PHILIPS TDA9855

INTEGRATED CIRCUITS
DATA SHEET
TDA9855
I2C-bus controlled BTSC
stereo/SAP decoder and audio
processor
Product specification
Supersedes data of July 1994
File under Integrated Circuits, IC02
1997 Nov 04
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
FEATURES
• Quasi alignment-free BTSC stereo decoder due to
automatic adjustment of channel separation via I2C-bus
• High integration level with automatically tuned
integrated filters
• Input level adjustment I2C-bus controlled
• Alignment-free SAP processing
GENERAL DESCRIPTION
• dbx noise reduction circuit
The TDA9855 is a bipolar-integrated BTSC stereo/SAP
decoder with hi-fi audio processor (I2C-bus controlled) for
application in TV sets.
•
I2C-bus
transceiver.
Audio processor
• Selector for internal and external signals (line in)
• Automatic volume level control
• Subwoofer or surround output with separate volume
control
• Volume control
• Special loudness characteristic automatically controlled
in combination with volume setting
• Bass and treble control
• Audio signal zero-crossing detection between any
volume step switching
• Mute control at audio signal zero-crossing.
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
DESCRIPTION
VERSION
TDA9855
SDIP52
plastic shrink dual in-line package; 52 leads (600 mil)
SOT247-1
TDA9855WP
PLCC68
plastic leaded chip carrier; 68 leads
SOT188-2
LICENSE INFORMATION
A license is required for the use of this product. For further information, please contact
COMPANY
THAT Corporation
1997 Nov 04
BRANCH
ADDRESS
Licensing Operations
734 Forest St.
Marlborough, MA 01752
USA
Tel.: (508) 229-2500
Fax: (508) 229-2590
Tokyo Office
405 Palm House, 1-20-2 Honmachi
Shibuya-ku, Tokyo 151
Japan
Tel.: (03) 3378-0915
Fax: (03) 3374-5191
2
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCC
supply voltage
8.0
8.5
9.0
V
ICC
supply current
50
75
95
mA
VCOMP(rms)
input signal voltage (RMS value)
100% modulation L + R;
fi = 300 Hz
−
250
−
mV
VoR,L(rms)
output signal voltage (RMS value) 100% modulation L + R;
fi = 300 Hz
−
500
−
mV
GLA
input level adjustment control
maximum gain
−
4
−
dB
maximum attenuation
−
−3.5
−
dB
αcs
stereo channel separation
fL = 300 Hz; fR = 3 kHz
25
35
−
dB
THDL,R
total harmonic distortion L + R
fi = 1 kHz
−
0.2
−
%
VI, O(rms)
signal handling (RMS value)
THD < 0.5%
2
−
−
V
AVL
control range
−15
−
+6
dB
Gc
volume control range
−71
−
+16
dB
LB
maximum loudness boost
fi = 40 Hz
−
17
−
dB
Gbass
bass control range
fi = 40 Hz
−12
−
+16.5
dB
Gtreble
treble control range
fi = 15 kHz
−12
−
+12
dB
Gs
subwoofer control range
fi = 40 Hz
−14
−
+14
dB
S/N
signal-to-noise ratio
line out (mono); Vo = 0.5 V (RMS)
CCIR noise weighting filter
(peak value)
−
60
−
dB
DIN noise weighting filter
(RMS value)
−
73
−
dBA
CCIR noise weighting filter
(peak value)
−
94
−
dB
DIN noise weighting filter
(RMS value)
−
107
−
dBA
audio section; Vo = 2 V (RMS);
gain = 0 dB
1997 Nov 04
3
1997 Nov 04
C1
4
C17
C18
(30)
23
SAP
DEMODULATOR
INPUT
LEVEL
ADJUST
(31)
24
34
(46)
C19
C21
R7
R6
(29) (25)
22 20
STEREO
/SAP
SWITCH
35
(47)
37
(49)
LOR
C20
STEREO
ADJUST
DEMATRIX
+
LINEOUT
SELECT
36
(48)
C16
38
(50)
C7
C6
LIL
D1
VCC
10
(14)
C28
C49
C15 C34
(33,
(39) (15) 34)
30 11 25
SUPPLY
AUTOMATIC
VOLUME AND
LEVEL CONTROL
(18) (37)
13 28
40
(52)
VCC
C9
43
(56)
(6)
5
46
(59)
C12
R3
C30
C29
R4
VIL
(12)
8
R5
C31
(11)
7
VOLUME
LEFT
LOUDNESS
CONTROL
50
(66)
BASS
RIGHT
CONTROL
51
(67)
C13
C32
(3)
2
(4)
3
BASS
LEFT
CONTROL
ZERO
CROSSING
VOLUME
RIGHT
LOUDNESS
CONTROL
VIR
45
(58)
R2
TDA9855
44
(57)
C45
C11
(35) (36) (13)
28 27
9
LOGIC,
I2CTRANCEIVER
EFFECTS
42
(55)
C8
MAD SDA SCL
Fig.1 Block diagram.
External Input Left
(EIL)
C47
C26
(16) (19)
12 14
INPUT
SELECT
41 39
(54) (51)
LIR
C10
C22 C23 C24 C25 C37 C27
LOL
(27) (24) (23) (22) (21) (20)
21 19 18 17 16 15
DBX
CERAMIC
RESONATOR
MURATA
CSB503F58
Q1
handbook, full pagewidth
29 (38)
33
(43)
C5
STEREO DECODER
32
(41)
R1
C4
C33
(1)
1
TREBLE
LEFT
CONTROL
SUBWOOFER
MATRIX,
VOLUME
SURROUND
TREBLE
RIGHT
CONTROL
52
(68)
C14
MHA837
(7) 6
(5) 4
(65) 49
(63) 47
C39
C40
C35
C36
OUTL
OUTS
OUTR
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
The numbers given in parenthesis refer to the TDA9855WP version.
COMP
31
(40)
C2
C3
External Input Right
(EIR)
Philips Semiconductors
Product specification
TDA9855
BLOCK DIAGRAM
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Component list
Electrolytic capacitors ±20%; foil or ceramic capacitors ±10%; resistors ±5%; unless otherwise specified; see Fig.1.
COMPONENTS
VALUE
TYPE
REMARK
C1
10 µF
electrolytic
63 V
C2
470 nF
foil
−
C3
4.7 µF
electrolytic
63 V
C4
220 nF
foil
−
C5
10 µF
electrolytic
63 V; Ileak < 1.5 µA
C6
2.2 µF
electrolytic
16 V
C7
4.7 µF
electrolytic
16 V
C8
15 nF
foil
±5%
C9
15 nF
foil
±5%
C10
2.2 µF
electrolytic
63 V
C11
8.2 nF
foil or ceramic
±5% SMD 2220/1206
C12
150 nF
foil
±5%
C13
33 nF
foil
±5%
C14
5.6 nF
foil or ceramic
±5% SMD 2220/1206
C15
100 µF
electrolytic
16 V
C16
4.7 µF
electrolytic
63 V
63 V
C17
4.7 µF
electrolytic
C18
100 nF
foil
C19
10 µF
electrolytic
63 V
C20
4.7 µF
electrolytic
63 V
C21
47 nF
foil
±5%
C22
1 µF
electrolytic
63 V
C23
1 µF
electrolytic
63 V
C24
10 µF
electrolytic
63 V ±10%
C25
10 µF
electrolytic
63 V ±10%
C26
2.2 µF
electrolytic
16 V
C27
2.2 µF
electrolytic
63 V
C28
4.7 µF
electrolytic
63 V ±10%
C29
2.2 µF
electrolytic
16 V
C30
8.2 nF
foil or ceramic
±5% SMD 2220/1206
C31
150 nF
foil
±5%
C32
33 nF
foil
±5%
C33
5.6 nF
foil or ceramic
±5% SMD 2220/1206
C34
100 µF
electrolytic
16 V
C35
150 nF
foil
±5%
C36
4.7 µF
electrolytic
16 V
C37
4.7 µF
electrolytic
16 V
C39
4.7 µF
electrolytic
16 V
C40
4.7 µF
electrolytic
16 V
1997 Nov 04
5
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
COMPONENTS
VALUE
TYPE
REMARK
C45
2.2 µF
electrolytic
16 V
C47
220 µF
electrolytic
25 V
C49
100 nF
foil or ceramic
SMD 1206
D1
−
−
general purpose diode
R1
2.2 kΩ
−
−
R2
20 kΩ
−
−
R3
2.2 kΩ
−
−
R4
20 kΩ
−
−
R5
2.2 kΩ
−
−
R6
8.2 kΩ
−
±2%
R7
160 Ω
−
±2%
Q1
CSB503F58
radial leads
CSB503JF958
alternative as SMD
PINNING
PINS
SYMBOL
TL
DESCRIPTION
PLCC68
SDIP52
1
1
treble control capacitor, left channel
n.c.
2
−
not connected
B1L
3
2
bass control capacitor, left channel
B2L
4
3
bass control capacitor, left channel
OUTS
5
4
output subwoofer or output surround sound
MAD
6
5
programmable address bit (module address)
OUTL
7
6
output, left channel
8 to 10
−
not connected
LDL
11
7
input loudness, left channel
VIL
12
8
input volume control, left channel
EOL
13
9
output effects, left channel
CAV
14
10
automatic volume control capacitor
Vref
15
11
reference voltage 0.5VCC
LIL
16
12
input line, left channel
n.c.
n.c.
17
−
not connected
AVL
18
13
input automatic volume control, left channel
SOL
19
14
output selector, left channel
LOL
20
15
output line control, left channel
CTW
21
16
capacitor timing wideband for dbx
CTS
22
17
capacitor timing spectral for dbx
CW
23
18
capacitor wideband for dbx
CS
24
19
capacitor spectral for dbx
VEO
25
20
variable emphasis output for dbx
1997 Nov 04
6
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
PINS
SYMBOL
DESCRIPTION
PLCC68
SDIP52
n.c.
26
−
not connected
VEI
27
21
variable emphasis input for dbx
n.c.
28
−
not connected
CNR
29
22
capacitor noise reduction for dbx
CM
30
23
capacitor mute for SAP
CDEC
31
24
capacitor DC-decoupling for SAP
n.c.
32
−
not connected
AGND
33
−
analog ground
DGND
34
−
digital ground
GND
−
25
ground
SDA
35
26
serial data input/output (I2C-bus)
SCL
36
27
serial clock input (I2C-bus)
VCC
37
28
supply voltage
COMP
38
29
composite input signal
VCAP
39
30
capacitor for electronic filtering of supply
CP1
40
31
capacitor for pilot detector
CP2
41
32
capacitor for pilot detector
n.c.
42
−
not connected
CPH
43
33
capacitor for phase detector
n.c.
44, 45
−
not connected
CADJ
46
34
capacitor for filter adjustment
CER
47
35
ceramic resonator
CMO
48
36
capacitor DC-decoupling mono
CSS
49
37
capacitor DC-decoupling stereo/SAP
LOR
50
38
output line control, right channel
SOR
51
39
output selector, right channel
AVR
52
40
input automatic volume control, right channel
n.c.
53
−
not connected
LIR
54
41
input line control, right channel
CPS2
55
42
capacitor 2 pseudo function
CPS1
56
43
capacitor 1 pseudo function
EOR
57
44
output effects, right channel
VIR
58
45
input volume control, right channel
LDR
59
46
input loudness, right channel
n.c.
60 to 62
−
not connected
OUTR
63
47
output, right channel
n.c.
64
48
not connected
SW
65
49
filter capacitor for subwoofer
1997 Nov 04
7
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
PINS
SYMBOL
DESCRIPTION
61 n.c.
62 n.c.
n.c. 10
60 n.c.
LDL 11
59 LDR
VIL 12
58 VIR
EOL 13
57 EOR
CAV 14
56 CPS1
Vref 15
55 CPS2
LIL 16
54 LIR
n.c. 17
53 n.c.
TDA9855H
AVL 18
52 AVR
SOL 19
51 SOR
LOL 20
50 LOR
CTW 21
49 CSS
CTS 22
48 CMO
CW 23
47 CER
CS 24
46 CADJ
8
CPH 43
n.c. 42
CP2 41
CP1 40
VCAP 39
COMP 38
VCC 37
SCL 36
SDA 35
DGND 34
AGND 33
n.c. 32
CDEC 31
CM 30
44 n.c.
CNR 29
n.c. 26
n.c. 28
45 n.c.
VEI 27
VEO 25
Fig.2 Pin configuration (PLCC version).
1997 Nov 04
63 OUTR
64 n.c.
65 SW
TL
1
66 B2R
n.c.
2
67 B1R
B1L
3
handbook, full pagewidth
68 TR
B2L
4
treble control capacitor
OUTS
52
5
68
MAD
TR
6
bass control capacitor, right channel
OUTL
bass control capacitor, right channel
51
7
50
67
n.c.
66
B1R
8
B2R
n.c.
SDIP52
9
PLCC68
MHA836
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
FUNCTIONAL DESCRIPTION
Decoder
INPUT LEVEL ADJUSTMENT
The composite input signal is fed to the input level
adjustment stage. In order to compensate tolerances of
the FM demodulator which supplied the composite input
signal, the TDA9855 provides an input level adjustment
stage. The control range is from −3.5 to +4.0 dB in steps of
0.5 dB. The subaddress control 3 of Tables 5 and 6 and
the level adjust setting of Table 22 allows an optimum
signal adjustment during the set alignment in the
production line. This value has to be stored in a
non-volatile memory. The maximum input signal voltage is
2 V (RMS).
handbook, halfpage
TL
1
52 TR
B1L
2
51 B1R
B2L
3
50 B2R
OUTS
4
49 SW
MAD
5
48 n.c.
OUTL
6
47 OUTR
LDL
7
46 LDR
VIL
8
45 VIR
EOL
9
44 EOR
CAV 10
43 CPS1
Vref 11
42 CPS2
LIL 12
STEREO DECODER
The output signal of the level adjustment stage is coupled
to a low-pass filter which suppresses the baseband noise
above 125 kHz. The composite signal is then fed into a
pilot detector/pilot cancellation circuit and into the MPX
demodulator. The main L + R signal passes a 75 µs fixed
de-emphasis filter and is fed into the dematrix circuit.
The decoded sub-signal L − R is sent to the stereo/SAP
switch. To generate the pilot signal the stereo demodulator
uses a PLL circuit including a ceramic resonator.
The stereo channel separation can be adjusted by an
automatic procedure or manually. For a detailed
description see Section “Adjustment procedure”.
The stereo identification can be read by the I2C-bus
(see Table 2). Two different pilot thresholds can be
selected via the I2C-bus (see Table 24).
41 LIR
AVL 13
40 AVR
TDA9855
SOL 14
39 SOR
LOL 15
38 LOR
CTW 16
37 CSS
CTS 17
36 CMO
CW 18
35 CER
Cs 19
34 CADJ
VEO 20
33 CPH
VEI 21
32 CP2
CNR 22
31 CP1
CM 23
30 VCAP
CDEC 24
29 COMP
GND 25
28 VCC
SDA 26
27 SCL
SAP DEMODULATOR
The composite signal is fed from the output of the input
level adjustment stage to the SAP demodulator circuit
through a 5fH (fH = horizontal frequency) band-pass filter.
The demodulator level is automatically controlled.
The SAP demodulator includes internal noise and field
strength detectors that mute the SAP output in the event of
insufficient signal conditions. The SAP identification signal
can be read by the I2C-bus (see Table 2).
MHA835
SWITCH
The stereo/SAP switch feeds either the L − R signal or the
SAP demodulator output signal via the internal dbx noise
reduction circuit to the dematrix/line out select circuit.
Table 21 shows the different switch modes provided at the
output pins LOR and LOL.
Fig.3 Pin configuration (SDIP version).
1997 Nov 04
9
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
control of each channel. The volume control blocks
operate in combination with the loudness control. The filter
is linear when maximum gain for volume control is
selected. The filter characteristic changes automatically
over a range of 28 dB down to a setting of −12 dB.
At −12 dB volume control the maximum loudness boost is
obtained. The filter characteristic is determined by external
components. The proposed application provides a
maximum boost of 17 dB for bass and 4.5 dB for treble.
The loudness may be switched on or off via I2C-bus
control (see Table 14). The left and right volume control
stages include two independent zero-crossing detectors.
In the zero-crossing mode a change in volume is
automatically activated but not executed. The execution is
enabled at the next zero-crossing of the signal. If a new
volume step is activated before the previous one has been
processed, the previous value will be executed first, and
then the new value will be activated. If no zero-crossing
occurs the next volume transmission will enforce the last
activated volume setting.
dbx DECODER
The circuit includes all blocks required for the noise
reduction system in accordance with the BTSC system
specification. The output signal is fed through a 73 µs fixed
de-emphasis circuit to the dematrix block.
INTEGRATED FILTERS
The filter functions necessary for stereo and SAP
demodulation and part of the dbx filter circuits are provided
on-chip using transconductor circuits. The required filter
accuracy is attained by an automatic filter alignment
circuit.
Audio processor
SELECTOR
The selector allows selecting either the internal line out
signals LOR or LOL (dematrix output) or the external line
in signals LIR and LIL and combines the left and right
signals in several modes (see Table 12). The input signal
capability of the line inputs (LIR/LIL) is 2 V (RMS).
The output of the selector is AC-coupled to the automatic
volume level control circuit via pins SOR/SOL and
AVR/AVL to avoid offset voltages.
The zero-crossing mode is realized between adjoining
steps and between any steps, but not from any step to
mute. In this case the GMU bit is required for use. In case
only one channel has to be muted, two steps are
necessary. The first step is a transmission of any step to
−71 dB and the second step is the −71 dB step to mute
mode. The step of −71 dB to mute mode has no
zero-crossing but this is not relevant. This procedure has
to be provided by software.
AUTOMATIC VOLUME LEVEL CONTROL
The automatic volume level stage controls its output
voltage to a constant level of typically 200 mV (RMS) from
an input voltage range of 0.1 to 1.1 V (RMS). The circuit
adjusts variations in modulation during broadcasting and
due to changes in the programme material. The function
can be switched off. To avoid audible ‘plops’ during the
permanent operation of the AVL circuit a soft blending
scheme has been applied between the different gain
stages. A capacitor (4.7 µF) at pin CAV determines the
attack and decay time constants. In addition the ratio of
attack and decay time can be changed via the I2C-bus
(see notes 7 and 8 of Chapter “Characteristics”).
BASS CONTROL
A single external 33 nF capacitor for each channel in
combination with a linear operational amplifier and internal
resistors provides a bass control range of +16.5 to −12 dB
in steps of 1.5 dB at low frequencies (40 Hz). Internally the
basic step width is 3 dB, with intermediate steps obtained
by a toggle function that provides an additional 1.5 dB
boost or attenuation (see Table 9). It should be noted that
both loudness and bass control together result in a
maximum bass boost of 34.5 dB for low volume steps.
EFFECTS
TREBLE CONTROL
The audio processor section offers the following mode
selections: linear stereo, pseudo stereo, spatial stereo and
forced mono.The spatial mode provides an antiphase
crosstalk of 30% or 52% (switchable via the I2C-bus;
see Table 18).
The adjustable range of the treble control stage is from
−12 to +12 dB in steps of 3 dB. The filter characteristic is
determined by an external 5.6 nF capacitor for each
channel. The logic circuitry is arranged in a way that the
same data words (06H to 16H) can be used for both tone
controls if a bass control range from −12 to +12 dB and a
treble control range from −12 to +12 dB with 3 dB steps
are used (see Tables 9 and 10).
VOLUME/LOUDNESS
The volume control range is from +16 dB to −71 dB in
steps of 1 dB and ends with a mute step (see Table 8).
Balance control is achieved by the independent volume
1997 Nov 04
10
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
wideband expander is performed via the stereo channel
separation adjust.
SUBWOOFER; SURROUND SOUND CONTROL
The subwoofer or the surround mode can be activated with
the control bit SUR (see Table 6). A low bit provides an
output signal 1⁄2(L + R) in subwoofer mode, a high bit
selects surround mode and provides an output signal
1⁄ (L − R). The signal is fed through a volume control stage
2
with a range from +14 to −14 dB in 2 dB steps on top of the
main channel control to the output pin OUTS. The last
setting is the mute position (see Table 11). The capacitor
C35 at pin SW provides a 230 Hz low-pass filter in
subwoofer mode. In surround mode this capacitor should
be disconnected. If balance is not in mid position the
selected left and right output levels will be combined.
AUTOMATIC ADJUSTMENT PROCEDURE
• Capacitors of external inputs EIL and EIR must be
grounded
• Composite input signal L = 300 Hz, R = 3.1 kHz,
14% modulation for each channel; volume gain +16 dB
via the I2C-bus; to avoid annoying sound level set GMU
bit to logic 1 during adjustment procedure
• Effects, AVL, loudness off
• Selector setting SC0, SC1 and SC2 = 0, 0, 0
(see Table 12)
• Line out setting bits: STEREO = 1, SAP = 0
(see Table 21)
MUTE
The mute function can be activated independently with the
last step of volume or subwoofer/surround control at the
left, right or centre output. By setting the general mute bit
GMU via the I2C-bus all audio part outputs are muted.
All channels include an independent zero-crossing
detector. The zero-crossing mute feature can be selected
via bit TZCM:
• Start adjustment by transmission ADJ = 1 in register
ALI3; the decoder will align itself
• After 1 second, stop alignment by transmitting ADJ = 0
in register ALI3 read the alignment data by an I2C-bus
read operation from ALR1 and ALR2
(see Chapter “I2C-bus protocol”) and store it in a
non-volatile memory; the alignment procedure
overwrites the previous data stored in ALI1 and ALI2
TZCM = 0: forced mute with direct execution
TZCM = 1: execution in time with signal zero-crossing.
• Disconnect the capacitors of external inputs from
ground.
In the zero-crossing mode a change of the GMU bit is
activated but not executed. The execution is enabled at
the next zero-crossing of the signal. To avoid a large delay
of mute switching, when very low frequencies are
processed, or the output signal amplitude is lower than the
DC offset voltage, the following I2C-bus transmissions are
needed:
MANUAL ADJUSTMENT
Manual adjustment is necessary when no dual tone
generator is available (e.g. for service).
• Spectral and wideband data have to be set to 10000
(middle position for adjustment range)
A first transmission for mute execution
A second transmission approximately 100 ms later,
which must switch the zero-crossing mode to forced
mute (TZCM = 0)
• Composite input L = 300 Hz; 14% modulation
A third transmission to reactivate the zero-crossing
mode (TZCM = 1). This transmission can take place
immediately, but must follow before the next mute
execution.
• Adjust channel separation by varying spectral data
• Adjust channel separation by varying wideband data
• Composite input L = 3 kHz; 14% modulation
• Iterative spectral/wideband operation for optimum
adjustment
• Store data in non-volatile memory.
Adjustment procedure
After every power-on, the alignment data and the input
level adjustment data must be loaded from the non-volatile
memory.
COMPOSITE INPUT LEVEL ADJUSTMENT
Apply the composite signal (from the FM demodulator)
with 100% modulation (25 kHz deviation) L + R;
fi = 300 Hz. Set input level control via the I2C-bus
monitoring line output (500 mV ±20 mV). Store the setting
in a non-volatile memory. Adjustment of the spectral and
1997 Nov 04
TIMING CURRENT FOR RELEASE RATE
Due to possible internal and external spreading, the timing
current can be adjusted via the I2C-bus (see Table 25) as
recommended by dbx.
11
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Requirements for the composite input signal to ensure correct system performance
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
COMPL+R(rms) composite input level for 100%
modulation L + R;
25 kHz deviation;
fi = 300 Hz; RMS value
measured at pin COMP
162
250
363
mV
∆COMP
composite input level
spreading under operating
conditions
Tamb = −20 to +70 °C; aging;
power supply influence
−0.5
−
+0.5
dB
Zo
output impedance
note 1
−
low-ohmic 5
kΩ
flf
low frequency roll-off
25 kHz deviation L + R; −2 dB
−
−
5
Hz
fhf
high frequency roll-off
25 kHz deviation L + R; −2 dB
100
−
−
kHz
THDL,R
total harmonic distortion L + R
fi = 1 kHz; 25 kHz deviation
−
−
0.5
%
fi = 1 kHz; 125 kHz deviation;
note 2
−
−
1.5
%
critical picture modulation
44
−
−
dB
with sync only
S/N
signal-to-noise ratio
L + R/noise
CCIR 468-2 weighted quasi
peak; L + R; 25 kHz deviation;
fi = 1 kHz; 75 µs de-emphasis
54
−
−
dB
αSB
side band suppression mono
into unmodulated SAP carrier;
SAP carrier/side band
mono signal: 25 kHz deviation, 46
fi = 1 kHz; side band: SAP
carrier frequency ±1 kHz
−
−
dB
αSP
spectral spurious attenuation
L + R/spurious
50 Hz to 100 kHz;
40
mainly n × fH; no de-emphasis;
L + R; 25 kHz deviation,
f = 1 kHz as reference
−
−
dB
Notes
1. Low-ohmic preferred, otherwise the signal loss and spreading at COMP, caused by Zo and the composite input
impedance (see Chapter “Characteristics”, Section INPUT LEVEL ADJUSTMENT CONTROL) must be taken into
account.
2. In order to prevent clipping at over-modulation (maximum deviation in the BTSC system for 100% modulation is
73 kHz).
1997 Nov 04
12
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCC
supply voltage
0
9.5
V
Vn
voltage of all other pins with respect to pin
GND
0
VCC
V
Tamb
operating ambient temperature
−20
+70
°C
Tstg
storage temperature
Vesd
electrostatic handling
−65
+150
°C
note 1
−2000
+2000
V
note 2
−300
+300
V
Notes
1. Human body model: C = 100 pF; R = 1.5 kΩ.
2. Charge device model: C = 200 pF; R = 0 Ω.
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
1997 Nov 04
PARAMETER
CONDITIONS
VALUE
UNIT
SOT247-1
43
K/W
SOT188-2
38
K/W
thermal resistance from junction to ambient
13
in free air
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
CHARACTERISTICS
All voltages are measured relative to GND; VCC = 8.5 V; source resistance Rs ≤ 600 Ω; output load RL ≥ 10 kΩ;
CL ≤ 2.5 nF; AC-coupled; fi = 1 kHz; Tamb = 25 °C; volume gain control Gc = 0 dB; bass linear; treble linear;
loudness off; AVL off; effects linear; composite input signal in accordance with BTSC standard; see Fig.1;
unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
General
VCC
supply voltage
8.0
ICC
supply current
50
75
95
mA
VDC
DC voltage at signal handling
pins
−
1⁄
−
V
maximum gain
−
4.0
−
dB
maximum attenuation
−
−3.5
−
dB
8.5
2VCC
9.0
V
Decoder section
INPUT LEVEL ADJUSTMENT CONTROL
GLA
input level adjustment control
Gstep
step resolution
−
0.5
−
dB
Vi(rms)
maximum input voltage level
(RMS value)
2
−
−
V
Zi
input impedance
29.5
35
40.5
kΩ
input level adjusted via I2C-bus −
(L + R; fi = 300 Hz);
monitoring line out
250
−
mV
STEREO DECODER
MPXL+R(rms) input voltage level for 100%
modulation L + R; 25 kHz
deviation (RMS value)
MPXL−R
input voltage level for 100%
modulation L − R; 50 kHz
deviation (peak value)
−
707
−
mV
MPX(max)
maximum headroom for L + R, fmod < 15 kHz; THD < 15% for
L, R
75 µs equivalent input
modulation
9
−
−
dB
−
50
−
mV
MPXpilot(rms) nominal stereo pilot voltage
level (RMS value)
STon(rms)
SToff(rms)
hys
OUTL+R
1997 Nov 04
pilot threshold voltage stereo
on (RMS value)
data STS = 1
−
−
35
mV
data STS = 0
−
−
30
mV
pilot threshold voltage stereo
off (RMS value)
data STS = 1
15
−
−
mV
data STS = 0
10
−
−
mV
−
2.5
−
dB
480
500
520
mV
hysteresis
input level adjusted via I2C-bus
output voltage level for 100%
modulation L + R at LINE OUT (L + R; fi = 300 Hz);
monitoring LINE OUT
14
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
SYMBOL
αcs
fL, R
PARAMETER
stereo channel separation L/R
at LINE OUT
L, R frequency response
TDA9855
CONDITIONS
MIN.
TYP.
MAX.
UNIT
aligned with dual tone 14%
modulation; see Section
“Adjustment procedure” in
Chapter “Functional
description”
fL = 300 Hz; fR = 3 kHz
25
35
−
dB
fL = 300 Hz; fR = 8 kHz
20
30
−
dB
fL = 300 Hz; fR = 10 kHz
15
25
−
dB
fi = 50 Hz to 11 kHz
−3
−
−
dB
fi = 12 kHz
−
−3
−
dB
14% modulation;
fref = 300 Hz L or R
THDL,R
total harmonic distortion L, R
at LINE OUT
modulation L or R
1% to 100%; fi = 1 kHz
−
0.2
1.0
%
S/N
signal-to-noise ratio
mono mode; CCIR 468-2
weighted; quasi peak;
500 mV output signal
50
60
−
dB
STEREO DECODER, OSCILLATOR (VCXO); note 1
fo
nominal VCXO output
frequency (32fH)
with nominal ceramic
resonator
−
503.5
−
kHz
fof
spread of free-running
frequency
with nominal ceramic
resonator
500.0
−
507.0
kHz
∆fH
capture range frequency
(nominal pilot)
±190
±265
−
Hz
−
150
−
mV
SAP DEMODULATOR; note 2
SAPi(rms)
nominal SAP carrier input
voltage level (RMS value)
SAPon(rms)
pilot threshold voltage SAP on
(RMS value)
−
−
85
mV
SAPoff(rms)
pilot threshold voltage SAP off
(RMS value)
35
−
−
mV
SAPhys
hysteresis
−
2
−
dB
SAPLEV
SAP output voltage level at
LINE OUT
LINE OUT (LOL, LOR) in
position SAP/SAP;
fmod = 300 Hz;
100% modulation
−
500
−
mV
fres
frequency response
14% modulation;
50 Hz to 8 kHz; fref = 300 Hz
−3
−
−
dB
THD
total harmonic distortion
fi = 1 kHz
−
0.5
2.0
%
1997 Nov 04
15 kHz frequency deviation of
intercarrier
15
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
SYMBOL
PARAMETER
TDA9855
CONDITIONS
MIN.
TYP.
MAX.
UNIT
LINE OUT AT PINS LOL AND LOR
−
500
−
mV
output headroom
9
−
−
dB
Zo
output impedance
−
80
120
Ω
Vo(rms)
nominal output voltage
(RMS value)
HEADo
100% modulation
VO
DC output voltage
0.45VCC 0.5VCC
RL
output load resistance
5
−
−
kΩ
CL
output load capacitance
−
−
2.5
nF
αct
idle crosstalk L, R into SAP
100% modulation; fi = 1 kHz;
L or R; line out switched to
SAP/SAP
50
−
−
dB
idle crosstalk SAP into L, R
100% modulation; fi = 1 kHz;
SAP; line out switched to
stereo
50
−
−
dB
output voltage difference if
switched from L, R to SAP
250 Hz to 6.3 kHz
−
−
3
dB
∆VST-SAP
0.55VCC V
dbx NOISE REDUCTION CIRCUIT
tadj
stereo adjustment time
see Section “Adjustment
procedure” in Chapter
“Functional description”
−
−
1
s
Is
nominal timing current for
nominal release rate of
spectral RMS detector
Is can be measured at pin 17
(pin 22) via current meter
connected to 1⁄2VCC + 1 V
−
24
−
µA
∆Is
spread of timing current
−
−
15
%
−
±30
−
%
−
1⁄
3Is
−
µA
wideband
−
125
−
dB/s
spectral
−
381
−
dB/s
Is(range)
timing current adjustment
range
It
timing current for release rate
of wideband RMS detector
Relrate
nominal RMS detector
release rate
1997 Nov 04
7 steps via
I2C-bus
nominal timing current and
external capacitor values
16
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
SYMBOL
PARAMETER
TDA9855
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Audio part
CIRCUIT SECTION FROM PINS LIL AND LIR TO PINS OUTL, OUTR AND OUTS; note 3
B
THD
roll-off frequencies
total harmonic distortion
C6, C7, C10, C26, C27 and
C29 = 2.2 µF; Zi = Zi(min)
low frequency (−3 dB)
−
−
20
Hz
high frequency (−0.5 dB)
20
−
−
kHz
Vi = 1 V (RMS); Gc = 0 dB;
AVL on
−
0.2
0.5
%
Vi = 2 V (RMS); Gc = 0 dB;
AVL on
−
0.2
0.5
%
Vi = 1 V (RMS); Gc = 0 dB;
AVL off
−
0.05
−
%
Vi = 2 V (RMS); Gc = 0 dB;
AVL off
−
0.02
−
%
PSRR
power supply ripple rejection
Vr(rms) < 200 mV; fi = 100 Hz
47
50
−
dB
αB
crosstalk between bus inputs
and signal outputs
notes 4 and 5
−
110
−
dB
Vno
noise output voltage
CCIR 468-2 weighted;
quasi peak
−
40
80
µV
measured in dBA
−
8
−
µV
αcs
channel separation
Vi = 1 V; fi = 1 kHz
75
−
−
dB
Vi = 1 V; fi = 12.5 kHz
75
−
−
dB
16
20
24
kΩ
f = 1 kHz; Vi = 1 V
86
96
−
dB
f = 12.5 kHz; Vi = 1 V
80
96
−
dB
THD < 0.5%
2
2.3
−
V
25
mV
SELECTOR (FROM PINS LOL, LOR, LIL AND LIR TO PINS SOL AND SOR)
Zi
input impedance
αs
input isolation of one selected
source to any other input
Vi(rms)
maximum input voltage
(RMS value)
Voffset
DC offset voltage at selector
output by selection of any
inputs
−
−
Zo
output impedance
−
80
120
Ω
RL
output load resistance (AC)
5
−
−
kΩ
CL
output load capacitance
−
−
2.5
nF
Gc
voltage gain, selector
−
0
−
dB
1997 Nov 04
17
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
SYMBOL
PARAMETER
TDA9855
CONDITIONS
MIN.
TYP.
MAX.
UNIT
AUTOMATIC VOLUME LEVEL CONTROL (AVL)
Zi
input impedance
Vi(rms)
maximum input voltage
(RMS value)
Gv
gain, maximum boost
THD < 0.2%
8.8
11.0
13.2
kΩ
2
−
−
V
5
6
7
dB
maximum attenuation
14
15
16
dB
Gstep
equivalent step width between
the input stages
(soft switching system)
−
1.5
−
dB
Vi(rms)
input level at maximum boost
(RMS value)
see Fig.4
−
0.1
−
V
input level at maximum
attenuation (RMS value)
see Fig.4
−
1.125
−
V
Vo(rms)
output level in AVL operation
(RMS value)
see Fig.4
160
200
250
mV
VDC(OFF)
DC offset between different
gain steps
voltage at pin CAV
6.50 to 6.33 V or
6.33 to 6.11 V or
6.11 to 5.33 V or
5.33 to 2.60 V; note 6
−
−
6
mV
Ratt
discharge resistors for attack
time constant
AT1 = 0; AT2 = 0; note 7
340
420
520
Ω
AT1 = 1; AT2 = 0; note 7
590
730
910
Ω
AT1 = 0; AT2 = 1; note 7
0.96
1.2
1.5
kΩ
AT1 = 1; AT2 = 1; note 7
1.7
2.1
2.6
kΩ
normal mode; CCD = 0; note 8 1.6
2.0
2.4
µA
−
52
−
%
−
30
−
%
−
−
−
−
Idec
charge current for decay time
EFFECT CONTROLS
αspat1
αspat2
anti-phase crosstalk by spatial
effect
ϕ
phase shift by pseudo-stereo
see Fig.5
VOLUME TONE CONTROL PART (INPUT PINS VIL AND VIR TO PINS OUTX AND OUTS)
Zi
volume input impedance
8.0
10.0
12.0
kΩ
Zo
output impedance
−
80
120
Ω
RL
output load resistance (AC)
5
−
−
kΩ
−
−
2.5
nF
2.0
2.15
−
V
CL
output load capacitance
Vi(rms)
maximum input voltage
(RMS value)
THD < 0.5%
Vno
noise output voltage
CCIR 468-2 weighted;
quasi peak
1997 Nov 04
Gc = 16 dB
−
110
220
µV
Gc = 0 dB
−
33
50
µV
mute position
−
10
−
µV
18
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
SYMBOL
PARAMETER
Gc
total continuous control range
Gstep
step resolution
step error between any
adjoining step
∆Ga
attenuator set error
∆Gt
gain tracking error
αm
mute attenuation
VDC(OFF)
DC step offset between any
adjacent step
DC step offset between any
step to mute
TDA9855
CONDITIONS
MIN.
TYP.
MAX.
UNIT
maximum boost
−
16
−
dB
maximum attenuation
−
71
−
dB
−
1
−
dB
−
−
0.5
dB
Gc = +16 to −50 dB
−
−
2
dB
Gc = −51 to −71 dB
−
−
3
dB
Gc = +16 to −50 dB
−
−
2
dB
80
−
−
dB
Gc = +16 to 0 dB
−
0.2
10.0
mV
Gc = 0 to −71 dB
−
−
5
mV
Gc = +16 to +1 dB
−
2
15
mV
Gc = 0 to −71 dB
−
1
10
mV
fi = 40 Hz
−
17
−
dB
fi = 10 kHz
−
4.5
−
dB
LOUDNESS CONTROL PART
LB
maximum loudness boost
loudness on; referred to
loudness off; boost is
determined by external
components; see Fig.6
BASS CONTROL (see Fig.7)
Gbass
Gstep
VDC(OFF)
bass control maximum boost
fi = 40 Hz
15.5
16.5
17.5
dB
maximum attenuation
fi = 40 Hz
11
12
13
dB
step resolution
fi = 40 Hz
−
1.5
−
dB
step error between any
adjoining step
−
−
0.5
dB
DC step offset between any
adjacent step
−
−
15
mV
11
12
13
dB
TREBLE CONTROL (see Fig.8)
Gtreble
Gstep
VDC(OFF)
1997 Nov 04
treble control maximum boost
fi = 15 kHz
maximum attenuation
fi = 15 kHz
11
12
13
dB
maximum boost
fi > 15 kHz
−
−
15
dB
step resolution
fi = 15 kHz
−
3
−
dB
step error between any
adjoining step
−
−
0.5
dB
DC step offset between any
adjacent step
−
−
10
mV
19
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
SYMBOL
PARAMETER
TDA9855
CONDITIONS
MIN.
TYP.
MAX.
UNIT
SUBWOOFER OR SURROUND CONTROL
Gs
subwoofer control
Gstep
step resolution
αm
mute attenuation
VDC(OFF)
DC step offset between any
adjacent step
DC step offset between any
step to mute
RF
internal resistor for low-pass
filter with external capacitor at
pin SW
L + RREJ
common mode rejection in
surround sound at pin OUTS
maximum boost; fi = 40 Hz
12
14
16
dB
maximum attenuation;
fi = 40 Hz
12
14
16
dB
−
2
−
dB
60
−
−
dB
Gs = 0 to +14 dB
−
−
10
mV
Gs = 0 to −14 dB
−
−
5
mV
Gs = +2 to +14 dB without
−
input offset (pin SW connected
to Vref)
−
15
mV
Gs = +2 to +14 dB inclusive
offset from OUTR, OUTL
−
−
50
mV
Gs = 0 to −14 dB
−
−
10
mV
4
5
6
kΩ
26
36
−
dB
−
VCAP − 0.7 −
V
increasing supply voltage
−
−
2.5
V
decreasing supply voltage
4.2
5
5.8
V
increasing supply voltage
5.2
6
6.8
V
mono signal at VIL/VIR;
f = 1 kHz; Vi = 1 V;
balance = 0 dB
MUTING AT POWER SUPPLY DROP FOR OUTL, OUTR AND OUTS
VCC-DROP
supply drop for mute active
POWER-ON RESET; note 9
VRESET(STA)
start of reset voltage
VRESET(END) end of reset voltage
Digital part (I2C-bus pins); note 10
VIH
HIGH-level input voltage
3
−
VCC
V
VIL
LOW-level input voltage
−0.3
−
+1.5
V
IIH
HIGH-level input current
−10
−
+10
µA
IIL
LOW-level input current
−10
−
+10
µA
VOL
LOW-level output voltage
−
−
0.4
V
1997 Nov 04
IIL = 3 mA
20
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Notes to the characteristics
1. The oscillator is designed to operate together with a MURATA resonator CSB503F58 for TDA9855. Change of the
resonator supplier is possible, but the resonator specification must be close to CSB503F58 for TDA9855.
2. The internal SAP carrier level is determined by the composite input level and the level adjustment gain.
3. Select in to input line control.
V bus(p-p)
4. Crosstalk: 20 log --------------------V o(rms)
5. The transmission contains:
a) Total initialization with MAD and SAD for volume and 11 DATA words, see also definition of characteristics
b) Clock frequency = 50 kHz
c) Repetition burst rate = 400 Hz
d) Maximum bus signal amplitude = 5 V (p-p).
6. The listed pin voltage corresponds with typical gain steps of +6 dB, +3 dB, 0 dB, −6 dB and −15 dB.
7. Attack time constant = CAV × Ratt.
8.
– G v2 
 –Gv1------------ -----------20
20 
C AV × 0.76 V  10
– 10



Decay time = ----------------------------------------------------------------------------------I dec
Example: CAV = 4.7 µF; Idec = 2 µA; Gv1 = −9 dB; Gv2 = +6 dB → decay time results in 4.14 s.
9. When reset is active the GMU-bit (general mute) and the LMU-bit (LINE OUT mute) is set and the I2C-bus receiver
is in the reset position.
10. The AC characteristics are in accordance with the I2C-bus specification. The maximum clock frequency is 100 kHz.
Information about the I2C-bus can be found in the brochure “The I2C-bus and how to use it”
(order number 9398 393 40011).
1997 Nov 04
21
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
I2C-BUS PROTOCOL
I2C-bus format to read (slave transmits data)
S
Table 1
SLAVE ADDRESS
R/W
A
DATA
MA
DATA
Explanation of I2C-bus format to read (slave transmits data)
NAME
DESCRIPTION
S
START condition; generated by the master
Standard SLAVE ADDRESS
101 101 1 pin MAD not connected
Pin programmable SLAVE ADDRESS
101 101 0 pin MAD connected to ground
R/W
logic 1 (read); generated by the master
A
acknowledge; generated by the slave
DATA
slave transmits an 8-bit data word
MA
acknowledge; generated by the master
P
STOP condition; generated by the master
Table 2
P
Definition of the transmitted bytes after read condition
MSB
FUNCTION
LSB
BYTE
D7
D6
D5
D4
D3
D2
D1
D0
Alignment read 1
ALR1
Y
SAPP
STP
A14
A13
A12
A11
A10
Alignment read 2
ALR2
Y
SAPP
STP
A24
A23
A22
A21
A20
Table 3
Function of the bits in Table 2
BITS
FUNCTION
STP
stereo pilot identification (stereo received = 1)
SAPP
SAP pilot identification (SAP received = 1)
A1X to A2X
stereo alignment read data
A1X
for wideband expander
A2X
for spectral expander
Y
indefinite
The master generates an acknowledge when it has received the first data word ALR1, then the slave transmits the next
data word ALR2. Afterwards the master generates an acknowledge, then the slave begins transmitting the first data word
ALR1 etc. until the master generates no acknowledge and transmits a STOP condition.
1997 Nov 04
22
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
I2C-bus format to write (slave receives data)
S
Table 4
SLAVE ADDRESS
R/W
A
SUBADDRESS
A
DATA
A
P
Explanation of I2C-bus format to write (slave receives data)
NAME
DESCRIPTION
S
START condition
Standard SLAVE ADDRESS
101 101 1 pin MAD not connected
Pin programmable SLAVE ADDRESS
101 101 0 pin MAD connected to ground
R/W
logic 0 (write)
A
acknowledge; generated by the slave
SUBADDRESS (SAD)
see Table 5
DATA
see Table 6
P
STOP condition
If more than 1 byte of DATA is transmitted, then auto-increment is performed, starting from the transmitted subaddress
and auto-increment of subaddress in accordance with the order of Table 5 is performed.
Table 5
Subaddress second byte after slave address
MSB
FUNCTION
Volume right
LSB
REGISTER
VR
HEX
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
00
Volume left
VL
0
0
0
0
0
0
0
1
01
Bass
BA
0
0
0
0
0
0
1
0
02
Treble
TR
0
0
0
0
0
0
1
1
03
Subwoofer
SW
0
0
0
0
0
1
0
0
04
Control 1
CON1
0
0
0
0
0
1
0
1
05
Control 2
CON2
0
0
0
0
0
1
1
0
06
Control 3
CON3
0
0
0
0
0
1
1
1
07
Alignment 1
ALI1
0
0
0
0
1
0
0
0
08
Alignment 2
ALI2
0
0
0
0
1
0
0
1
09
Alignment 3
ALI3
0
0
0
0
1
0
1
0
0A
1997 Nov 04
23
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
Table 6
TDA9855
Definition of third byte after slave address
MSB
FUNCTION
LSB
REGISTER
D7
D6
D5
D4
D3
D2
D1
D0
VR
0
VR6
VR5
VR4
VR3
VR2
VR1
VR0
Volume left
VL
0
VL6
VL5
VL4
VL3
VL2
VL1
VL0
Bass
BA
0
0
0
BA4
BA3
BA2
BA1
BA0
Treble
TR
0
0
0
TR4
TR3
TR2
TR1
0
Volume right
Subwoofer
SW
0
0
SW5
SW4
SW3
SW2
0
0
Control 1
CON1
GMU
AVLON
LOFF
X
SUR
SC2
SC1
SC0
Control 2
CON2
SAP
STEREO
TZCM
VZCM
LMU
EF2
EF1
EF0
Control 3
CON3
0
0
0
0
L3
L2
L1
L0
Alignment 1
ALI1
0
0
0
A14
A13
A12
A11
A10
Alignment 2
ALI2
STS
0
0
A24
A23
A22
A21
A20
Alignment 3
ALI3
ADJ
AT1
AT2
0
1
TC2
TC1
TC0
Table 7
Function of the bits in Table 6
BITS
FUNCTION
VR0 to VR6
volume control right
VL0 to VL6
volume control left
BA0 to BA4
bass control
TR1 to TR3
treble control
SW2 to SW5
subwoofer, surround control
GMU
mute control for outputs OUTL, OUTR and OUTS (generate mute)
AVLON
AVL on/off
LOFF
switch loudness on/off
X
don’t care bit
SUR
surround/subwoofer SUR = 1 → 1⁄2(L − R); SUR = 0 → 1⁄2(L + R)
SC0 to SC2
selection between line in and line out
STEREO, SAP
mode selection for line out
TZCM
zero-crossing mode in mute operation (treble and subwoofer/surround output stage)
VZCM
zero-crossing mode in volume operation
LMU
mute control for dematrix + line out select
EF0 to EF2
selection between mono, stereo linear, spatial stereo and pseudo mode
L0 to L3
input level adjustment
ADJ
stereo adjustment on/off
A1X
stereo alignment data for wideband expander
A2X
stereo alignment data for spectral expander
AT1 and AT2
attack time at AVL
TC0 to TC2
timing current alignment data
STS
stereo level switch
1997 Nov 04
24
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
Table 8
TDA9855
Volume setting in registers VR and VL
DATA
Gc
(dB)
D6
V6
D5
V5
D4
V4
D3
V3
D2
V2
D1
V1
D0
V0
HEX
16
1
1
1
1
1
1
1
7F
15
1
1
1
1
1
1
0
7E
14
1
1
1
1
1
0
1
7D
13
1
1
1
1
1
0
0
7C
12
1
1
1
1
0
1
1
7B
11
1
1
1
1
0
1
0
7A
10
1
1
1
1
0
0
1
79
9
1
1
1
1
0
0
0
78
8
1
1
1
0
1
1
1
77
7
1
1
1
0
1
1
0
76
6
1
1
1
0
1
0
1
75
5
1
1
1
0
1
0
0
74
4
1
1
1
0
0
1
1
73
3
1
1
1
0
0
1
0
72
2
1
1
1
0
0
0
1
71
1
1
1
1
0
0
0
0
70
0
1
1
0
1
1
1
1
6F
−1
1
1
0
1
1
1
0
6E
−2
1
1
0
1
1
0
1
6D
−3
1
1
0
1
1
0
0
6C
−4
1
1
0
1
0
1
1
6B
−5
1
1
0
1
0
1
0
6A
−6
1
1
0
1
0
0
1
69
−7
1
1
0
1
0
0
0
68
−8
1
1
0
0
1
1
1
67
−9
1
1
0
0
1
1
0
66
−10
1
1
0
0
1
0
1
65
−11
1
1
0
0
1
0
0
64
−12
1
1
0
0
0
1
1
63
−13
1
1
0
0
0
1
0
62
−14
1
1
0
0
0
0
1
61
−15
1
1
0
0
0
0
0
60
−16
1
0
1
1
1
1
1
5F
−17
1
0
1
1
1
1
0
5E
−18
1
0
1
1
1
0
1
5D
−19
1
0
1
1
1
0
0
5C
−20
1
0
1
1
0
1
1
5B
−21
1
0
1
1
0
1
0
5A
1997 Nov 04
25
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
DATA
Gc
(dB)
D6
V6
D5
V5
D4
V4
D3
V3
D2
V2
D1
V1
D0
V0
HEX
−22
1
0
1
1
0
0
1
59
−23
1
0
1
1
0
0
0
58
−24
1
0
1
0
1
1
1
57
−25
1
0
1
0
1
1
0
56
−26
1
0
1
0
1
0
1
55
−27
1
0
1
0
1
0
0
54
−28
1
0
1
0
0
1
1
53
−29
1
0
1
0
0
1
0
52
−30
1
0
1
0
0
0
1
51
−31
1
0
1
0
0
0
0
50
−32
1
0
0
1
1
1
1
4F
−33
1
0
0
1
1
1
0
4E
−34
1
0
0
1
1
0
1
4D
−35
1
0
0
1
1
0
0
4C
−36
1
0
0
1
0
1
1
4B
−37
1
0
0
1
0
1
0
4A
−38
1
0
0
1
0
0
1
49
−39
1
0
0
1
0
0
0
48
−40
1
0
0
0
1
1
1
47
−41
1
0
0
0
1
1
0
46
−42
1
0
0
0
1
0
1
45
−43
1
0
0
0
1
0
0
44
−44
1
0
0
0
0
1
1
43
−45
1
0
0
0
0
1
0
42
−46
1
0
0
0
0
0
1
41
−47
1
0
0
0
0
0
0
40
−48
0
1
1
1
1
1
1
3F
−49
0
1
1
1
1
1
0
3E
−50
0
1
1
1
1
0
1
3D
−51
0
1
1
1
1
0
0
3C
−52
0
1
1
1
0
1
1
3B
−53
0
1
1
1
0
1
0
3A
−54
0
1
1
1
0
0
1
39
−55
0
1
1
1
0
0
0
38
−56
0
1
1
0
1
1
1
37
−57
0
1
1
0
1
1
0
36
−58
0
1
1
0
1
0
1
35
−59
0
1
1
0
1
0
0
34
−60
0
1
1
0
0
1
1
33
1997 Nov 04
26
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
DATA
Gc
(dB)
D6
V6
D5
V5
D4
V4
D3
V3
D2
V2
D1
V1
D0
V0
HEX
−61
0
1
1
0
0
1
0
32
−62
0
1
1
0
0
0
1
31
−63
0
1
1
0
0
0
0
30
−64
0
1
0
1
1
1
1
2F
−65
0
1
0
1
1
1
0
2E
−66
0
1
0
1
1
0
1
2D
−67
0
1
0
1
1
0
0
2C
−68
0
1
0
1
0
1
1
2B
−69
0
1
0
1
0
1
0
2A
−70
0
1
0
1
0
0
1
29
−71
0
1
0
1
0
0
0
28
Mute
0
1
0
0
1
1
1
27
Table 9
Bass setting in register BA
DATA
Gbass
(dB)
D4
BA4
D3
BA3
D2
BA2
D1
BA1
D0
BA0
HEX
16.5
1
1
0
0
1
19
15.0
1
1
0
0
0
18
13.5
1
0
1
1
1
17
12.0
1
0
1
1
0
16
10.5
1
0
1
0
1
15
9.0
1
0
1
0
0
14
7.5
1
0
0
1
1
13
6.0
1
0
0
1
0
12
4.5
1
0
0
0
1
11
3.0
1
0
0
0
0
10
1.5
0
1
1
1
1
0F
0
0
1
1
1
0
0E
−1.5
0
1
1
0
1
0D
−3.0
0
1
1
0
0
0C
−4.5
0
1
0
1
1
0B
−6.0
0
1
0
1
0
0A
−7.5
0
1
0
0
1
09
−9.0
0
1
0
0
0
08
−10.5
0
0
1
1
1
07
−12.0
0
0
1
1
0
06
1997 Nov 04
27
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Table 10 Treble setting in register TR
Table 12 Selector setting in register CON1
DATA
Gtreble
(dB)
DATA
FUNCTION(1)
D4
TR4
D3
TR3
D2
TR2
D1
TR1
HEX
12
1
0
1
1
16
9
1
0
1
0
6
1
0
0
1
3
1
0
0
0
D2
SC2
D1
SC1
D0
SC0
Inputs LOR and LOL
0
0
0
14
Inputs LOR and LOR
0
0
1
12
Inputs LOL and LOL
0
1
0
10
Inputs LOL and LOR
0
1
1
0
0
1
1
1
0E
Inputs LIR and LIL
1
0
0
−3
0
1
1
0
0C
Inputs LIR and LIR
1
0
1
−6
0
1
0
1
0A
Inputs LIL and LIL
1
1
0
−9
0
1
0
0
08
Inputs LIL and LIR
1
1
1
−12
0
0
1
1
06
Note
1. Input connected to outputs SOR and SOL.
Table 11 Subwoofer/surround setting in register SW
DATA
Gs
(dB)
Table 13 SUR bit setting in register CON1
D5
SW5
D4
SW4
D3
SW3
D2
SW2
HEX
14
1
1
1
1
3C
12
1
1
1
0
38
10
1
1
0
1
34
8
1
1
0
0
30
6
1
0
1
1
2C
4
1
0
1
0
28
2
1
0
0
1
24
0
1
0
0
0
20
−2
0
1
1
1
1C
−4
0
1
1
0
18
−6
0
1
0
1
14
−8
0
1
0
0
10
−10
0
0
1
1
0C
−12
0
0
1
0
08
−14
0
0
0
1
04
Mute
0
0
0
0
00
1997 Nov 04
FUNCTION
DATA D3
Surround sound
1
Subwoofer
0
Table 14 LOFF bit setting in register CON1
CHARACTERISTIC
DATA D5
With loudness
0
Linear
1
Table 15 AVLON bit setting in register CON1
28
FUNCTION
DATA D6
Automatic volume control off
0
Automatic volume control on
1
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Table 16 Mute setting in register CON1
DATA D7
GMU
FUNCTION
Forced mute at OUTR, OUTL and OUTS
1
Audio processor controlled outputs
0
Table 17 Mute setting in register CON2
DATA D3
LMU
FUNCTION
Forced mute at LOR and LOL
1
Stereo processor controlled outputs
0
Table 18 Effects setting in register CON2
DATA
FUNCTION
D2
EF2
D1
EF1
D0
EF0
Stereo linear on
0
0
0
Pseudo on
0
0
1
Spatial stereo; 30% anti-phase crosstalk
0
1
0
Spatial stereo; 50% anti-phase crosstalk
0
1
1
Forced mono
1
1
1
Table 19 Zero-crossing detection setting in register CON2
DATA D5
TZCM
FUNCTION
Direct mute control
0
Mute control delayed until the next zero-crossing
1
Table 20 Zero-crossing detection setting in register CON2
DATA D4
VZCM
FUNCTION
Direct volume control
0
Volume control delayed until the next zero-crossing
1
1997 Nov 04
29
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Table 21 Switch setting at line out
LOL
SETTING BITS IN
REGISTER CON2
DATA
TRANSMISSION STATUS
INTERNAL SWITCH, READABLE BITS IN
REGISTER ALR1, ALR2: D6 (SAPP), D5 (STP)
LINE OUT SIGNALS AT
LOR
D7
SAP
D6
STEREO
SAP
SAP
SAP received
1
1
Mute
mute
no SAP received
1
1
Left
right
STEREO received
0
1
Mono
mono
no STEREO received
0
1
Mono
SAP
SAP received
1
0
Mono
mute
no SAP received
1
0
Mono
mono
independent
0
0
Table 22 Input level adjust setting in register CON3
DATA
Gl
(dB)
D3
L3
D2
L2
D1
L1
D0
L0
HEX
4.0
1
1
1
1
0F
3.5
1
1
1
0
0E
3.0
1
1
0
1
0D
2.5
1
1
0
0
0C
2.0
1
0
1
1
0B
1.5
1
0
1
0
0A
1.0
1
0
0
1
09
0.5
1
0
0
0
08
0
0
1
1
1
07
−0.5
0
1
1
0
06
−1.0
0
1
0
1
05
−1.5
0
1
0
0
04
−2.0
0
0
1
1
03
−2.5
0
0
1
0
02
−3.0
0
0
0
1
01
−3.5
0
0
0
0
00
1997 Nov 04
30
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Table 23 Alignment data for expander in read register ALR1 and ALR2 and in write register ALI1 and ALI2
DATA
FUNCTION
Gain increase
Nominal gain
Gain decrease
D4
AX4
D3
AX3
D2
AX2
D1
AX1
D0
AX0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
0
1
1
0
0
1
1
1
0
0
0
1
0
1
1
1
1
0
1
1
0
1
0
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
0
1
0
1
1
0
0
0
1
0
1
1
0
1
0
1
0
0
1
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
Table 24 STS bit setting in register ALI2 (pilot threshold stereo on)
FUNCTION
DATA D7
STon(rms) ≤ 35 mV
1
STon(rms) ≤ 30 mV
0
1997 Nov 04
31
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Table 25 Timing current setting in register ALI3
Table 27 ADJ bit setting in register ALI3
DATA
IS RANGE
FUNCTION
D2
TC2
D1
TC1
D0
TC0
+30%
1
0
0
+20%
1
0
1
+10%
1
1
0
Nominal
0
1
1
−10%
0
1
0
−20%
0
0
1
−30%
0
0
0
DATA D7
Stereo decoder operation mode
0
Auto adjustment of channel separation
1
Table 26 AVL attack time setting in register ALI3
DATA
Ratt
(Ω)
D6
AT1
D5
AT2
420
0
0
730
1
0
1200
0
1
2100
1
1
MHA312
300
7
handbook, full pagewidth
Vo(rms)
(mV)
VCAV
(V)
(1)
6
250
(2)
5
200
4
(3)
160
3
2
100
10−2
(1) VCAV
(2) Vo max(rms)
(3) Vo min(rms)
1
10−1
1
VI(rms) (V)
AVL measured at pin EOL/EOR.
Y1 axis output level in AVL operation with typically 200 mV.
Y2 axis VCAV DC voltage at pin CAV corresponds with typical gain steps in range of +6 to −15 dB.
Fig.4 Automatic volume level control diagram.
1997 Nov 04
32
10
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
MHA311
0
handbook, full pagewidth
(1)
phase
(degree)
(2)
−100
(3)
−200
−300
−400
10
102
103
104
f (Hz)
105
(1) see Table 28.
(2) see Table 28.
(3) see Table 28.
Fig.5 Pseudo (phase in degrees) as a function of frequency (left output).
Table 28 Explanation of curves in Fig.5
CAPACITANCE AT PIN CPS1
(nF)
CAPACITANCE AT PIN CPS2
(nF)
1
15
15
normal
2
5.6
47
intensified
3
5.6
68
more intensified
CURVE
1997 Nov 04
33
EFFECT
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
MHA844
25
Gc
(dB)
16
14
15
9
4
5
−1
−6
−5
−11
−16
−15
−21
−26
−25
−31
−36
−35
10
20
102
103
f (Hz)
104
Fig.6 Volume control with loudness (including low roll-off frequency).
MHA843
21
handbook, full pagewidth
18
Gbass
(dB) 15
12
9
6
3
0
−3
−6
−9
−12
−15
10
20
102
103
Fig.7 Bass control.
1997 Nov 04
34
f (Hz)
104
parameter: volume gain setting (dB)
handbook, full pagewidth
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
MHA845
15
handbook, full pagewidth
12
Gtreble
(dB) 9
6
3
0
−3
−6
−9
−12
−15
102
103
200
104
f (Hz)
Fig.8 Treble control.
MHA842
60
handbook, halfpage
noise
(µV)
40
20
0
−80
−60
−40
−20
0
gain (dBA)
20
Fig.9 Noise as function of gain in dBA (RMS value).
1997 Nov 04
35
105
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
gain volume = 16 dB (Gv(max))
handbook, full pagewidth
LIL
POWER
STAGE
TDA9855
LIR
G = 20 dB
P(max) = 40 W at 4 Ω
VI = 200 mV; AVL off
or
VI = 100 to 1250 mV; AVL on
VO = 1.26 V for P(max)
4 dB margin for power peaks
MHA841
All values given are in RMS value.
Fig.10 Level diagram.
1997 Nov 04
36
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
APPLICATION HINTS
Selection of input signals by using the zero-crossing mute mode (see Fig.11)
A selection between the internal signal path and the external input LIL/LIR produces a modulation click depending on the
difference of the signal values at the time of switching.
At t1 the maximum possible difference between signals is 7 V (p-p) and gives a large click. Using the zero-crossing
detector no modulation click is audible.
For example: The selection is enabled at t1, the microcontroller sets the zero-crossing bit (TZCM = 1) and then the mute
bit (GMU = 1) via the I2C-bus. The output signal follows the input A signal, until the next zero-crossing occurs and then
activates mute.
After a fixed delay time before t2, the microcontroller has to send the forced mute mode (TZCM = 0) and the return to the
zero-crossing mode (TZCM = 1) to be sure that mute is enabled.
The output signal remains muted until the next signal zero-crossing of input B occurs, and then follows that signal.
The delay time t2 − t1 is e.g. 40 ms. The zero-crossing function is working at the lowest frequency of 40 Hz.
handbook, full pagewidth
MED436
V
4
(1)
3
2
1
0
−1
(2)
t1
t
t2
(3)
−2
−3
−4
(1) Input A (internal signal).
(2) Output.
(3) Input B (external input signal).
Fig.11 Zero-crossing function; only one channel shown.
1997 Nov 04
37
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Loudness filter calculation example
Figure 12 shows the basic loudness circuit with an
external low-pass filter application. R1 allows an
attenuation range of 21 dB while the boost is determined
by the gain stage V1. Both result in a loudness control
range of +16 to −12 dB.
handbook, halfpage
C
KVL
VIX
R1
33 kΩ
Defining fref as the frequency where the level does not
change while switching loudness on/off. The external
resistor R3 for fref → ∞ can be calculated as:
LOX
V1
C1
Gv
------20
R2
R3
10
R3 = R1 -------------------- . With Gv = −21 dB and R1 = 33 kΩ,
G
v
------20
MHA838
1 – 10
R3 = 3.2 kΩ is generated.
For the low-pass filter characteristic the value of the
external capacitor C1 can be determined by setting a
specific boost for a defined frequency and referring the
gain to Gv at fref as indicated above.
Fig.12 Basic loudness circuit.
Gv
------20
( R1 + R3 ) × 10 – R3
1
--------------------- = ------------------------------------------------------------Gv
j ( ωC1 )
------20
1 – 10
For example: 3 dB boost at f = 1 kHz
Gv = Gv(ref) + 3 dB = −18 dB; f = 1 kHz and C1 = 100 nF.
handbook, halfpage 220 nF
VIX
R1
33 kΩ
8.2 nF
If a loudness characteristic with additional high frequency
boost is desired, an additional high-pass section has to be
included in the external filter circuit as indicated in the
block diagram. A filter configuration that provides
AC coupling avoids offset voltage problems.
20 kΩ
LOX
150
nF
V1
R2
2.2 kΩ
Figure 13 shows an example of the loudness circuit with
bass and treble boost.
MHA839
Fig.13 Loudness circuit with bass and treble boost.
1997 Nov 04
38
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
VP
handbook, full pagewidth
VCC
8.5 V
+8.5 V to
oscilloscope
470
µF
4.7
kΩ
28
inputs
12
6
outputs to
oscilloscope
TDA9855
47
41
25
2 × 220 nF
11
30
100
µF
2 × 600 Ω
2 × 4.7 µF
100
µF
2 × 5 kΩ
MHA840
Fig.14 Turn-on/off power supply circuit diagram.
MED433
10
handbook, full pagewidth
(V)
8
(1)
6
4
(2)
2
0
0
1
2
3
(1) VCC.
(2) VO.
Fig.15 Turn-on/off behaviour.
1997 Nov 04
39
4
t (s)
5
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
INTERNAL PIN CONFIGURATIONS
The pin numbers refer to the SDIP-version.
handbook, halfpage
handbook, halfpage 4.25 V
4.25 V
+
1
+
3.64 kΩ
+
2
7.79 kΩ
2.4 kΩ
4.25 V
MHA846
MHA847
Fig.16 Pin 1: treble control capacitor, left;
pin 52: treble control capacitor, right.
handbook, halfpage
+
Fig.17 Pin 2: bass control capacitor input, left;
pin 51: bass control capacitor input, right.
3 4.25 V
handbook, halfpage
80 Ω
80 Ω
MHA849
MHA848
Fig.19 Pin 4: output subwoofer;
pin 6: output, left channel;
pin 14: output selector, left channel;
pin 39: output selector, right channel;
pin 47: output, right channel.
Fig.18 Pin 3: bass control capacitor output, left;
pin 50: bass control capacitor output, right.
1997 Nov 04
4 4.25 V
+
40
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
handbook, halfpage
TDA9855
5
+
1.8 kΩ
MHA850
Fig.20 Pin 5: MAD (I2C-bus address switch).
handbook, halfpage
7 4.25 V
+
1.33 kΩ
MHA851
Fig.21 Pin 7: input loudness, left; pin 46: input loudness, right.
handbook, halfpage
8 4.25 V
+
10.58 kΩ
4.8 kΩ
MHA852
Fig.22 Pin 8: input volume, left; pin 45: input volume, right.
1997 Nov 04
41
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
handbook, halfpage
TDA9855
9 4.25 V
+
handbook, halfpage
10
+
15
kΩ
6.8
kΩ
MHA854
MHA853
Fig.23 Pin 9: output effects, left;
pin 44: output effects, right.
handbook, halfpage
Fig.24 Pin 10: automatic volume control capacitor.
11
handbook, halfpage
+
12 4.25 V
+
3.4 kΩ
3.4 kΩ
20 kΩ
20 kΩ
MHA856
MHA855
Fig.26 Pin 12: line input, left;
pin 41: line input, right.
Fig.25 Pin 11: reference voltage 0.5VCC.
1997 Nov 04
42
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
handbook, halfpage
4.25 V 13
1
handbook, halfpage
+
+
2
15 4.25 V
5 kΩ
3
1.75 kΩ
MHA858
8
MHA857
Fig.27 Pin 13: input automatic volume control, left;
pin 40: input automatic volume control, right.
handbook, halfpage
Fig.28 Pin 15: line output, left;
pin 38: line output, right.
handbook, halfpage
16
18 4.25 V
+
+
6 kΩ
MHA859
MHA860
Fig.29 Pin 16: timing capacitor wideband for dbx;
pin 17: timing capacitor spectral for dbx.
1997 Nov 04
Fig.30 Pin 18: capacitor wideband for dbx;
pin 19: capacitor spectral for dbx.
43
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
handbook, halfpage
TDA9855
handbook, halfpage
20
+
+
21
600 Ω
MHA861
MHA862
Fig.31 Pin 20: variable emphasis out for dbx.
Fig.32 Pin 21: variable emphasis in for dbx.
handbook, halfpage
handbook, halfpage
22 4.25 V
+
+
23
10 kΩ
MHA863
MHA864
Fig.33 Pin 22: capacitor noise reduction for dbx.
handbook, halfpage
+
Fig.34 Pin 23: capacitor mute for SAP.
24 4.25 V
handbook, halfpage
26 5 V
1.8 kΩ
20 kΩ
20 kΩ
MHA866
MHA865
Fig.36 Pin 26: SDA (I2C-bus data input/output).
Fig.35 Pin 24: capacitor DC decoupling for SAP.
1997 Nov 04
44
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
handbook, halfpage
TDA9855
handbook, halfpage
5 V 27
28 apply 8.5 V to this pin
1.8 kΩ
MHA867
MHA868
Fig.37 Pin 27: SCL (I2C-bus clock).
Fig.38 Pin 28: supply voltage.
handbook, halfpage
29 4.25 V
handbook, halfpage
30
+
+
4.7
kΩ
300 Ω
5 kΩ
MHA870
30 kΩ
MHA869
Fig.39 Pin 29: input composite signal.
Fig.40 Pin 30: smoothing capacitor for supply.
handbook, halfpage
+
handbook, halfpage
32 4.25 V
31 4.25 V
+
3.5
kΩ
3.5
kΩ
3.5 kΩ
MHA871
MHA872
Fig.41 Pin 31: capacitor for pilot detector.
1997 Nov 04
Fig.42 Pin 32: capacitor for pilot detector.
45
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
handbook, halfpage
TDA9855
handbook, halfpage
33 4.25 V
+
10 kΩ
34
+
10 kΩ
MHA873
MHA874
Fig.43 Pin 33: capacitor for phase detector.
handbook, halfpage
Fig.44 Pin 34: capacitor for filter adjust.
35
+
handbook, halfpage
36 4.25 V
+
3 kΩ
10 kΩ
10 kΩ
MHA876
MHA875
Fig.46 Pin 36: capacitor DC decoupling mono;
pin 37: capacitor DC decoupling stereo/SAP.
Fig.45 Pin 35: ceramic resonator.
handbook, halfpage
4.25 V 49
handbook, halfpage
+
43 4.25 V
+
1
2
3
15 kΩ
10 kΩ
10 kΩ
MHA877
8
Fig.47 Pin 43: capacitor 1 pseudo function;
pin 42: capacitor 2 pseudo function.
1997 Nov 04
Fig.48 Pin 49: capacitor subwoofer.
46
MHA878
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
PACKAGE OUTLINES
seating plane
SDIP52: plastic shrink dual in-line package; 52 leads (600 mil)
SOT247-1
ME
D
A2
L
A
A1
c
e
Z
b1
(e 1)
w M
MH
b
27
52
pin 1 index
E
1
26
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
min.
A2
max.
b
b1
c
D (1)
E (1)
e
e1
L
ME
MH
w
Z (1)
max.
mm
5.08
0.51
4.0
1.3
0.8
0.53
0.40
0.32
0.23
47.9
47.1
14.0
13.7
1.778
15.24
3.2
2.8
15.80
15.24
17.15
15.90
0.18
1.73
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
90-01-22
95-03-11
SOT247-1
1997 Nov 04
EUROPEAN
PROJECTION
47
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
PLCC68: plastic leaded chip carrier; 68 leads
SOT188-2
eD
eE
y
X
60
A
44
43 Z E
61
bp
b1
w M
68
1
HE
E
pin 1 index
A
e
A4 A1
(A 3)
β
9
k1
27
Lp
k
detail X
10
26
e
v M A
ZD
D
B
HD
v M B
0
5
10 mm
scale
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)
k1
max.
Lp
v
w
y
0.51
1.44
1.02
0.18
0.18
0.10
Z D(1) Z E (1)
max. max.
UNIT
A
A1
min.
A3
A4
max.
bp
b1
mm
4.57
4.19
0.51
0.25
3.30
0.53
0.33
0.81
0.66
0.180
0.020 0.01
0.165
0.13
0.930 0.930 0.995 0.995 0.048
0.057
0.021 0.032 0.958 0.958
0.020
0.05
0.007 0.007 0.004 0.085 0.085
0.890 0.890 0.985 0.985 0.042
0.040
0.013 0.026 0.950 0.950
inches
D (1)
E (1)
e
eD
eE
HD
HE
k
24.33 24.33
23.62 23.62 25.27 25.27 1.22
1.27
24.13 24.13
22.61 22.61 25.02 25.02 1.07
2.16
β
2.16
45 o
Note
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT188-2
112E10
MO-047AC
1997 Nov 04
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
92-11-17
95-03-11
48
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
SOLDERING
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
WAVE SOLDERING
SDIP
Wave soldering techniques can be used for all PLCC
packages if the following conditions are observed:
SOLDERING BY DIPPING OR BY WAVE
The maximum permissible temperature of the solder is
260 °C; solder at this temperature must not be in contact
with the joint for more than 5 seconds. The total contact
time of successive solder waves must not exceed
5 seconds.
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified maximum storage temperature (Tstg max). If the
printed-circuit board has been pre-heated, forced cooling
may be necessary immediately after soldering to keep the
temperature within the permissible limit.
• The package footprint must incorporate solder thieves at
the downstream corners.
• The longitudinal axis of the package footprint must be
parallel to the solder flow.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
REPAIRING SOLDERED JOINTS
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
Apply a low voltage soldering iron (less than 24 V) to the
lead(s) of the package, below the seating plane or not
more than 2 mm above it. If the temperature of the
soldering iron bit is less than 300 °C it may remain in
contact for up to 10 seconds. If the bit temperature is
between 300 and 400 °C, contact may be up to 5 seconds.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
PLCC
REPAIRING SOLDERED JOINTS
REFLOW SOLDERING
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Reflow soldering techniques are suitable for all PLCC
packages.
The choice of heating method may be influenced by larger
PLCC packages (44 leads, or more). If infrared or vapour
phase heating is used and the large packages are not
absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our “Quality
Reference Handbook” (order code 9398 510 63011).
1997 Nov 04
49
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
1997 Nov 04
50
Philips Semiconductors
Product specification
I2C-bus controlled BTSC stereo/SAP
decoder and audio processor
TDA9855
NOTES
1997 Nov 04
51
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1997
SCA55
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
547047/1200/03/pp52
Date of release: 1997 Nov 04
Document order number:
9397 750 02446