HV2902 DATA SHEET (10/26/2015) DOWNLOAD

HV2802/HV2902
Low Harmonic Distortion, 32-Channel SPST,
High-Voltage Analog Switch
Features
General Description
• 32-Channel SPST (Single-Pole, Single-Throw)
High-Voltage Analog Switch
• 3.3V or 5.0V CMOS Input Logic Level
• 20 MHz Data Shift Clock Frequency
• High-Voltage CMOS (HVCMOS) Technology for
High Performance
• Very Low Quiescent Power Dissipation (10 µA)
• Low Parasitic Capacitance
• DC to 50 MHz Analog Signal Frequency
• -60 dB Typical OFF-Isolation at 5.0 MHz
• CMOS Logic Circuitry for Low Power
• Excellent Noise Immunity
• Cascadable Serial Data Register with Latches
• Flexible Operating Supply Voltages
• Integrated Bleed Resistors on the Outputs
(HV2902 only)
The HV2802 and HV2902 are low-charge injection,
32-channel, high-voltage analog switches intended for
use in applications requiring high-voltage switching
controlled by low-voltage control signals, such as
medical ultrasound imaging, driving piezoelectric
transducers and printers. The HV2902 has integrated
bleed resistors which eliminate voltage build-up on
capacitive loads such as piezoelectric transducers.
Applications
• Medical Ultrasound Imaging
• Non-Destructive Testing (NDT) Metal Flaw
Detection
• Piezoelectric Transducer Drivers
• Inkjet Printer Heads
• Optical MEMS Modules
Input data are shifted into a 32-bit shift register that can
then be retained in a 32-bit latch. To reduce any
possible clock feedthrough noise, the latch enable bar
should be left high until all bits are clocked in. Data are
clocked in during the rising edge of the clock. Using the
HVCMOS technology, this device combines
high-voltage bilateral DMOS switches and low-power
CMOS logic to provide efficient control of high-voltage
analog signals.
The device is suitable for various combinations of
high-voltage supplies, e.g., VPP/VNN: +40V/-160V,
+100V/-100V and +160V/-40V.
Package Type
HV2802/HV2902
9x9x1.0 mm VFBGA*
Top View
1
2
3
4
5
6
7
8
9 10 11 12 13
A
B
C
D
E
F
G
H
J
K
L
M
N
*See Section 2.0 “Package Pin Configurations and
Functions Description”
 2015 Microchip Technology Inc.
DS20005449A-page 1
HV2802/HV2902
Block Diagram
Latches
Level
Shifters
Output
Switches
Bleed
Resistors
SW0A
D
LE
CLR
SW0B
SW1A
D
LE
CLR
SW1B
CLK
SW2A
D
LE
CLR
32-Bit
Shift
Register
DIN
SW2B
DOUT
SW30A
D
LE
CLR
SW30B
SW31A
D
LE
CLR
SW31B
VDD
GND
LE
CLR
VNN
VPP
RGND
HV2902 only
DS20005449A-page 2
 2015 Microchip Technology Inc.
HV2802/HV2902
1.0
ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
VDD Logic Supply Voltage .......................................................................................................................... -0.5V to +6.5V
VPP-VNN Differential Supply ......................................................................................................................................220V
VPP Positive Supply ...........................................................................................................................-0.5V to VNN +200V
VNN Negative Supply ................................................................................................................................ +0.5V to -200V
Logic Input Voltage..............................................................................................................................-0.5V to VDD +0.3V
Analog Signal Range .......................................................................................................................................VNN to VPP
Peak Analog Signal Current/Channel ........................................................................................................................3.0A
Power Dissipation .................................................................................................................................................... 1.5W
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS (Note 1 — 3)
Parameter
Symbol
Value
VDD
+3.0V to +5.5V
Positive Voltage Supply
VPP
+40V to VNN+200V
Negative Voltage Supply
VNN
-40V to -160V
High-Level Input Voltage
VIH
0.9VDD to VDD
Low-Level Input Voltage
VIL
0V to 0.1VDD
VSIG
VNN +10V to VPP -10V
Logic Power Supply Voltage
Analog Signal Voltage Peak-to-Peak
Note 1:
2:
3:
Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
VSIG must be VNN  V SIG  VPP or floating during power up/down transition.
Rise and fall times of power supplies VDD, VPP, and VNN should not be less than 1.0 ms.
 2015 Microchip Technology Inc.
DS20005449A-page 3
HV2802/HV2902
DC ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VDD = 5.0V, VPP = +100V, VNN = -100V, Specification at 0°C
and 70°C based on characterization and not 100% tested.
0°C
Parameters
+25°C
+70°C
Symbol
Units
Conditions
Min. Max. Min. Typ. Max. Min. Max.
Small Signal Switch
ON-Resistance
RONS

—
30
—
26
38
—
48
ISIG = 5.0 mA,
VPP = +40V, VNN = -160V
—
25
—
22
27
—
32
ISIG = 200 mA,
VPP = +40V, VNN = -160V
—
25
—
22
27
—
30
ISIG = 5.0 mA,
VPP = +100V, VNN = -100V
—
18
—
18
24
—
27
ISIG = 200 mA,
VPP = +100V, VNN = -100V
—
23
—
20
25
—
30
ISIG = 5.0 mA,
VPP = +160V, VNN = -40V
—
22
—
16
25
—
27
ISIG = 200 mA,
VPP = +160V, VNN = -40V
Small Signal Switch
ON-Resistance
Matching
RONS
—
20
—
5
20
—
20
%
ISIG = 5.0 mA,
VPP = +100V, VNN = -100V
Large Signal Switch
ON-Resistance
(Note 1)
RONL
—
—
—
15
—
—
—

VSIG = VPP -10V, ISIG = 1A
Value of Output Bleed
Resistor
RINT
—
—
20
35
50
—
—
k
Output switch to RGND
IRINT = 0.5 mA
Switch off Leakage
per Switch
ISOL
—
5
—
1
10
—
15
µA
VSIG = VPP -10V, VNN +10V
Switch DC Offset
VOS
—
300
—
100
300
—
300
mV
Switch OFF,
RLOAD = 100 kfor HV2802
No load for HV2902
—
500
—
100
500
—
500
Quiescent VPP Supply
Current
IPPQ
—
—
—
10
50
—
—
Quiescent VNN Supply
Current
INNQ
—
—
—
10
50
—
—
Quiescent VPP Supply
Current
IPPQ
—
—
—
10
50
—
—
Quiescent VNN Supply
Current
INNQ
—
—
—
10
50
—
—
Switch Output Peak
Current (Note 1)
ISW
—
—
2
3
—
—
Output Switching
Frequency (Note 1)
fSW
—
—
—
—
50
—
Note 1:
2:
Switch ON
RLOAD = 100 kfor HV2802
No load for HV2902
µA
All switches off
µA
All switches on,
ISW = 5.0 mA
—
A
VSIG duty cycle < 0.1%
—
kHz
Duty cycle = 50%
Specification is obtained by characterization and is not 100% tested.
Design guidance only.
DS20005449A-page 4
 2015 Microchip Technology Inc.
HV2802/HV2902
DC ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, VDD = 5.0V, VPP = +100V, VNN = -100V, Specification at 0°C
and 70°C based on characterization and not 100% tested.
0°C
Parameters
+25°C
+70°C
Symbol
Units
Conditions
mA
VPP = +40V, VNN = -160V
All output switches are turning
on and off at 50 kHz with no load
Min. Max. Min. Typ. Max. Min. Max.
Average VPP Supply
Current
—
14
—
—
14
—
14
—
14
—
—
14
—
14
VPP = +100V, VNN = -100V
All output switches are turning
on and off at 50 kHz with no load
—
14
—
—
14
—
14
VPP = +160V, VNN = -40V
All output switches are turning
on and off at 50 kHz with no load
—
14
—
—
14
—
14
—
14
—
—
14
—
14
VPP = +100V, VNN = -100V
All output switches are turning
on and off at 50 kHz with no load
—
14
—
—
14
—
14
VPP = +160V, VNN = -40V
All output switches are turning
on and off at 50 kHz with no load
IDD
—
8
—
—
8
—
8
mA
fCLK = 5.0 MHz, VDD = 5.0V
Quiescent VDD
Supply Current
IDDQ
—
10
—
—
10
—
10
µA
All logic inputs are static
Data Out Source
Current
ISOR
0.45
—
0.45 0.70
—
0.40
—
mA
VOUT = VDD -0.7V
Data Out Sink Current
ISINK
0.45
—
0.45 0.70
—
0.40
—
mA
VOUT = 0.7V
Logic Input
Capacitance (Note 2)
CIN
—
10
10
—
10
pF
Average VNN Supply
Current
Average VDD Supply
Current
Note 1:
2:
IPP
INN
—
—
mA
VPP = +40V, VNN = -160V
All output switches are turning
on and off at 50 kHz with no load
Specification is obtained by characterization and is not 100% tested.
Design guidance only.
 2015 Microchip Technology Inc.
DS20005449A-page 5
HV2802/HV2902
AC ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VDD = 5.0V, VPP = +100V, VNN = -100V, Specification at 0°C and
70°C based on characterization and not 100% tested.
Parameters
0°C
+25°C
+70°C
Symbol
Units
Conditions
Min. Max. Min. Typ. Max. Min. Max.
Set Up Time Before LE Rises
(Note 1)
tSD
25
—
25
—
—
25
—
ns
Time Width of LE (Note 1)
tWLE
56
—
56
—
—
56
—
ns
VDD = 3.0V
12
—
12
—
—
12
—
Clock Delay Time to Data Out
(Note 1)
tDO
8
40
8
19
40
8
40
ns
VDD = 3.0V
8
30
8
15
30
8
30
Time Width of CLR (Note 1)
tWCLR
55
—
55
—
—
55
—
ns
Set Up Time Data to Clock
(Note 1)
tSU
21
—
21
—
—
21
—
ns
7
—
7
—
—
7
—
Hold Time Data from Clock
(Note 1)
tH
Clock Frequency
Clock Rise and Fall Times
Turn ON Time
VDD = 5.0V
VDD = 5.0V
VDD = 3.0V
VDD = 5.0V
5
—
5
—
—
5
—
7
—
7
—
—
7
—
VDD = 5.0V
—
8
—
—
8
—
8
MHz VDD = 3.0V
—
20
—
—
20
—
20
VDD = 5.0V
tR, tF
—
50
—
—
50
—
50
ns
tON
—
5
—
—
5
—
5
µs
fCLK
ns
VDD = 3.0V
Turn OFF Time
tOFF
—
5
—
—
5
—
5
VSIG = VPP -10V,
RLOAD = 10 k
Maximum VSIG Slew Rate
(Note 1)
dv/dt
—
—
—
—
20
—
—
V/ns VPP = +40V, VNN = -160V
—
—
—
—
20
—
—
VPP = +100V, VNN = -100V
—
—
—
—
20
—
—
VPP = +160V, VNN = -40V
—
—
—
-33
-30
—
—
—
—
—
-60
-58
—
—
KCR
—
—
—
-70
-60
—
—
dB
f = 5.0 MHz,
50 load
Output Switch Isolation Diode
Current (Note 1)
IID
—
—
—
—
300
—
—
mA
300 ns pulse width,
2.0% duty cycle
Off Capacitance SW to GND
(Note 1)
CSG(OFF)
—
—
—
10
15
—
—
pF
0V, f = 1.0 MHz
On Capacitance SW to GND
(Note 1)
CSG(ON)
—
—
—
13
18
—
—
Output Voltage Spike SWA,
SWB (Note 1)
+VSPK
—
—
—
—
+150
—
—
mV
VPP = +40V, VNN = -160V
RLOAD = 50
OFF Isolation (Note 1)
Switch Crosstalk (Note 1)
Charge Injection
(per switch) (Note 1)
Note 1:
KO
-VSPK
—
—
-150
—
—
—
—
+VSPK
—
—
—
—
+150
—
—
-VSPK
—
—
-150
—
—
—
—
+VSPK
—
—
—
—
+150
—
—
dB
f = 5.0 MHz,
1.0 k ǁ 15 pF load
f = 5.0 MHz,
50 load
VPP = +100V, VNN = -100V
RLOAD = 50
VPP = +160V, VNN = -40V
RLOAD = 50
-VSPK
—
—
-150
—
—
—
—
QC
—
—
—
820
—
—
—
—
—
—
600
—
—
—
VPP = +100V, VNN = -100V
—
—
—
350
—
—
—
VPP = +160V, VNN = -40V
pC
VPP = +40V, VNN = -160V
Specification is obtained by characterization and is not 100% tested.
DS20005449A-page 6
 2015 Microchip Technology Inc.
HV2802/HV2902
TEMPERATURE SPECIFICATIONS
Parameters
Sym.
Min.
Typ.
Max.
Units
Operating Temperature
TA
0
—
+70
°C
Storage Temperature
TA
-65
—
+150
°C
JA
—
32.2
—
°C/W
Conditions
Temperature Ranges
Package Thermal Resistance
Thermal Resistance, 78-Ball VFBGA
 2015 Microchip Technology Inc.
DS20005449A-page 7
HV2802/HV2902
1.1
Logic Timing and Truth Table
DN
DN+1
DATA
IN
DN-1
50%
50%
50%
LE
50%
tWLE
tSD
50%
CLOCK
tSU
50%
th
tDO
DATA
OUT
50%
tON
tOFF
OFF
VOUT
(typical)
10%
ON
50%
CLR
FIGURE 1-1:
TABLE 1-1:
D0
D1
L
10%
50%
tWCL
Logic Timing Waveforms.
TRUTH TABLE (Notes 1 — 6)
D15
D16
—
—
H
—
—
L
—
—
—
—
—
—
—
L
L
—
—
—
L
—
—
L
L
—
—
—
H
—
—
L
L
—
—
—
—
—
L
—
L
L
—
—
—
—
—
H
—
L
L
—
—
—
—
—
—
L
L
—
—
—
—
—
—
L
L
—
—
—
—
—
L
L
—
—
—
—
—
L
L
—
—
—
—
—
—
—
—
—
L
L
L
—
—
—
—
OFF
—
—
—
—
H
L
L
—
—
—
—
ON
X
X
X
X
X
X
X
H
L
HOLD PREVIOUS STATE
X
X
X
X
X
X
X
X
H
ALL SWITCHES OFF
Legend:
Note 1:
2:
3:
4:
5:
6:
•••
D31
LE
CLR
SW0
SW1
—
—
L
L
OFF
—
—
—
—
—
—
—
L
L
ON
—
—
—
—
—
—
—
L
L
—
OFF
—
—
—
H
—
—
—
L
L
—
ON
—
—
—
—
—
—
—
L
L
—
—
—
—
—
—
—
—
—
—
OFF
—
—
•••
•••
•••
•••
SW15 SW16
•••
SW31
ON
—
—
OFF
—
—
ON
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
•••
•••
—
—
X = Do not care; L = Low; H = High.
The 32 switches operate independently.
Serial data is clocked in on the L to H transition of the CLK.
All 32 switches go to a state retaining their latched condition at the rising edge of LE. When LE is low, the
shift register’s data flow through the latch.
DOUT is high when data in register 31 is high.
Shift register’s clocking has no effect on the switch states if LE is high.
The CLR clear input overrides all other inputs.
DS20005449A-page 8
 2015 Microchip Technology Inc.
HV2802/HV2902
2.0
PACKAGE PIN CONFIGURATIONS
AND FUNCTIONS DESCRIPTION
This section details the pin designation for the 78-Ball
VFBGA package (Figure 2-1). The descriptions of the
pins are listed in Table 2-1.
1
2
3
A
SW2B
B
SW3A
SW2A
C
SW4A
D
SW1B
4
5
6
7
SW0B
DOUT
GND
VDD
LE
SW1A
SW0A
DIN
CLK
NC
8
9
CLR
10
11
SW31A
SW30A
SW31B
SW30B
12
13
SW29B
SW28B
SW29A
SW3B
SW27B
SW28A
SW5A
SW4B
SW26B
SW27A
E
SW6A
SW5B
SW25B
SW26A
F
SW7A
SW6B
SW24B
SW25A
G
SW8A
SW7B
SW23B
SW24A
H
SW9A
SW8B
SW22B
SW23A
J
SW10A
SW9B
SW21B
SW22A
K
SW11A
SW10B
SW20B
SW21A
L
SW12A
SW11B
SW19B
SW20A
M
SW13A
SW12B
SW18A
SW19A
N
SW13B
VNN
VNN
SW18B
VPP
Note:
FIGURE 2-1:
NC
RGND
RGND
SW14A
SW15A
SW16A
SW17A
SW14B
SW15B
SW16B
SW17B
NC
RGND
VPP
On pins B6, M10 and N5 the NC pin is available for
HV2802 only, while RGND pin is available for HV2902.
78-Ball VFBGA Package - Top View.
 2015 Microchip Technology Inc.
DS20005449A-page 9
HV2802/HV2902
TABLE 2-1:
PIN FUNCTION TABLE
Symbol
Pin
Number
Description
9x9x1.0 VFBGA
HV2802
HV2902
A1
SW2B
SW2B
Analog switch 2 terminal B
A3
SW1B
SW1B
Analog switch 1 terminal B
A4
SW0B
SW0B
Analog switch 0 terminal B
A5
DOUT
DOUT
Data out logic output
A6
GND
GND
Ground
A7
VDD
VDD
Logic supply voltage
A8
LE
LE
Latch enable logic input, low active
A10
SW31A
SW31A
Analog switch 31 terminal A
A11
SW30A
SW30A
Analog switch 30 terminal A
A13
SW29B
SW29B
Analog switch 29 terminal B
B1
SW3A
SW3A
Analog switch 3 terminal A
B2
SW2A
SW2A
Analog switch 2 terminal A
B4
SW1A
SW1A
Analog switch 1 terminal A
B5
SW0A
SW0A
Analog switch 0 terminal A
B6
NC
RGND
No connect / Ground for bleed resistor
B7
DIN
DIN
Data in logic input
B8
CLK
CLK
Clock logic input for shift register
B9
CLR
CLR
B10
SW31B
SW31B
Analog switch 31 terminal B
Latch clear logic input
B11
SW30B
SW30B
Analog switch 30 terminal B
B12
SW28B
SW28B
Analog switch 28 terminal B
B13
SW29A
SW29A
Analog switch 29 terminal A
C1
SW4A
SW4A
Analog switch 4 terminal A
C2
SW3B
SW3B
Analog switch 3 terminal B
C12
SW27B
SW27B
Analog switch 27 terminal B
C13
SW28A
SW28A
Analog switch 28 terminal A
D1
SW5A
SW5A
Analog switch 5 terminal A
D2
SW4B
SW4B
Analog switch 4 terminal B
D12
SW26B
SW26B
Analog switch 26 terminal B
D13
SW27A
SW27A
Analog switch 27 terminal A
E1
SW6A
SW6A
Analog switch 6 terminal A
E2
SW5B
SW5B
Analog switch 5 terminal B
E12
SW25B
SW25B
Analog switch 25 terminal B
E13
SW26A
SW26A
Analog switch 26 terminal A
F1
SW7A
SW7A
Analog switch 7 terminal A
F2
SW6B
SW6B
Analog switch 6 terminal B
F12
SW24B
SW24B
Analog switch 24 terminal B
F13
SW25A
SW25A
Analog switch 25 terminal A
G1
SW8A
SW8A
Analog switch 8 terminal A
G2
SW7B
SW7B
Analog switch 7 terminal B
G12
SW23B
SW23B
Analog switch 23 terminal B
G13
SW24A
SW24A
Analog switch 24 terminal A
DS20005449A-page 10
 2015 Microchip Technology Inc.
HV2802/HV2902
TABLE 2-1:
PIN FUNCTION TABLE (CONTINUED)
Symbol
Pin
Number
H1
Description
9x9x1.0 VFBGA
HV2802
HV2902
SW9A
SW9A
Analog switch 9 terminal A
H2
SW8B
SW8B
Analog switch 8 terminal B
H12
SW22B
SW22B
Analog switch 22 terminal B
H13
SW23A
SW23A
Analog switch 23 terminal A
J1
SW10A
SW10A
Analog switch 10 terminal A
J2
SW9B
SW9B
Analog switch 9 terminal B
J12
SW21B
SW21B
Analog switch 21 terminal B
J13
SW22A
SW22A
Analog switch 22 terminal A
K1
SW11A
SW11A
Analog switch 11 terminal A
K2
SW10B
SW10B
Analog switch 10 terminal B
K12
SW20B
SW20B
Analog switch 20 terminal B
K13
SW21A
SW21A
Analog switch 21 terminal A
L1
SW12A
SW12A
Analog switch 12 terminal A
L2
SW11B
SW11B
Analog switch 11 terminal B
L12
SW19B
SW19B
Analog switch 19 terminal B
L13
SW20A
SW20A
Analog switch 20 terminal A
M1
SW13A
SW13A
Analog switch 13 terminal A
M2
SW12B
SW12B
Analog switch 12 terminal B
M6
SW14A
SW14A
Analog switch 14 terminal A
M7
SW15A
SW15A
Analog switch 15 terminal A
M8
SW16A
SW16A
Analog switch 16 terminal A
M9
SW17A
SW17A
Analog switch 17 terminal A
M10
NC
RGND
No connect/Ground for bleed resistor
M12
SW18A
SW18A
Analog switch 18 terminal A
M13
SW19A
SW19A
Analog switch 19 terminal A
N1
SW13B
SW13B
Analog switch 13 terminal B
N2
VNN
VNN
Negative supply voltage
N4
VPP
VPP
Positive supply voltage
N5
NC
RGND
No connect/Ground for bleed resistor
N6
SW14B
SW14B
Analog switch 14 terminal B
N7
SW15B
SW15B
Analog switch 15 terminal B
N8
SW16B
SW16B
Analog switch 16 terminal B
N9
SW17B
SW17B
Analog switch 17 terminal B
N10
VPP
VPP
Positive supply voltage
N12
VNN
VNN
Negative supply voltage
N13
SW18B
SW18B
 2015 Microchip Technology Inc.
Analog switch 18 terminal B
DS20005449A-page 11
HV2802/HV2902
3.0
TEST CIRCUIT EXAMPLES
This section details test circuit examples for a few electrical characteristics. The RGND pins are found only on the
HV2902 device. The Switch DC Offset of HV2802 needs 100 k external load.
VIN = 10VP-P
@5 MHz
ISOL
VPP-10V
VOUT
RLOAD
Open
RGND*
RGND*
VPP
VPP
VDD
VNN
VNN
GND
Open
5.0V
VPP
VPP
VDD
VNN
VNN
GND
5.0V
V OUT
K o = 20Log ---------------V IN
FIGURE 3-1:
Switch Off Leakage per Switch.
FIGURE 3-4:
Off Isolation.
VSIG
VOUT
IID
RLOAD
100k
(HV2802 only)
VNN
VPP
VPP
VDD
VNN
VNN
GND
FIGURE 3-2:
RGND*
RGND*
5.0V
VPP
VPP
VDD
VNN
VNN
GND
FIGURE 3-5:
Diode Current.
Switch DC Offset.
5.0V
Output Switch Isolation
VIN = 10VP-P
@5 MHz
VPP-10V
VOUT
RLOAD 10k
VOUT
NC
50
50
RGND*
RGND*
VPP
VPP
VDD
VNN
VNN
GND
FIGURE 3-3:
DS20005449A-page 12
5.0V
TON/TOFF Test Circuit.
VPP
VPP
VDD
VNN
VNN
GND
5.0V
V OUT
K CR = 20Log ---------------V IN
FIGURE 3-6:
Switch Crosstalk.
 2015 Microchip Technology Inc.
HV2802/HV2902
VOUT
VOUT
1000pF
VSIG
RGND*
VPP
VPP
VDD
VNN
VNN
GND
Q = 1000pF   V
FIGURE 3-7:
5.0V
OUT
Charge Injection.
+VSPK
VOUT
-VSPK
RLOAD
50
RGND*
1k
VPP
VPP
VDD
VNN
VNN
GND
FIGURE 3-8:
5.0V
Output Voltage Spike.
 2015 Microchip Technology Inc.
DS20005449A-page 13
HV2802/HV2902
4.0
Figure 4-1 shows a typical medical ultrasound image
system comprising 64-channels of transmit pulsers,
64-channels of receivers (LNA and ADC) and
64-channels of T/R switches connecting to 192
elements of an ultrasound transducer probe via a
high-voltage analog switch array.
DETAILED DESCRIPTION AND
APPLICATION INFORMATION
The high-voltage analog switches are used for
multiplexing a piezoelectric transducer array in a probe
to multiple channel transmitters (Tx) arrays in a medical
ultrasound system.
Tx / Rx Array
HV 2XXX SW Array
PZT Array
Tx
CH1
T/R
Switch
Rx
ADC
E1
Tx
E65
CH2
E129
T/R
Switch
ADC
Rx
E2
E66
E130
Tx
CH64
T/R
Switch
ADC
Rx
E64
E128
E192
FPGA Ctrl Logic
VIDEO
FIGURE 4-1:
CPU
MEMORY
Typical Medical Ultrasound Imaging System.
The HV2802/HV2902 devices are comprised of two
main circuitries:
• A low-power CMOS digital serial interface
powered by VDD to control the high-voltage
analog switches
• High-voltage bilateral analog switch.
High-voltage supplies VPP and VNN are needed by the
high-voltage level translation circuitry to control the
states of the output high-voltage analog switches. In
addition, each high-voltage analog switch can be
independently controlled because each switch is
controlled via a corresponding latch. A 32-bit shift
register and 32 latches allow the user to serially load
data into the registers, and after completion, to load the
data onto the latches that control the states of the
high-voltage analog switches.
The data is shifted into the shift registers on the rising
edge (low-to-high transition) of the clock. The switch
configuration bit of SW31 is shifted in first and the
switch configuration bit of SW0 is shifted in last. To
avoid clock feedthrough, the latch enable input (LE)
should remain high while the 32-bit data-in signal is
shifted into the 32-bit register. After the valid 32-bit data
complete shifting into the shift registers, the high-to-low
transition of the LE signal transfers the contents of the
shift register into the latches. Finally, setting the LE high
again allows all the latches to keep the current state,
while new data can now be shifted into the shift
registers without upsetting the latches.
It is recommended to change all the latch states at the
same time through this method to avoid possible clock
feedthrough noise. See Figure 4-2 for details.
The HV2802/HV2902 have a digital serial interface
consisting of logic signals, Data In (DIN), Clock (CLK),
Data Out (DOUT), Latch Enable (LE) and Clear (CLR).
The digital circuits are supplied by VDD and either a
3.3V or a 5V logic can be used. With a VDD = 5V supply,
the serial clock frequency can operate up to 20 MHz.
DS20005449A-page 14
 2015 Microchip Technology Inc.
HV2802/HV2902
tWLE
LE
tSD
CLK
tSU
tH
DN31
DIN
DN30
DN29
D N1
DN0
tDO
DOUT
DN-131
DN-130
DN-129
DN-11
DN-10
DN31
*The previous data input in the shift register are shifted out
FIGURE 4-2:
Latch Enable Timing Waveforms.
When the CLR input is set high, all 32 latches are
cleared of the data. Consequently, all the high-voltage
switches are set to off state. However, the CLR signal
does not affect the contents of the shift register, so the
shift register can operate independently of the CLR
signal. Hence, after the CLR input is set low, the shift
register would still retain the previous data.
The serial input interface of the HV2802/HV2902
allows multiple devices to daisy-chain together. In this
configuration, DOUT of a HV2802/HV2902 device is
connected to the DIN of the subsequent device, and so
forth. The last DOUT of the daisy-chained
HV2802/HV2902 can either be floating or fed back to
an FPGA to check the previously stored shift register
data. To control all the high-voltage analog switch
states in daisy-chained N devices, N times 32 clocks
and N times 32 bits of data are shifted into shift
registers, while LE remains high and CLR remains low.
After all N times 32 bits of data finish shifting in, the
high-to-low transition of the LE transfers the data from
all N times 32-bit shift registers to N times 32 latches
simultaneously. Consequently, all N times 32
high-voltage analog switches change states
simultaneously.
The HV2802/HV2902 devices do not have a specific
power up/down sequence. During the power up/down
period, all the analog switch inputs should be within the
VPP and VNN range or floating. The rise time and fall
time of the power supplies, VDD, VPP and VNN, should
be greater than 1 ms. Violating the rise time or fall time
requirement on the power supplies may cause
malfunction such as latch-up or even permanent
damage of the device.
The HV2902 device has 35 k integrated bleed
resisters connected from all the analog switch
terminals A and B to RGND. These bleed resisters
eliminate voltage build-up on capacitive loads such as
piezoelectric transducers. The HV2802 device does
not have integrated bleed resistors.
It is recommended that 0.1 uF ceramic decoupling
capacitors, with the appropriate voltage ratings, be
connected between GND and the other supplies (VDD,
VPP and VNN). These decoupling capacitors should be
placed as close as possible to the device.
 2015 Microchip Technology Inc.
DS20005449A-page 15
HV2802/HV2902
5.0
PACKAGING INFORMATION
5.1
Package Marking Information
78-Ball VFBGA (9x9x1.0)
Example
HV2802GA
1520256
Legend: XX...X
Y
YY
WW
NNN
*
Note:
DS20005449A-page 16
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (
can be found on the outer packaging for this package.
)
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
 2015 Microchip Technology Inc.
HV2802/HV2902
78-Ball Very Thin Fine Pitch Ball Grid Array (5G) - 9x9x1.0 mm Body [VFBGA]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
D
A
D/4
B
E/4
E
0.10 C
2X
0.10 C
TOP VIEW
A3
A
SEATING
PLANE
C
SIDE VIEW
SEE DETAIL B
D1
e
E1
DETAIL A
BOTTOM VIEW
Microchip Technology Drawing C04-371A Sheet 1 of 2
 2015 Microchip Technology Inc.
DS20005449A-page 17
HV2802/HV2902
78-Ball Very Thin Fine Pitch Ball Grid Array (5G) - 9x9x1.0 mm Body [VFBGA]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
NX Øb
Ø0.15
Ø0.05
C A B
C
SOLDER BALL
DETAIL A
0.10 C
0.08 C
C
A1
DETAIL A
Units
Dimension Limits
N
Number of Pins
e
Pitch
A
Overall Height
Standoff
A1
A3
Molded Cap Thickness
E
Overall Width
Overall Ball Pitch
E1
D
Overall Length
D1
Overall Ball Pitch
Øb
Ball Diameter
MIN
0.15
0.45
0.25
MILLIMETERS
NOM
78
0.65 BSC
0.20
0.50
9.00 BSC
7.80 BSC
9.00 BSC
7.80 BSC
0.30
MAX
1.00
0.25
0.55
0.35
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-371A Sheet 2 of 2
DS20005449A-page 18
 2015 Microchip Technology Inc.
HV2802/HV2902
78-Ball Very Thin Fine Pitch Ball Grid Array (5G) - 9x9x1.0 mm Body [VFBGA]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
C1
ØX
C2
E1
E2
RECOMMENDED LAND PATTERN
Units
Dimension Limits
E1
Contact Pitch
Contact Pitch
E2
Contact Pad Spacing
C1
Contact Pad Spacing
C2
Contact Pad Diameter (X78)
X
MIN
MILLIMETERS
NOM
0.65 BSC
0.65 BSC
780
7.80
0.25
MAX
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2371A
 2015 Microchip Technology Inc.
DS20005449A-page 19
HV2802/HV2902
NOTES:
DS20005449A-page 20
 2015 Microchip Technology Inc.
HV2802/HV2902
APPENDIX A:
REVISION HISTORY
Revision A (October 2015)
• Original release of this document.
 2015 Microchip Technology Inc.
DS20005449A-page 21
HV2802/HV2902
NOTES:
DS20005449A-page 22
 2015 Microchip Technology Inc.
HV2802/HV2902
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
XX-X
Device
Package
Examples:
a)
b)
Device
HV2802: 32-Channel SPST, High-Voltage Analog Switch
HV2902: 32-Channel SPST, High-Voltage Analog Switch
with Bleed Resistors
Package
GA-G
=
HV2802GA-G:
HV2902GA-G:
78-Ball VFBGA package
78-Ball VFBGA package
Very Thin Fine Pitch Ball Grid Array (5G) 9x9x1.0 mm (VFBGA), 78-Ball
 2015 Microchip Technology Inc.
DS20005449A-page 23
HV2802/HV2902
NOTES:
DS20005449A-page 24
 2015 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O,
Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2015, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
ISBN: 978-1-63277-907-6
QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
 2015 Microchip Technology Inc.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS20005449A-page 25
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Germany - Dusseldorf
Tel: 49-2129-3766400
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
Austin, TX
Tel: 512-257-3370
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
China - Dongguan
Tel: 86-769-8702-9880
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Kaohsiung
Tel: 886-7-213-7828
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
07/14/15
DS20005449A-page 26
 2015 Microchip Technology Inc.