PD-96149 IRF7704GPbF HEXFET® Power MOSFET l l l l l l l Ultra Low On-Resistance P-Channel MOSFET Very Small SOIC Package Low Profile (< 1.1mm) Available in Tape & Reel Lead-Free Halogen-Free VDSS RDS(on) max (mW) ID -40V 46@VGS = -10V -4.6A 74@VGS = -4.5V -3.7A Description HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the ruggedized device design, that International Rectifier is well known for, provides thedesigner with an extremely efficient and reliable device for battery and load management. The TSSOP-8 package has 45% less footprint area than the standard SO-8. This makes the TSSOP-8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.2mm) allows it to fit easily into extremely thin environments such as portable electronics and PCMCIA cards. ' * ' 6 6 * 6 ' 6 6 ' TSSOP-8 Absolute Maximum Ratings Parameter VDS ID @ TA = 25°C ID @ TA= 70°C IDM PD @TA = 25°C PD @TA = 70°C VGS TJ, TSTG Drain- Source Voltage Continuous Drain Current, VGS @ -10V Continuous Drain Current, VGS @ -10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage Junction and Storage Temperature Range Max. Units -40 -4.6 -3.7 -19 1.5 1.0 12 ± 20 -55 to + 150 V mW/°C V °C Max. Units 83 °C/W A W Thermal Resistance Parameter RθJA www.irf.com Maximum Junction-to-Ambient 1 04/23/08 IRF7704GPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -40 ––– ––– ––– -1.0 7.2 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.03 ––– ––– ––– ––– ––– ––– ––– ––– 25 10 9.5 25 360 190 100 3150 250 200 Max. Units Conditions ––– V VGS = 0V, ID = -250µA ––– V/°C Reference to 25°C, I D = -1mA 46 VGS = -10V, ID = -4.6A mΩ 74 VGS = -4.5V, ID = -3.7A -3.0 V VDS = VGS, ID = -250µA ––– S VDS = -10V, ID = -4.6A -10 VDS = -32V, VGS = 0V µA -25 VDS = -32V, VGS = 0V, TJ = 70°C -100 VGS = -20V nA 100 VGS = 20V 38 ID = -4.6A 15 nC VDS = -15V 14 VGS = -4.5V ––– VDD = -20V ––– ID = -1.0A ns ––– RG = 6.0Ω ––– VGS = -4.5V ––– VGS = 0V ––– pF VDS = -25V ––– ƒ = 1.0kHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units -1.5 -19 ––– ––– ––– ––– 29 41 -1.2 44 62 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = -1.5A, VGS = 0V TJ = 25°C, IF = -1.5A di/dt = -100A/µs D S Notes: Repetitive rating; pulse width limited by max. junction temperature. Surface mounted on 1 in square Cu board Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF7704GPbF 1000 100 VGS -15V -10V -4.5V -3.7V -3.5V -3.3V -3.0V BOTTOM -2.7V -I D , Drain-to-Source Current (A) -I D , Drain-to-Source Current (A) 100 10 1 0.1 -2.70V 20µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 10 1 100 2.0 1.0 T J = 25°C 0.1 VDS = -25V 20µs PULSE WIDTH 3.5 4.0 4.5 -VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 5.0 RDS(on) , Drain-to-Source On Resistance (Normalized) -I D, Drain-to-Source Current (Α) T J = 150°C 3.0 1 10 100 Fig 2. Typical Output Characteristics 100.0 2.5 20µs PULSE WIDTH TJ = 150 °C -VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 0.0 -2.70V 0.1 0.1 -VDS , Drain-to-Source Voltage (V) 10.0 VGS -15V -10V -4.5V -3.7V -3.5V -3.3V -3.0V BOTTOM -2.7V TOP TOP ID = 4.6A 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = -10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7704GPbF VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) 4000 Ciss Coss = Cds + Cgd 3000 2000 1000 Coss Crss 0 12 -VGS , Gate-to-Source Voltage (V) 5000 10 8 6 4 2 100 0 Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 -I D, Drain-to-Source Current (A) -ISD , Reverse Drain Current (A) 20 10 TJ = 150 ° C 1 TJ = 25 ° C V GS = 0 V 0.6 0.8 1.0 -VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 30 40 50 60 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 4 10 QG , Total Gate Charge (nC) -V DS, Drain-to-Source Voltage (V) 0.1 0.4 VDS =-32V VDS =-20V 10 0 1 ID = -4.6A 1.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100µsec 1msec 1 10msec 0.1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 10 100 1000 -VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7704GPbF 5.0 V DS VGS -ID , Drain Current (A) 4.0 RD D.U.T. RG - + VDD 3.0 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2.0 Fig 10a. Switching Time Test Circuit 1.0 td(on) 0.0 tr t d(off) tf VGS 25 50 75 100 125 TC , Case Temperature ( °C) 10% 150 90% Fig 9. Maximum Drain Current Vs. Case Temperature VDS Fig 10b. Switching Time Waveforms 100 Thermal Response (Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 PDM 0.01 1 t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJA + TA 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 10. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.08 RDS (on) , Drain-to-Source On Resistance (Ω) RDS(on) , Drain-to -Source On Resistance ( Ω ) IRF7704GPbF 0.06 0.04 ID = -4.6A 0.02 0.0 4.0 8.0 12.0 16.0 0.070 0.060 VGS = -4.5V 0.050 0.040 VGS = -10V 0.030 0.020 0 4 -VGS, Gate -to -Source Voltage (V) Fig 11. Typical On-Resistance Vs. Gate Voltage 8 12 16 20 -I D , Drain Current (A) Fig 12. Typical On-Resistance Vs. Drain Current Current Regulator Same Type as D.U.T. 50KΩ QG QGS .2µF .3µF QGD D.U.T. +VDS VGS VG -3mA Charge Fig 13a. Basic Gate Charge Waveform 6 12V IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.irf.com IRF7704GPbF 80 60 2.5 ID = -250µA Power (W) -V GS(th) Gate threshold Voltage (V) 3.0 40 2.0 20 0 1.5 -75 -50 -25 0 25 50 75 100 125 T J , Temperature ( °C ) Fig 14. Threshold Voltage Vs. Temperature www.irf.com 150 0.001 0.010 0.100 1.000 10.000 100.000 Time (sec) Fig 15. Typical Power Vs. Time 7 IRF7704GPbF TSSOP8 Package Outline Dimensions are shown in millimeters (inches) ' GGG & $ % %27+6,'(6 ; ( ( ( ,1'(; 0$5. H % ; 0,//,0(7(56 0,1 120 0$; %6& %6& %6& FFF H 02$$',0(16,216 6 < 0 % 2 / $ $ $ E F ' ( ( H / / DDD EEE FFF GGG $ ,1&+(6 120 0$; %6& %6& 0,1 + $ ;E & EEE $ ;F & $ % / DDD & 685) ;/ /($'$66,*10(176 ' 6 6 * 6,1*/( ',( ' 6 6 ' ' 6 6 * '8$/ ',( ' 6 6 * 127(6 ',0(16,21,1*$1'72/(5$1&,1*3(5$60(<0 ',0(16,216$5(6+2:1,10,//,0(7(56$1',1&+(6 &21752//,1*',0(16,210,//,0(7(5 '$7803/$1(+,6/2&$7('$66+2:1 '$780$$1'%72%('(7(50,1('$7'$7803/$1(+ ',0(16,216'$1'($5(0($685('$7'$7803/$1(+ ',0(16,21/,67+(/($'/(1*7+)2562/'(5,1*72$68%675$7( 287/,1(&21)250672-('(&287/,1(0$$ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRF7704GPbF TSSOP8 Part Marking Information EXAMPLE: IS AN IRF7704GPbF (;$03/(THIS 7+,6,6$1,5) '$7(&2'(<:: 3$57180%(5 F7704G ;;;;; <::"3 /27&2'( 3RSWLRQDO /HDG)UHH $66(0%/<6,7(&2'( TSSOP-8 Tape and Reel Information PP PP PP )(('',5(&7,21 127(6 7$3(5((/287/,1(&21)250672(,$(,$ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2008 www.irf.com 9