr,total: Total reset reaction time
trr,int: Internal reset reaction time; see Item 8.2.14.
trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Item 8.2.15, see
typical performance graphs.
Reset Output “RO”
The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO”
signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “RO” sink
current is limited, the optional external resistor RRO,ext must not below as specified in Item 8.2.7.
Data Sheet
17
Rev. 1.1, 2012-12-03
TLE4291
Reset Function
Reset Adjust Function
The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting
an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to
GND. The reset adjustment range is given in Item 8.2.5.
When dimensioning the voltage divider, take into consideration that there will be an additional current constantly
flowing through the resistors.
With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows
VRT,lo,new = VRADJ,th × (RADJ,1 + RADJ,2) / RADJ,2
(3)
with
VRT,lo,new: Desired undervoltage reset switching threshold.
RADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 6.
VRADJ,th: Reset adjust switching threshold given in Item 8.2.4.
Supply
I
Q
RRO
Int.
Supply
Control
CQ
RO
ID ,ch
OR
V RADJ ,th
VDD
Reset
IRO
VDST
S
optional
•
•
•
R
RADJ ,1
MicroController
RADJ
IRADJ
GND
opti onal
IDR ,dsch
D
BlockDiagram _ResetAdjust .vsd
RADJ ,2
GND
CD
Figure 6
Data Sheet
Block Diagram Reset Circuit
18
Rev. 1.1, 2012-12-03
TLE4291
Reset Function
VI
t
VQ
t < trr,blank
VRH
VRT,hi
VRT,lo
1V
t
td
VD
VDST,hi
VDST,lo
t
td
trr,total
td
trr,total
td
trr,total
VRO
VRO,low
1V
t
Thermal
Shutdown
Input
Voltage Dip
Undervoltage
Spike at
output
Over load
TimingDiagram_Reset.vs d
Figure 7
Data Sheet
Timing Diagram Reset
19
Rev. 1.1, 2012-12-03
TLE4291
Reset Function
8.2
Electrical Characteristics Reset Function
Electrical Characteristics: Reset Function
VI = 13.5V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 6 (unless otherwise specified).
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit Conditions
Max.
Output Undervoltage Reset Comparator Default Values (Pin RADJ = GND)
8.2.1
Output Undervoltage Reset
Lower Switching Threshold
VRT,lo
4.5
4.65
4.8
V
VQ decreasing
8.2.2
Output Undervoltage Reset
Upper Switching Threshold
VRT,hi
4.55
4.7
4.85
V
VQ increasing
Output Undervoltage Reset
Headroom
VRH
8.2.3
RADJ = GND
RADJ = GND
200
350
–
mV
Calculated Value:
VQ - VRT,lo
IQ = 50 mA
RADJ = GND
Reset Threshold Adjustment
8.2.4
Reset Adjust
Lower Switching Threshold
VRADJ,th
1.26
1.36
1.44
V
3.2 V ≤ VQ < 5 V
8.2.5
Reset Adjustment Range 1)
VRT,range
3.50
–
4.65
V
–
VRO,low
–
0.1
0.4
V
1 V ≤ VQ ≤ VRT,low;
no external RRO,ext
5.6
–
–
kΩ
1 V ≤ VQ ≤ VRT,low;
VRO = 0.4 V
RRO
20
30
40
kΩ
internally connected to Q
Reset Output RO
8.2.6
Reset Output Low Voltage
8.2.7
Reset Output
RRO,ext
External Pull-up Resistor to Q
8.2.8
Reset Output
Internal Pull-up Resistor
Reset Delay Timing
8.2.9
Upper Delay
Switching Threshold
VDST,hi
–
0.9
–
V
–
8.2.10
Lower Delay
Switching Threshold
VDST,lo
–
0.25
–
V
–
8.2.11
Delay Capacitor
Charge Current
ID,ch
–
6.5
–
μA
VD = 0.6 V
8.2.12
Delay Capacitor
Reset Discharge Current
IDR,dsch
–
70
–
mA
VD = 0.6 V
8.2.13
Power-on Reset Delay Time
td,PWR,ON,100nF 8
13.5
18
ms
Calculated value;
CD = 100 nF 2)
8.2.14
Internal Reset Reaction Time
–
9
15
μs
8.2.15
Delay Capacitor
Discharge Time
trr,int
trr,d
–
1.9
3
μs
CD = 0 nF
CD = 100 nF 2)
8.2.16
Total Reset Reaction Time
trr,total
–
11
18
μs
Calculated Value:
trr,d,100nF + trr,int;
CD = 100 nF 2)
1) Related Parameter VRT is scaled linear when the Reset Switching Threshold is modified.
2) For programming a different delay and reset reaction time, see Chapter 8.1 for calculation.
Data Sheet
20
Rev. 1.1, 2012-12-03
TLE4291
Reset Function
8.3
Typical Performance Characteristics Reset Function
Power On Reset Delay Time tRD versus
Junction Temperature Tj
Undervoltage Reset Switching Threshold
VRT,hi/ VRT,lo vs. Junction Temperature Tj
01_VRT_Tj.vsd
4.80
16
4.75
15
td,pwron [ms]
V RT,hi
4.70
VRT [V]
03_tdpwron _Tj.vsd
17
4.65
VRT,lo
4.60
14
13
12
C D = 100 nF
4.55
11
4.50
-40
10
0
40
80
120
-40
160
0
40
Power On Reset Delay Time tRD versus
Delay Capacitance CD
70
120
160
Tj [°C]
Tj [°C]
Total Reset Reaction Time trr,total versus
Junction Temperature Tj
02_tdpwron _delaycap .vsd
80
80
04_trr,total_Tj.vsd
10
9
Tj = 25 °C
CD = 100nF
8
60
50
trr,total [us]
t d,pw ron [ms]
7
40
30
6
5
4
3
20
2
10
0
10
1
100
200
300
400
500
0
600
0
40
80
120
160
Tj [°C]
Delay capacitance [nF]
Data Sheet
-40
21
Rev. 1.1, 2012-12-03
TLE4291
Watchdog Function
9
Watchdog Function
9.1
Description
The TLE4291 features a programmable watchdog timing.
The watchdog function monitors a microcontroller, including time base failures. In case of a missing rising edge
within a certain pulse repetition time, the watchdog output is set to ‘low’. The programming of the expected
watchdog pulse repetition time can be easily done by an external reset delay capacitor.
The watchdog output “WO” is separated from the reset output “RO”. Hence, the watchdog output might be used
as an interrupt signal for the microcontroller independent from the reset signal. It is possible to interconnect pin
“WO” and pin “RO” in order to establish a wire-or function with a dominant low signal.
I
IQ
Q
Control
CQ
RWO
Int.
Supply
WI
Edge
Detect
WO
I D,ch
S
R
MicroController
Reset
IWO
VDW
OR
VDD
optional
Supply
1
I DW,dsch
WI
I/O
VDW,hi
GND
D
BlockDiagram_ Watchdog .vsd
GND
CD
Figure 8
Block Diagram Watchdog Circuit
Watchdog Output “WO”
The watchdog output “WO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic
“WO” signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “WO”
sink current is limited, the optional external resistor RWO,ext needs to be sized to comply with the watchdog output
sink current (see Item 9.2.8 and Item 9.2.9).
Watchdog Input “WI”
The watchdog is triggered by an positive edge at the watchdog input “WI”. The signal is filtered by a bandpass
filter and therefore its amplitude and slope has to comply with the specification 9.2.11 to 9.2.14. For details on the
test pulse applied, see Figure 9.
Data Sheet
22
Rev. 1.1, 2012-12-03
TLE4291
Watchdog Function
VWI
-dVWI / dt
VWI
tWI,hi
VWI,hi
tWI,hi
VWI,hi
tWI,lo
VWI,lo
VWI,lo
d VWI / d t
tWI,lo
t
Figure 9
t
Test Pulses Watchdog Input WI
Watchdog Timing
Positive edges at the watchdog input pin “WI” are expected within the watchdog trigger time frame tWI,tr, otherwise
a low signal at pin “WO” is generated. If a watchdog low signal at pin “WO” is generated, it remains low for tWD,lo.
All watchdog timings are defined by charging and discharging the capacitor CD at pin “D”. Thus, the watchdog
timing can be programmed by selecting CD. For timing details see also Figure 10.
In case a watchdog trigger time period tWI,tr different from the value for CD = 100nF is required, the delay
capacitor’s value can be derived from the specified value given in Item 9.2.5:
CD = 100nF × tWI,tr / tWI,tr,100nF
(4)
The watchdog output low time tWD,lo and the watchdog period tWD,p then becomes:
tWD,lo = tWD,lo,100nF × CD / 100nF
(5)
tWD,p = tWI,tr + tWD,lo
(6)
The formula is valid for CD ≥ 10nF. For precise timing calculations consider also the delay capacitor’s tolerance.
VWI
VWI,hi
VWI,lo
No positive
VWI edge
VD
dV WI / dt
outside spec
tWI,tr
tWI,lo
tWI,hi
t
TWI,p
VDW,hi
VDW,lo
t
tWD,lo
tWD,lo
VWO
VWO,low
t
TimingDiagram_Watchdog.vs d
Figure 10
Data Sheet
Timing Diagram Watchdog
23
Rev. 1.1, 2012-12-03
TLE4291
Watchdog Function
9.2
Electrical Characteristics Watchdog Function
Electrical Characteristics Watchdog Function
VI = 13.5V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 8 (unless otherwise specified).
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
Watchdog Timing
9.2.1
Delay Capacitor
Charge Current
ID
–
6.5
–
μA
VD = 0.6 V
9.2.2
Delay capacitor
watchdog discharge current
IDW,disch
–
1.4
–
μA
VD = 0.6 V
9.2.3
Upper watchdog timing
threshold
VDW,hi
–
0.9
–
V
–
9.2.4
Lower watchdog timing
threshold
VDW,lo
–
0.35
–
V
–
9.2.5
Watchdog Trigger Time
tWI,tr,100nF 24
40
58
ms
Calculated value;
CD = 100 nF 1)
9.2.6
Watchdog Output Low Time
tWD,lo,100nF 6
8
12
ms
Calculated value;
CD = 100 nF 1);
VQ > VRT,lo
9.2.7
Watchdog Period
tWD,p,100nF 30
48
70
ms
Calculated value;
tWI,tr,100nF + tWD,lo,100nF;
CD = 100 nF 1)
IWO = 1 mA;
VWI = 0 V
VWO = 0.8 V;
VWI = 0 V
Watchdog Output WO
9.2.8
Watchdog Output
Low Voltage
VWO,low
–
0.1
0.4
V
9.2.9
Watchdog Output
Maximum Sink Current
IWO,max
1.5
13
30
mA
9.2.10
Watchdog Output
Internal Pull-up Resistor
RWO
20
30
40
kΩ
–
Watchdog Input WI
9.2.11
Watchdog Input
Low Signal Valid
VWI,lo
–
–
0.8
V
2)
9.2.12
Watchdog Input
High Signal Valid
VWI,hi
2.6
–
–
V
2)
9.2.13
Watchdog Input
High Signal Pulse Length
tWI,hi
0.5
–
–
μs
VWI ≥ VWI,hi 2)
9.2.14
Watchdog Input
Low Signal Pulse Length
(Slewrate ≥ 1 V/μs)
tWI,lo
2
–
–
μs
VWI ≤ VWI,lo 2);
dVWI/dt ≥ 1 V/μs
9.2.15
Watchdog Input
Low Signal Pulse Length
(Slewrate ≥ 5 V/μs)
tWI,lo
0.5
–
–
μs
VWI ≤ VWI,lo 2);
dVWI/dt ≥ 5 V/μs
VWI,hi ≥ 4 V
1) For programming a different watchdog timing, see Chapter 9.1.
2) For details on the test pulse applied, see Figure 9.
Data Sheet
24
Rev. 1.1, 2012-12-03
TLE4291
Watchdog Function
9.3
Typical Performance Characteristics Standard Watchdog Function
Watchdog Trigger Time tWI,tr versus
Delay Capacitance CD
01_twi_tr_delaycap.vsd
250
Watchdog Trigger Time tWI,tr versus
Junction Temperature
02_twi_tr_TJ.vsd
42
Tj = 25 °C
41
200
150
tWI,tri [ms]
tWI,tr [ms]
40
100
39
38
37
50
0
10
36
35
100
200
300
400
-40
500
40
80
120
160
Tj [°C]
Capacitance [nF]
Data Sheet
0
25
Rev. 1.1, 2012-12-03
TLE4291
Package Outlines
10
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
Figure 11
PG-SSOP-14 EP
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
26
Dimensions in mm
Rev. 1.1, 2012-12-03
TLE4291
Revision History
11
Revision History
Revision
Date
Changes
1.1
2012-12-03
Page 23: Figure 9: Definition in Test Pulses Watchdog Input WI extended with
low signal pulse length. Definition of frequency deleted according to the new
specification of the watchdog input signal with high and low time.
Page 23: Figure 10: Definition of watchdog input signal frequency deleted and
definition for watchdog input low time added.
Page 24: Specification for “Watchdog Input WI” corrected:
Specification for watchdog input low time as replacement for watchdog input
signal frequency. Slewrate specification moved to condition for watchdog input
low time.
Page 24: 9.2.14: Specification of minimum watchdog input low time for
slewrates ≥ 1 V/μs.
Page 24: 9.2.15: Specification of minimum watchdog input low time for
slewrates ≥ 5 V/μs.
1.0
2011-06-07
Data Sheet
Data Sheet
27
Rev. 1.1, 2012-12-03
Edition 2012-12-03
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.