PHILIPS SAA7144HL

SAA7144HL
Quadruple video input processor
Rev. 01 — 21 April 2005
Product data sheet
1. General description
The SAA7144HL is a combination of four stand alone multistandard video decoders.
The SAA7144HL is a pure 3.3 V (5 V tolerant inputs and I/Os) CMOS circuit and a highly
integrated circuit for video surveillance applications. All four video decoders are based on
the principle of line-locked clock decoding and are able to decode the color of PAL,
SECAM and NTSC signals into “CCIR 601” compatible color component values.
The SAA7144HL accepts as analog inputs in total eight CVBS sources from TV or VTR
(two selectable CVBS sources for each of the four decoders).
Each of the four video decoders (A, B, C, D) contains an analog preprocessing circuit
including source selection for two CVBS sources, anti-aliasing filter and Analog-to-Digital
Converter (ADC), an automatic clamp and gain control, a Clock Generation Circuit (CGC),
a digital multistandard decoder (PAL, NTSC and SECAM), a Brightness Contrast
Saturation (BCS) control circuit, a multistandard text slicer see Figure 1 and a 27 MHz
VBI data bypass.
The integrated high performance multistandard data slicer supports several VBI data
standards:
• Teletext [WST (World Standard Teletext), CCST (Chinese teletext)] (625 lines)
• Teletext [US-WST, NABTS (North American Broadcast Text System) and MOJI
(Japanese teletext)] (525 lines)
•
•
•
•
•
Closed caption [Europe, US (line 21)]
Wide Screen Signalling (WSS)
Video Programming Signal (VPS)
Time codes (VITC EBU/SMPTE)
HIGH-speed VBI data bypass for Intercast™ application.
The circuit is I2C-bus controlled via two I2C-bus interfaces where two video decoders
share one I2C-bus interface on different I2C-bus slave addresses. Each of the four video
decoders of the SAA7144HL uses a register mapping which is compatible to the
SAA7113H register mapping.
SAA7144HL
Philips Semiconductors
Quadruple video input processor
2. Features
2.1 General
■ Four stand alone video decoder instances (A, B, C, D) with two selectable CVBS video
inputs each and digital video outputs
■ Programming register mapping identical to SAA7113H
■ Small package (LQFP128)
■ Requires only one crystal (24.576 MHz) for all standards shared by all video decoder
instances
■ CMOS 3.3 V device with 5 V tolerant digital inputs and I/O ports
■ All four decoder instances are I2C-bus controlled. Two decoder instances share one
I2C-bus interface (full read-back ability by an external controller, bit rate up to
400 kbit/s).
2.2 Features of each of the four video decoder instances A, B, C and D
■ Two analog CVBS inputs with internal analog source selectors
■ One analog preprocessing channel in differential CMOS style with built-in analog
anti-aliasing filter
■ Fully programmable static gain or automatic gain control for the selected CVBS
channel
■ Switchable white peak control
■ Line-locked system clock frequencies
■ Digital PLL for horizontal sync processing and clock generation, horizontal and vertical
sync detection
■ Automatic detection of 50 Hz and 60 Hz field frequency and automatic switching
between PAL and NTSC standards
■ Luminance and chrominance signal processing for PAL BGHI, PAL N,
combination PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43, NTSC Japan and SECAM
■ User programmable luminance peaking or aperture correction
■ Cross-color reduction for NTSC by chrominance comb filtering
■ PAL delay line for correcting PAL phase errors
■ Brightness Contrast Saturation (BCS) and hue control on-chip
■ Multistandard VBI data slicer decoding World Standard Teletext (WST), North
American Broadcast Text System (NABTS), closed caption, Wide Screen Signalling
(WSS), Video Programming System (VPS), Vertical Interval Time Code (VITC)
variants (EBU/SMPTE), etc.
■ Standard ITU-R BT 656 Y-CB-CR 4 : 2 : 2 format (8-bit) on VPO output bus
■ Enhanced ITU-R BT 656 output format on VPO output bus containing:
◆ Active video
◆ Decoded VBI data
■ Boundary scan test circuit complies with the “IEEE Std. 1149.b1 - 1994”.
3. Applications
■ Surveillance application.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
2 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
4. Quick reference data
Table 1:
Quick reference data
Symbol
Parameter
VDDD
Conditions
Min
Typ
Max
Unit
digital supply voltage
3.0
3.3
3.6
V
VDDA
analog supply voltage
3.1
3.3
3.5
V
Tamb
ambient temperature
0
25
70
°C
PA+D
analog and digital power dissipation
-
1.1
-
W
5. Ordering information
Table 2:
Ordering information
Type number
SAA7144HL
Package
Name
Description
Version
LQFP128
plastic low profile quad flat package; 128 leads; body 14 × 20 × 1.4 mm
SOT425-1
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
3 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
6. Block diagram
VIDEO DECODER A
ANALOG
PROCESSING
MULTISTANDARD TEXT SLICER
OUTPUT
AND
AI11_A
AI1D_A
AI12_A
AGND_A
ANALOG-TODIGITAL
CONVERSION
AD1
CONTROL
ANALOG
PROCESSING
CONTROL
VPO[7:0]_A
FORMATTER
VBI DATA BYPASS
UPSAMPLING FILTER
BYPASS
UV
Y
CHROMINANCE
CVBS
CIRCUIT AND BCS
SAA7144HL
CLOCKS
CVBS
Y
LUMINANCE
CIRCUIT
Y
CLOCK
GENERATION
CIRCUIT
I2C-BUS
CONTROL
I2C-BUS
INTERFACE
SYNCHRONIZATION
CIRCUIT
LFCO
POWER-ON
CONTROL
I2C-BUS
INTERFACE
SYNCHRONIZATION
CIRCUIT
LFCO
POWER-ON
CONTROL
LLC_A
SCL_AB
SDA_AB
I2C-BUS
CONTROL
AGND_B
ANALOG
PROCESSING
CONTROL
LLC_B
Y
CVBS
AD1
ANALOG-TODIGITAL
CONVERSION
Y
UV
CHROMINANCE
CIRCUIT AND BCS
CVBS
BYPASS
VBI DATA BYPASS
UPSAMPLING FILTER
AND
ANALOG
PROCESSING
Y
CLOCKS
CONTROL
AI12_B
AI1D_B
AI11_B
LUMINANCE
CIRCUIT
CLOCK
GENERATION
CIRCUIT
MULTISTANDARD TEXT SLICER
VIDEO DECODER B
VIDEO DECODER C
ANALOG
PROCESSING
MULTISTANDARD TEXT SLICER
OUTPUT
AND
AI11_C
AI1D_C
AI12_C
AGND_C
CONTROL
ANALOG
PROCESSING
CONTROL
I2C-BUS
CONTROL
I2C-BUS
INTERFACE
TEST
CONTROL
BLOCK
FOR
BOUNDARY
SCAN TEST
AND
SCAN TEST
TDI
TCK
TMS
TRST_N
TDO
FORMATTER
VBI DATA BYPASS
UPSAMPLING FILTER
ANALOG-TODIGITAL
CONVERSION
AD1
VPO[7:0]_B
OUTPUT
FORMATTER
VPO[7:0]_C
BYPASS
UV
Y
CHROMINANCE
CVBS
CIRCUIT AND BCS
CLOCKS
CVBS
Y
LUMINANCE
CIRCUIT
Y
CLOCK
GENERATION
CIRCUIT
LLC_C
SYNCHRONIZATION
CIRCUIT
LFCO
POWER-ON
CONTROL
SYNCHRONIZATION
CIRCUIT
LFCO
POWER-ON
CONTROL
SCL_CD
SDA_CD
I2C-BUS
INTERFACE
I2C-BUS
CONTROL
AGND_D
ANALOG
PROCESSING
CONTROL
LLC_D
Y
CVBS
CVBS
AD1
ANALOG-TODIGITAL
CONVERSION
CLOCK
GENERATION
CIRCUIT
Y
CLOCKS
CONTROL
AI12_D
AI1D_D
AI11_D
LUMINANCE
CIRCUIT
CHROMINANCE
CIRCUIT AND BCS
Y
UV
BYPASS
VBI DATA BYPASS
UPSAMPLING FILTER
AND
OUTPUT
ANALOG
PROCESSING
FORMATTER
VPO[7:0]_D
MULTISTANDARD TEXT SLICER
VIDEO DECODER D
001aab304
Fig 1. Block diagram of SAA7144HL.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
4 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
7. Pinning information
103
128
7.1 Pinning
102
1
SAA7144HL
64
65
39
38
001aab305
Fig 2. Pin configuration for LQFP128.
7.2 Pin description
Table 3:
Pin description
Symbol
Pin
Description
VSSA1(DECA)
1
analog ground for analog supply of the Analog-to-Digital Converter
(ADC) of video decoder A
VDDA1(DECA)
2
analog supply voltage for the ADC (3.3 V) of video decoder A
AI11_A
3
analog input 11 of video decoder A
AI12_A
4
analog input 12 of video decoder A
AI1D_A
5
differential analog input for AI11 and AI12 of video decoder A;
see Figure 28
AGND_A
6
analog ground reference for video decoder A
DNC1
7
do not connect; leave open
VDDA0(DECA)
8
analog supply voltage for the internal Clock Generation Circuit
(CGC) of video decoder A
VSSA0(DECA)
9
analog ground for the internal CGC of video decoder A
VSSA1(DECB)
10
analog ground for analog supply of the ADC of video decoder B
VDDA1(DECB)
11
analog supply voltage for the ADC (3.3 V) of video decoder B
AI11_B
12
analog input 11 of video decoder B
AI12_B
13
analog input 12 of video decoder B
AI1D_B
14
differential analog input for AI11 and AI12 of video decoder B;
see Figure 28
AGND_B
15
analog ground reference for video decoder B
DNC2
16
do not connect; leave open
DNC3
17
do not connect; leave open
VDDA0(DECB)
18
analog supply voltage for the internal CGC of video decoder B
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
5 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 3:
Pin description …continued
Symbol
Pin
Description
VSSA0(DECB)
19
analog ground for the internal CGC of video decoder B
VSSA1(DECC)
20
analog ground for analog supply of the ADC of video decoder C
VDDA1(DECC)
21
analog supply voltage for the ADC (3.3 V) of video decoder C
DNC4
22
do not connect; leave open
AI11_C
23
analog input 11 of video decoder C
AI12_C
24
analog input 12 of video decoder C
AI1D_C
25
differential analog input for AI11 and AI12 of video decoder C;
see Figure 28
AGND_C
26
analog ground reference for video decoder C
DNC5
27
do not connect; leave open
VDDA0(DECC)
28
analog supply voltage for the internal CGC of video decoder C
VSSA0(DECC)
29
analog ground for the internal CGC of video decoder C
VSSA1(DECD)
30
analog ground for analog supply of the ADC of video decoder D
VDDA1(DECD)
31
analog supply voltage for the ADC (3.3 V) of video decoder D
AI11_D
32
analog input 11 of video decoder D
AI12_D
33
analog input 12 of video decoder D
AI1D_D
34
differential analog input for AI11 and AI12 of video decoder D;
see Figure 28
AGND_D
35
analog ground reference for video decoder D
DNC6
36
do not connect; leave open
VDDA0(DECD)
37
analog supply voltage for the internal CGC of video decoder D
VSSA0(DECD)
38
analog ground for the internal CGC of video decoder D
DNC7
39
do not connect; leave open
DNC8
40
do not connect; leave open
DNC9
41
do not connect; leave open
DNC10
42
do not connect; leave open
DNC11
43
do not connect; leave open
DNC12
44
do not connect; leave open
DNC13
45
do not connect; leave open
SCL_AB
46
serial clock input (I2C-bus) for instances A and B
SDA_AB
47
serial data input/output (I2C-bus) for instances A and B
SCL_CD
48
serial clock input (I2C-bus) for instances C and D
SDA_CD
49
serial data input/output (I2C-bus) for instances C and D
LLC_D
50
line-locked clock output (27 MHz) of video decoder D
VPO7_D
51
digital video output bus signal VPO7 of video decoder D
VPO6_D
52
digital video output bus signal VPO6 of video decoder D
VPO5_D
53
digital video output bus signal VPO5 of video decoder D
VDDDE
54
supply for digital pad ring (3.3 V)
VSSDE
55
ground for digital pad ring
VPO4_D
56
digital video output bus signal VPO4 of video decoder D
VPO3_D
57
digital video output bus signal VPO3 of video decoder D
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
6 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 3:
Pin description …continued
Symbol
Pin
Description
VSSDI
58
ground for digital core
VDDDI
59
supply for digital core (3.3 V)
VPO2_D
60
digital video output bus signal VPO2 of video decoder D
VPO1_D
61
digital video output bus signal VPO1 of video decoder D
VPO0_D
62
digital video output bus signal VPO0 of video decoder D
LLC_C
63
line-locked clock output (27 MHz) of video decoder C
VPO7_C
64
digital video output bus signal VPO7 of video decoder C
VPO6_C
65
digital video output bus signal VPO6 of video decoder C
DNC14
66
do not connect; leave open
VPO5_C
67
digital video output bus signal VPO5 of video decoder C
VPO4_C
68
digital video output bus signal VPO4 of video decoder C
VDDDE
69
supply for digital pad ring (3.3 V)
VSSDE
70
ground for digital pad ring
VPO3_C
71
digital video output bus signal VPO3 of video decoder C
VPO2_C
72
digital video output bus signal VPO2 of video decoder C
VSSDI
73
ground for digital core
VDDDI
74
supply for digital core (3.3 V)
DNC15
75
do not connect; leave open
DNC16
76
do not connect; leave open
VPO1_C
77
digital video output bus signal VPO1 of video decoder C
DNC17
78
do not connect; leave open
VPO0_C
79
digital video output bus signal VPO0 of video decoder C
VSSDA
80
oscillator supply ground
XTALO
81
oscillator output
DNC18
82
do not connect; leave open
DNC19
83
do not connect; leave open
XTALI
84
oscillator input
VDDDA
85
oscillator supply voltage (3.3 V)
LLC_B
86
line-locked clock output (27 MHz) of video decoder B
VPO7_B
87
digital video output bus signal VPO7 of video decoder B
DNC20
88
do not connect; leave open
VPO6_B
89
digital video output bus signal VPO6 of video decoder B
DNC21
90
do not connect; leave open
VSSDI
91
ground for digital core
DNC22
92
do not connect; leave open
VDDDI
93
supply for digital core (3.3 V)
VPO5_B
94
digital video output bus signal VPO5 of video decoder B
VPO4_B
95
digital video output bus signal VPO4 of video decoder B
VDDDE
96
supply for digital pad ring (3.3 V)
VSSDE
97
ground for digital pad ring
DNC23
98
do not connect; leave open
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
7 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 3:
Pin description …continued
Symbol
Pin
Description
VPO3_B
99
digital video output bus signal VPO3 of video decoder B
VPO2_B
100
digital video output bus signal VPO2 of video decoder B
VPO1_B
101
digital video output bus signal VPO1 of video decoder B
DNC24
102
do not connect; leave open
VPO0_B
103
digital video output bus signal VPO0 of video decoder B
LLC_A
104
line-locked clock output (27 MHz) of video decoder A
VPO7_A
105
digital video output bus signal VPO7 of video decoder A
VPO6_A
106
digital video output bus signal VPO6 of video decoder A
VPO5_A
107
digital video output bus signal VPO5 of video decoder A
VSSDI
108
ground for digital core
VDDDI
109
supply for digital core (3.3 V)
VPO4_A
110
digital video output bus signal VPO4 of video decoder A
VDDDE
111
supply for digital pad ring (3.3 V)
VSSDE
112
ground for digital pad ring
VPO3_A
113
digital video output bus signal VPO3 of video decoder A
VPO2_A
114
digital video output bus signal VPO2 of video decoder A
VPO1_A
115
digital video output bus signal VPO1 of video decoder A
VPO0_A
116
digital video output bus signal VPO0 of video decoder A
TDI
117
test data input for boundary scan test [1]
TDO
118
test data output for boundary scan test [1]
TMS
119
test mode select input for boundary scan test or scan test [1]
TCK
120
test clock for boundary scan test [1]
TRST_N
121
test reset input (active LOW), for boundary scan test [1] [2] [3]
DNC25
122
do not connect; leave open
DNC26
123
do not connect; leave open
DNC27
124
do not connect; leave open
DNC28
125
do not connect; leave open
DNC29
126
do not connect; leave open
DNC30
127
do not connect; leave open
DNC31
128
do not connect; leave open
[1]
In accordance with the “IEEE1149.1” standard the pads TDI, TMS, TCK and TRST_N are input pads with
an internal pull-up transistor and TDO is a 3-state output pad.
[2]
For board design without boundary scan implementation connect the TRST_N pin to ground.
[3]
This pin provides easy initialization of the Boundary Scan Test (BST) circuit. TRST_N can be used to force
the Test Access Port (TAP) controller to the TEST_LOGIC_RESET state (normal operation) at once.
8. Functional description
The following functional descriptions are related to each of the four stand alone decoder
cores (A, B, C and D).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
8 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
8.1 Analog input processing
The analog input processing part consists of a source switch to select one out of two
video inputs, clamp circuit, analog amplifier, anti-alias filter and video 9-bit CMOS ADC;
see Figure 6.
8.2 Analog control circuits
The anti-alias filters are adapted to the line-locked clock frequency via a filter control
circuit. The characteristic is shown in Figure 3. During the vertical blanking period, gain
and clamping control are frozen.
mgd138
6
V
0
(dB)
−6
−12
−18
−24
−30
−36
−42
0
2
4
6
8
10
12
14
f (MHz)
Fig 3. Anti-alias filter.
8.2.1 Clamping
The clamp control circuit controls the correct clamping of the analog input signals. The
coupling capacitor is also used to store and filter the clamping voltage. An internal digital
clamp comparator generates the information with respect to clamp-up or clamp-down.
The clamping levels for the two ADC channels are fixed for luminance (120) and
chrominance (256). Clamping time in normal use is set with the HCL pulse on the back
porch of the video signal.
8.2.2 Gain control
The gain control circuit receives (via the I2C-bus) the static gain levels for the analog
amplifier or controls this amplifier automatically via a built-in Automatic Gain Control
(AGC) as part of the Analog Input Control (AICO).
The AGC (automatic gain control for luminance) is used to amplify a CVBS signal to the
required signal amplitude, matched to the ADC input voltage range. The AGC active time
is the sync bottom of the video signal.
Signal (white) peak control limits the gain at signal overshoots. The flow charts
(see Figure 7 and Figure 8) show more details of the AGC. The influence of supply
voltage variation within the specified range is automatically eliminated by clamp and
automatic gain control.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
9 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
TV line
analog line blanking
+3 dB
GAIN
CLAMP
0 dB
60
−6 dB
HCL
5
4
3
SOURCE
SWITCH
CLAMP
CIRCUIT
minimum
Fig 5. Automatic gain range.
ANALOG
AMPLIFIER
9-bit DAC
BYPASS
SWITCH
ANTI-ALIAS
FILTER
ADC
FUSE[1:0]
9
1
9
8
MODE
CONTROL
2
MODE[3:0]
CLAMP
CONTROL
HCL
GAIN
CONTROL
GLIMB HSY
GLIMT
WIPA
SLTCA
ANALOG CONTROL
AGND_A
0 dB
mhb325
Fig 4. Analog line with clamp (HCL) and gain range
(HSY).
VDDA0(DECA)
VDDA1(DECA)
range 9 dB
mgl065
HSY
VSSA0(DECA)
VSSA1(DECA)
maximum
(1 V (p-p) 18/56 Ω)
1
AI1D_A
AI12_A
AI11_A
controlled
ADC input level
analog input level
255
ANTI-ALIAS
CONTROL
HOLDG
GAFIX
WPOFF
GUDL[1:0]
GAI[18:10]
HLNRS
UPTCV
VERTICAL
BLANKING
CONTROL
VBSL
VBLNK
SVREF
6
CROSS MULTIPLEXER
LUM
CHR
AD1BYP
001aab306
This is valid for decoder A, B, C and D. Here an example for decoder A is shown.
Fig 6. Analog input processing using the SAA7144HL as differential front-end with 9-bit ADC (continued in
Figure 10).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
10 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
ANALOG INPUT
gain
AMPLIFIER
9
DAC
ANTI-ALIAS FILTER
ADC
8
1
NO ACTION
LUMA/CHROMA DECODER
0
VBLK
1
HOLDG
1
0
0
X
1
0
0
<4
1
1
> 248
0
> 254
HSY
1
< 1
0
1
X=0
+1/F
+1/L
STOP
0
1
> 254
0
X=1
−1/LLC2
+1/LLC2 −1/LLC2
+/− 0
GAIN ACCUMULATOR (18 BITS)
ACTUAL GAIN VALUE 9-BIT (AGV) [−6/+6 dB]
1
0
X
1
HSY
1
AGV
0
Y
UPDATE
0
FGV
GAIN VALUE 9-BIT
001aab307
X = system variable; Y = AGV – FGV > GUDL ; GUDL = gain update level (adjustable);
VBLK = vertical blanking pulse; HSY = horizontal sync pulse; AGV = actual gain value;
FGV = frozen gain value.
Fig 7. Gain flow chart.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
11 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
ANALOG INPUT
ADC
1
NO BLANKING ACTIVE
VBLK
0
<- CLAMP
1
1
< CLL
+ CLAMP
GAIN ->
0
HCL
1
0
0
− CLAMP
NO CLAMP
+ GAIN
< SBOT
HSY
1
0
1
− GAIN
> WIPE
fast − GAIN
0
slow + GAIN
mgc647
WIPE = white peak level (254).
SBOT = sync bottom level (1).
CLL = clamp level [60 Y (128 C)].
HSY = horizontal sync pulse.
HCL = horizontal clamp pulse.
Fig 8. Clamp and gain flow.
8.3 Chrominance processing
The 9-bit chrominance signal is fed to the multiplication inputs of a quadrature
demodulator, where two subcarrier signals from the local oscillator DTO are applied
(0° and 90° phase relationship to the demodulator axis). The frequency is dependent on
the present color standard.
The output signals of the multipliers are low-pass filtered (four programmable
characteristics) to achieve the desired bandwidth for the color difference signals (PAL,
NTSC) or the 0° and 90° FM signals (SECAM).
The color difference signals are fed to the Brightness Contrast Saturation (BCS) block,
which contains the following five functions:
• AGC (automatic gain control for chrominance PAL and NTSC)
• Chrominance amplitude matching (different gain factors for (R − Y) and (B − Y) to
achieve CCIR-601 levels CR and CB for all standards)
• Chrominance saturation control
• Luminance contrast and brightness
• Limiting Y-CB-CR to the values 1 (minimum) and 254 (maximum) to fulfil CCIR-601
requirements.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
12 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
The SECAM processing contains the following blocks:
• Baseband ‘bell’ filters to reconstruct the amplitude and phase equalized 0° and 90°
FM signals
• Phase demodulator and differentiator (FM-demodulation)
• De-emphasis filter to compensate the pre-emphasized input signal, including
frequency offset compensation (DB or DR white carrier values are subtracted from the
signal, controlled by the SECAM switch signal).
The burst processing block provides the feedback loop of the chrominance PLL and
contains the following:
•
•
•
•
•
•
•
Burst gate accumulator
Color identification and color killer
Comparison nominal/actual burst amplitude (PAL/NTSC standards only)
Loop filter chrominance gain control (PAL/NTSC standards only)
Loop filter chrominance PLL (only active for PAL/NTSC standards)
PAL/SECAM sequence detection, H/2-switch generation
Increment generation for DTO with divider to generate stable subcarrier for
non-standard signals.
The chrominance comb filter block eliminates crosstalk between the chrominance
channels in accordance with the PAL standard requirements. For NTSC color standards
the chrominance comb filter can be used to eliminate crosstalk from luminance to
chrominance (cross-color) for vertical structures. The comb filter can be switched off if
desired. The embedded line delay is also used for SECAM recombination (cross-over
switches).
The resulting signals are fed to the variable Y-delay compensation and the output
interface, which contains the VPO output formatter and the output control logic;
see Figure 10.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
13 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
mgd147
6
V
0
(dB)
−6
(1)
(2)
(3)
(4)
−12
−18
−24
(4)
(1)
(3)
(2)
−30
−36
−42
−48
−54
0
0.54
1.08
1.62
2.16
2.7
f (MHz)
Transfer characteristics of the chrominance low-pass dependent on CHBW[1:0] settings.
(1) CHBW[1:0] = 00.
(2) CHBW[1:0] = 01.
(3) CHBW[1:0] = 10.
(4) CHBW[1:0] = 11.
Fig 9. Chrominance filter.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
14 of 64
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
CHR
Philips Semiconductors
9397 750 14454
Product data sheet
LUM
AD1BYP
SECAM
PROCESSING
sequential
CB-CR signals
TRST_N
TCK
TDI
TMS
TDO
121
120
117
119
TEST
CONTROL
BLOCK
QUADRATURE
DEMODULATOR
LOW-PASS
118
SUBCARRIER
GENERATION
RESET
HUEC
VDDA0(DECA)
CHBW0
CHBW1
8
POWER-ON
CONTROL
SUBCARRIER
INCREMENT
GENERATION
AND
DIVIDER
Rev. 01 — 21 April 2005
INCS
105, 106,
107, 110,
113, 114,
115, 116
Y
PHASE
DEMODULATOR
CB-CR
AMPLITUDE
DETECTOR
BURST GATE
ACCUMULATOR
LOOP FILTER
CSTD[2:0]
BRIGHTNESS,
CONTRAST
AND
SATURATION
CONTROL
FCTC
CODE
CLOCK
GAIN
CBCONTROL
CR
AND Y-DELAY
COMPENSATION
BRIG
CONT
SATN
YDEL[2:0]
VPO7_A
to
VPO0_A
COMB
FILTERS
SECAM
RECOMBINATION
DCCF
fH/2 switch signal
LUM
OUTPUT
FORMATTER
AND
INTERFACE
OFTS[1:0] GPSW[1:0]
OEYC
VIPB
VRLN
COLO
001aab308
Y
This is valid for decoder A, B, C and D. Here an example for decoder A is shown.
SAA7144HL
15 of 64
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Quadruple video input processor
Fig 10. Chrominance circuit, text slicer, VBI-bypass, output formatting, power and test control (continued from Figure 6 and continued in Figure 17).
SAA7144HL
Philips Semiconductors
Quadruple video input processor
8.4 Luminance processing
The 9-bit luminance signal, a digital CVBS format, is fed through a switchable prefilter.
High frequency components are emphasized to compensate for loss. The following
chrominance trap filter (f0 = 4.43 MHz or 3.58 MHz center frequency set according to the
selected color standard) eliminates most of the color carrier signal. It can be bypassed via
I2C-bus bit BYPS (subaddress 09h, bit 7).
The high frequency components of the luminance signal can be peaked (control for
sharpness improvement via I2C-bus subaddress 09h, see Table 33) in two band-pass
filters with selectable transfer characteristic. This signal is then added to the original
(unpeaked) signal. For the resulting frequency characteristics see Figure 11 to Figure 16.
A switchable amplifier achieves common DC amplification, because the DC gains are
different in both chrominance trap modes. The improved luminance signal is fed to the
BCS control located in the chrominance processing block; see Figure 17.
mgd139
18
VY
(dB)
(1)
(2)
(4)
(3)
6
−6
(1)
(2)
(4)
(3)
−18
−30
0
2
4
6
8
fY (MHz)
(1) 43h
(2) 53h
(3) 63h
(4) 73h
Fig 11. Luminance control SA 09h, 4.43 MHz trap, prefilter on, different aperture
band-pass center frequencies.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
16 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
mgd140
18
VY
(dB)
6
(1)
(2)
(3)
(4)
−6
(4)
(3)
(2)
(1)
−18
−30
0
2
4
6
8
fY (MHz)
(1) 40h
(2) 41h
(3) 42h
(4) 43h
Fig 12. Luminance control SA 09h, 4.43 MHz trap, prefilter on, different aperture factors.
mgd141
18
VY
(dB)
6
(1)
(2)
(4)
(3)
−6
(1)
(2)
(4)
(3)
−18
−30
0
2
4
6
8
fY (MHz)
(1) 03h
(2) 13h
(3) 23h
(4) 33h
Fig 13. Luminance control SA 09h, 4.43 MHz trap, prefilter off, different aperture
band-pass center frequencies.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
17 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
mgd144
18
VY
(dB)
6
(1)
(2)
(4)
(3)
−6
(1)
(2)
(4)
(3)
−18
−30
0
2
4
6
8
fY (MHz)
(1) 43h
(2) 53h
(3) 63h
(4) 73h
Fig 14. Luminance control SA 09h, 3.58 MHz trap, prefilter on, different aperture
band-pass center frequencies.
mgd145
18
VY
(dB)
6
(4)
(3)
(2)
(1)
(1)
(2)
(3)
(4)
−6
−18
−30
0
2
4
6
8
fY (MHz)
(1) 40h
(2) 41h
(3) 42h
(4) 43h
Fig 15. Luminance control SA 09h, 3.58 MHz trap, prefilter on, different aperture factors.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
18 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
mgd146
18
VY
(dB)
6
(1)
(2)
(4)
(3)
−6
(1)
(2)
(4)
(3)
−18
−30
0
2
4
6
8
fY (MHz)
(1) 03h
(2) 13h
(3) 23h
(4) 33h
Fig 16. Luminance control SA 09h, 3.58 MHz trap, prefilter off, different aperture
band-pass center frequencies.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
19 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
LUM
Y
LUMINANCE CIRCUIT
VARIABLE
BAND-PASS
FILTER
CHROMINANCE
TRAP
PREFILTER
PREF
BYPS
VBLB
WEIGHTING
AND ADDING
STAGE
BPSS[1:0]
PREF
PREFILTER
SYNC
APER[1:0]
VBLB
MATCHING
AMPLIFIER
CLOCK CIRCUIT
MACROVISION
DETECTOR
SYNC
SLICER
COPRO
VBLB
CLOCKS
PHASE
DETECTOR
FINE
SYNCHRONIZATION CIRCUIT
I2 C-BUS
CONTROL
VNOI[1:0]
HTC[1:0] FIDT
I2 C-BUS
INTERFACE
46
VERTICAL
PROCESSOR
AUFD
HSB[7:0]
HSS[7:0]
FSEL HLCK
COUNTER
LINE-LOCKED
CLOCK
GENERATOR
PHASE
DETECTOR
COARSE
HPLL
HTC[1:0]
104
CLOCK
GENERATION
CIRCUIT
85
DAC
DISCRETE
TIME
OSCILLATOR
CRYSTAL
CLOCK
GENERATOR
84
80
LLC_A
VDDDA
VSSDA
HTC[1:0]
LOOP
FILTER
81
XTALI
XTALO
47
001aab309
SCL_AB
SDA_AB
This is valid for decoder A, B, C and D. Here an example for decoder A is shown.
Fig 17. Luminance and sync processing (continued from Figure 10).
8.5 Synchronization
The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is
further reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the
phase detectors where they are compared with the sub-divided clock frequency. The
resulting output signal is applied to the loop filter to accumulate all phase deviations.
Internal signals (e.g. HCL and HSY) are generated in accordance with analog front-end
requirements. The loop filter signal drives an oscillator to generate the line frequency
control signal LFCO; see Figure 18.
The detection of ‘pseudo syncs’ as part of the Macrovision® copy protection standard is
also achieved within the synchronization circuit.
The result is reported as flag COPRO within the decoder status byte at subaddress 1Fh.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
20 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
8.6 Clock generation circuit
The internal CGC generates all clock signals required for the video input processor.
The internal signal LFCO is a digital-to-analog converted signal provided by the horizontal
PLL. It is the multiple of the line frequency:
6.75 MHz = 429 × fH (50 Hz), or
6.75 MHz = 432 × fH (60 Hz).
The LFCO signal is multiplied by a factor of 2 and 4 in the internal PLL circuit (including
phase detector, loop filtering, VCO and frequency divider) to obtain the output clock
signals. The rectangular output clocks have a 50 % duty factor.
Table 4:
Clock frequencies
Clock
Frequency (MHz)
XTAL
24.576
LLC
27
LLC2 (internal)
13.5
LLC4 (internal)
6.75
LLC8 (virtual)
3.375
LFCO
BAND PASS
FC = LLC/4
ZERO
CROSS
DETECTION
PHASE
DETECTION
LOOP
FILTER
OSCILLATOR
LLC
DIVIDER
1/2
DIVIDER
1/2
LLC2
mhb330
Fig 18. Block diagram of clock generation circuit.
8.7 Power-on reset
A missing clock, insufficient digital or analog VDDA0 supply voltages will start the reset
sequence; all outputs are forced to 3-state; see Figure 19.
After sufficient power supply voltage, the outputs LLC and SDA return from 3-state to
active.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
21 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
POC VDDA0
ANALOG
POC VDD
DIGITAL
POC
LOGIC
POC
DELAY
LLC
CLOCK
PLL
RES_N
RESINT
CLK0
supply
XTALO
LLCINT
RESINT
LLC
RES_N
(internal reset)
some ms
20 µs to 200 µs
PLL-delay
< 1 ms
896 LLC
digital delay
128 LLC
001aab312
POC = Power-on control.
XTALO = crystal oscillator output.
LLCINT = internal system clock.
RESINT = internal reset.
LLC = line-locked clock output.
RES_N = delayed internal reset.
Fig 19. Power-on control circuit.
Table 5:
Power-on control sequence
Internal power-on control sequence Pin output status
Remarks
Directly after power-on asynchronous
reset
VPO7 to VPO0,
SDA and LLC are in
high-impedance state
direct switching to
high-impedance for
20 ms to 200 ms
Synchronous reset sequence
LLC and SDA become
active; VPO7 to VPO0, are
held in high-impedance
state
internal reset sequence
Status after power-on control
sequence
VPO7 to VPO0, are held in
high-impedance state
after power-on (reset
sequence) a complete
I2C-bus transmission is
required
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
22 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
8.8 Multistandard VBI data slicer
The multistandard data slicer is a Vertical Blanking Interval (VBI) and Full Field (FF) video
data acquisition block. In combination with software modules the slicer acquires most
existing formats of broadcast VBI and FF data.
The implementation and programming model is in accordance with the VBI data slicer
built into the multimedia video data acquisition circuit SAA5284.
The circuitry recovers the actual clock phase during the clock run-in period, slices the data
bits with the selected data rate, and groups them into bytes. The clock frequency, signal
source, field frequency and accepted error count must be defined via the I2C-bus in
subaddress 40h, bits 7 to 4.
Several standards can be selected per VBI line. The supported VBI data standards are
described in Table 6.
The programming of the desired standards is done via I2C-bus subaddresses 41h to 57h
(LCR2[7:0] to LCR24[7:0]); see detailed description in Section 8.10. To adjust the slicers
processing to the signals source, there are offsets in horizontal and vertical direction
available via the I2C-bus in subaddresses 5Bh (bits 2 to 0), 59h (HOFF10 to HOFF0) and
5Bh (bit 4), 5Ah (VOFF8 to VOFF0). The formatting of the decoded VBI data is done
within the output interface to the VPO-bus. For a detailed description of the sliced data
format see Table 20.
Table 6:
Supported VBI standards
Standard type
Data rate (Mbit/s) Framing code
FC window Hamming check
Teletext EuroWST,
CCST
6.9375
27h
WST625
European closed
caption
0.500
001
CC625
VPS
5
always
9951h
VPS
Wide screen signalling 5
bits
1E3C1Fh
WSS
US teletext (WST)
5.7272
27h
WST525
US closed caption
(line 21)
0.503
001
CC525
Teletext
6.9375
programmable
general text optional
VITC/EBU time codes 1.8125
(Europe)
programmable
VITC625
VITC/SMPTE time
codes (USA)
1.7898
programmable
VITC625
US NABTS
5.7272
programmable
NABTS
MOJI (Japanese)
5.7272
programmable (A7h) Japtext
Japanese format
switch (L20/22)
5
programmable
always
optional
8.9 VBI-raw data bypass
For a 27 MHz VBI-raw data bypass the digitized CVBS signal is upsampled after
analog-to-digital conversion. Suppressing of the back folded CVBS frequency
components after upsampling is achieved by an interpolation filter; see Figure 20.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
23 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
mgg067
6
V
0
(dB)
−6
−12
−18
−24
−30
−36
−42
−48
−54
0
2
4
6
8
10
12
14
f (MHz)
Fig 20. Interpolation filter for the upsampled CVBS signal.
8.10 Digital output port
The 8-bit VPO-bus can carry 16 data types in three different formats, selectable by the
control registers LCR2 to LCR24 (see also Section 9, subaddresses 41h to 57h). OEYC
(output enable Y-CB-CR) bit (subaddress 11h, bit 3) in I2C-bus register needs to be set to
logic 1 to enable the VPO-bus.
Table 7:
VPO-bus data formats and types [1]
Data type
number
Data format
Data type
Name
Number of valid
bytes sent per line
0
sliced
teletext EuroWST, CCST
WST625
88
1
sliced
European closed caption
CC625
8
2
sliced
VPS
VPS
56
3
sliced
wide screen signalling bits
WSS
32
4
sliced
US teletext (WST)
WST525
72
5
sliced
US closed caption (line 21)
CC525
8
6
Y-CB-CR 4 : 2 : 2
video component signal, VBI region
test line
1440
7
raw
oversampled CVBS data
Intercast™
programmable
8
sliced
teletext
general text
88
9
sliced
VITC/EBU time codes (Europe)
VITC625
26
10
sliced
VITC/SMPTE time codes (USA)
VITC625
26
11
reserved
reserved
-
-
12
sliced
US NABTS
NABTS
72
13
sliced
MOJI (Japanese)
Japtext
74
14
sliced
Japanese format switch (L20/22)
JFS
56
15
Y-CB-CR 4 : 2 : 2
video component signal, active video region
active video
1440
[1]
The number of valid bytes per line can be less for the sliced data format if standard not recognized (wrong standard or poor input signal).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
24 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
For each LCR value from 2 to 23 the data type can be programmed individually.
LCR2 to LCR23 refer to line numbers. The selection in LCR24 values is valid for the rest
of the corresponding field. The upper nibble contains the value for field 1 (odd), the lower
nibble for field 2 (even). The relationship between LCR values and line numbers can be
adjusted via VOFF8 to VOFF0 (located in subaddresses 5Bh, bit 4 and 5Ah, bits 7 to 0).
The recommended values are 07h for 50 Hz sources and 0Ah for 60 Hz sources, to
accommodate line number conventions as used for PAL, SECAM and NTSC standards;
see Table 11 to Table 14.
Some details about data types:
• Active video (data type 15) component Y-CB-CR 4 : 2 : 2 signal, 720 active pixels per
line. Format and nominal levels are given in Figure 21 and Table 16.
• Test line (data type 6), is similar to decoded Y-CB-CR data as in active video, with two
exceptions:
– vertical filter (chrominance comb filter for NTSC standards, PAL-phase-error
correction) within the chrominance processing is disabled
– peaking and chrominance trap are bypassed within the luminance processing, if
I2C-bus bit VBLB is set. This data type is defined for future enhancements; it could
be activated for lines containing standard test signals within the vertical blanking
period; currently the most sources do not contain test lines.
This data type is available only in lines with VREF = 0, see I2C-bus detail section,
Table 41. Format and nominal levels are given in Figure 21 and Table 16.
• Raw samples (data type 7) oversampled CVBS-signal for Intercast™ applications;
the data rate is 27 MHz. The horizontal range is programmable via HSB7 to HSB0,
HSS7 to HSS0 and HDEL1 to HDEL0; see Section 9.3.6, Section 9.3.7 and
Section 9.3.16 and Table 30, Table 31 and Table 40. Format and nominal levels are
given in Figure 22 and Table 18.
• Sliced data (various standards, data types 0 to 5 and 8 to 14). The format is given in
Table 20.
The data type selections by LCR are overruled by setting VIPB (subaddress 11h bit 1) to
logic 1. This setting is mainly intended for device production tests. The VPO-bus carries
the upper or lower 8 bits of the ADC depending on the ADLSB (subaddress 13h bit 7)
setting. The output configuration is done via MODE3 to MODE0 settings (subaddress 02h
bits 3 to 0; see Table 27).
The SAV/EAV timing reference codes define start and end of valid data regions.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
25 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 8:
SAV/EAV format
Bit
Symbol
7
6
Description
logic 1
F
field bit
1st field: F = 0
2nd field: F = 1
for vertical timing see Table 9 and Table 10
5
V
vertical blanking bit
VBI: V = 1
active video: V = 0
for vertical timing see Table 9 and Table 10
4
H
H = 0 in SAV; H = 1 in EAV
3 to 0
P[3:0]
reserved; evaluation not recommended (protection bits according to
ITU-R BT 656)
The generation of the H-bit and consequently the timing of SAV/EAV corresponds to the
selected data format. H = 0 during active data region. For all data formats excluding data
type 7 (raw data), the length of the active data region is 1440 LLC. For the
Y-CB-CR 4 : 2 : 2 formats (data types 15 and 6) every clock cycle within this range
contains valid data; see Table 16.
The sliced data stream (various standards, data types 0 to 5 and 8 to 14; see Table 20)
contains also invalid cycles marked as 00h.
The length of the raw data region (data type 7) is programmable via HSB7 to HSB0 and
HSS7 to HSS0 (subaddresses 06h and 07h; see Figure 22).
During horizontal blanking period between EAV and SAV the ITU-blanking code sequence
‘-80-10-80-10-...’ is transmitted.
The position of the F-bit is constant according to ITU-R BT 656; see Table 9 and Table 10.
The V-bit can be generated in four different ways (see Table 9 and Table 10) controlled via
OFTS1 and OFTS0 (subaddress 10h, bits 7 and 6), VRLN (subaddress 10h, bit 3) and
LCR2 to LCR24 (subaddresses 41h to 57h).
F and V bits change synchronously with the EAV code.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
26 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 9:
525 lines/60 Hz vertical timing
Line number
F
V
(ITU-R BT 656) OFTS1 = 0;
OFTS1 = 0; OFTS0 = 1
OFTS0 = 0
VRLN = 0 VRLN = 1
(ITU-R BT 656)
1 to 3
1
1
1
1
4 to 19
0
1
1
1
20
0
0
1
1
21
0
0
1
0
22 to 261
0
0
0
0
262
0
0
1
0
263
0
0
1
1
264 and 265
0
1
1
1
266 to 282
1
1
1
1
283
1
0
1
1
284
1
0
1
0
285 to 524
1
0
0
0
525
1
0
1
0
Table 10:
according to
selected data type
via LCR2 to LCR24
(subaddresses 41h
to 57h): data types
0 to 14: V = 1; data
type 15: V = 0
625 lines/50 Hz vertical timing
Line number
F
V
(ITU-R BT 656) OFTS1 = 0;
OFTS1 = 0; OFTS0 = 1
OFTS0 = 0
VRLN = 0 VRLN = 1
(ITU-R BT 656)
1 to 22
0
1
1
1
23
0
0
1
0
24 to 309
0
0
0
0
310
0
0
1
0
311 and 312
0
1
1
1
313 to 335
1
1
1
1
336
1
0
1
0
337 to 622
1
0
0
0
623
1
0
1
0
624 and 625
1
1
1
1
9397 750 14454
Product data sheet
OFTS1 = 1;
OFTS0 = 0
OFTS1 = 1;
OFTS0 = 0
according to
selected data type
via LCR2 to LCR24
(subaddresses 41h
to 57h): data types
0 to 14: V = 1; data
type 15: V = 0
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
27 of 64
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
Philips Semiconductors
9397 750 14454
Product data sheet
Table 11:
Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 1)
Vertical line offset VOFF8 to VOFF0 = 00Ah; horizontal pixel offset HOFF10 to HOFF0 = 354h, FOFF = 1, FISET = 1
Line number (1st field)
519
520
521
522
523
524
525
1
active video
Line number (2nd field)
257
258
259
260
261
262
263
active video
2
4
5
6
7
8
9
serration pulses
equalization pulses
264
267
270
265
266
equalization pulses
LCR (VOFF = 00Ah; HOFF = 354h; 24
FOFF = 1; FISET = 1)
Table 12:
3
equalization pulses
2
268
269
serration pulses
3
4
5
271
272
equalization pulses
6
7
8
9
Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 2)
Vertical line offset VOFF8 to VOFF0 = 00Ah; horizontal pixel offset HOFF10 to HOFF0 = 354h, FOFF = 1, FISET = 1
Line number (1st field)
10
11
12
13
14
15
16
17
18
19
20
21
nominal VBI-lines F1
Line number (2nd field)
273
274
275
276
277
278
279
280
281
282
283
284
Rev. 01 — 21 April 2005
nominal VBI-lines F2
LCR (VOFF = 00Ah; HOFF = 354h; 10
FOFF = 1; FISET = 1)
Table 13:
11
12
22
23
active video
285
286
active video
13
14
15
16
17
18
19
20
21
22
23
Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 1)
Vertical line offset VOFF8 to VOFF0 = 007h; horizontal pixel offset HOFF10 to HOFF0 = 354h, FOFF = 1, FISET = 0
Line number (1st field)
621
622
623
active video
Line number (2nd field)
309
24
310
311
312
equalization pulses
313
1
2
3
serration pulses
314
315
serration pulses
4
5
equalization pulses
316
317
318
equalization pulses
2
3
4
5
SAA7144HL
28 of 64
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
LCR (VOFF = 007h; HOFF = 354h;
FOFF = 1; FISET = 0)
625
Quadruple video input processor
active video
624
equalization pulses
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
Philips Semiconductors
9397 750 14454
Product data sheet
Table 14:
Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 2)
Vertical line offset VOFF8 to VOFF0 = 007h; horizontal pixel offset HOFF10 to HOFF0 = 354h, FOFF = 1, FISET = 0
Line number (1st field)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
nominal VBI-lines F1
Line number (2nd field)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
10
11
12
13
14
15
16
17
18
19
20
21
22
nominal VBI-lines F2
LCR (VOFF = 007h; HOFF = 354h; 6
FOFF = 1; FISET = 0)
Table 15:
7
8
9
24
25
active
video
336
337
338
active video
23
24
Location of related programming registers
Rev. 01 — 21 April 2005
Name
Subaddress bits
VOFF[8:0]
5Bh[4] and 5Ah[7:0]
HOFF[10:0]
5Bh[2:0] and 59h[7:0]
FOFF
5Bh[7]
FISET
40h[7]
SAA7144HL
Quadruple video input processor
29 of 64
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
SAA7144HL
Philips Semiconductors
Quadruple video input processor
+255
+235
+128
white
LUMINANCE 100 %
+255
+240
blue 100 %
+255
+240
red 100 %
+212
blue 75 %
+212
red 75 %
+128
colorless
+128
colorless
CB-COMPONENT
+16
0
black
CR-COMPONENT
+44
yellow 75 %
+44
cyan 75 %
+16
0
yellow 100 %
+16
0
cyan 100 %
001aac241
001aac480
001aac481
Equations for modification to the Y-CB-CR levels via BCS control I2C-bus bytes BRIG, CONT
and SATN.
Luminance:
CONT
Y OUT = Int ---------------- × ( Y – 128 ) + BRIG
71
Chrominance:
SATN
UV OUT = Int --------------- × ( C R ,C B – 128 ) + 128
64
It should be noted that the resulting levels are limited to 1 to 254 in accordance with
ITU-R BT 601/656 standard.
a. Y output range.
b. CB output range.
c. CR output range.
Fig 21. Y-CB-CR 4 : 2 : 2 levels on the 8-bit VPO-bus (data types 6 and 15).
+255
+255
+209
white
+199
LUMINANCE
+71
+60
white
LUMINANCE
black
black shoulder
+60
SYNC
1
black shoulder = black
SYNC
sync bottom
1
sync bottom
001aac245
001aac244
VBI data levels are not dependent on BCS settings.
a. For sources containing 7.5 IRE black
level offset (e.g. NTSC M).
b. For sources not containing black level
offset.
Fig 22. Raw data levels on the 8-bit VPO-bus (data type 8).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
30 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 16:
Blanking
period
Y-CB-CR data format on the 8-bit VPO-bus (data types 6 and 15)
Timing reference
code
... 80 10 FF 00 00 SAV
Table 17:
720 pixels Y-CB-CR 4 : 2 : 2 data
CB0
Y0
CR0
Y1
CB2
Y2
... CR718
Y719
Explanation
SAV
start of active video range; see Table 8 to Table 10
CBn
U (B − Y) color difference component, pixel number n = 0, 2, 4 to 718
Yn
Y (luminance) component, pixel number n = 0, 1, 2, 3 to 719
CRn
V (R − Y) color difference component, pixel number n = 0, 2, 4 to 718
EAV
end of active video range; see Table 8 to Table 10
Blanking
period
FF 00 00 EAV
80 10 ...
Timing reference
code
Blanking
period
FF 00 00 EAV
80 10 ...
Raw data format on the 8-bit VPO-bus (data type 8)
Timing reference
code
... 80 10 FF 00 00 SAV
Table 19:
Blanking
period
Explanation to Table 16
Name
Table 18:
Timing reference
code
Oversampled CVBS samples
Y0
Y1
Y2
Y3
Y4
Y5
... Yn − 1
Yn
Explanation to Table 18
Name
Explanation
SAV
start of raw sample range; see Table 8 to Table 10
Yi
oversampled raw sample stream (CVBS signal), n = 0, 1, 2, 3 to n; n is programmable via HSB and HSS;
see Section 9.3.6 and Section 9.3.7
EAV
end of raw sample range; see Table 8 to Table 10
Table 20:
Blanking
period
Sliced data format on the 8-bit VPO-bus (data types 0 to 5 and 8 to 14)
Timing
reference code
Internal header
Sliced data
Timing
reference code
Blanking
period
... 80 10 FF 00 00 SAV SDID DC IDI1 IDI2 DLN1 DHN1 ... DLNn DHNn FF 00 00 EAV 80 10 ...
Table 21:
Explanation to Table 20
Name
Explanation
SAV
start of active data; see Table 8 to Table 10
SDID
sliced data identification: NEP [1], EP [2], SDID5 to SDID0, freely programmable via I2C-bus subaddress
5Eh[5:0], e.g. to be used as source identifier
DC
Dword count: NEP [1], EP [2], DC5 to DC0; DC is inserted for software compatibility with old encoder devices,
but does not represent any relevant information for SAA7144HL applications.
DC describes the number of succeeding 32-bit words:
DC = 1⁄4(C + n), where C = 2 (the two data identification bytes IDI1 and IDI2) and n = number of decoded
bytes according to the chosen text standard. As the sliced data are transmitted nibble wise, the maximum
number of bytes transmitted (NBT) starting at IDI1 results to: NBS = (DC × 8) − 2
DC can vary between 1 and 11, depending on the selected data type.
Note that the number of bytes actually transmitted can be less than NBT for two reasons:
1. result of DC would result to a non-integer value (DC is always rounded up)
2. standard not recognized (wrong standard or poor input signal)
IDI1
internal data identification 1: OP [3], FID (field 1 = 0, field 2 = 1), LineNumber8 to LineNumber3
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
31 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Explanation to Table 20 …continued
Table 21:
Name
Explanation
IDI2
internal data identification 2: OP [3], LineNumber2 to LineNumber0, DataType3 to DataType0; see Table 7
DLNn
sliced data LOW nibble, format: NEP [1], EP [2], bits 3 to 0, 1, 1
DLHn
sliced data HIGH nibble, format: NEP [1], EP [2], bits 7 to 4, 1, 1
EAV
end of active data; see Table 8 to Table 10
[1]
Inverted EP (bit 7); for EP see Table note 2.
[2]
Even parity (bit 6) of bits 5 to 0.
[3]
Odd parity (bit 7) of bits 6 to 0.
9. I2C-bus description
9.1 I2C-bus format
S
SLAVE ADDRESS W
ACK-s
SUBADDRESS
ACK-s
ACK-s
DATA
data transferred
(n bytes + acknowledge)
P
mhb339
Fig 23. Write procedure.
S
SLAVE ADDRESS W
ACK-s
SUBADDRESS
ACK-s
Sr
SLAVE ADDRESS R
ACK-s
DATA
ACK-m
data transferred
(n bytes + acknowledge)
P
mhb340
Fig 24. Read procedure (combined format).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
32 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 22:
Description of I2C-bus format [1]
Code
Description
S
START condition
Sr
repeated START condition
Slave address W
0100 1010 (= 4Ah) for decoder cores B and D
0100 1000 (= 48h) for decoder cores A and C
Slave address R
0100 1011 (= 4Bh) for decoder cores B and D
0100 1001 (= 49h) for decoder cores A and C
ACK-s
acknowledge generated by the slave
ACK-m
acknowledge generated by the master
Subaddress
subaddress byte; see Table 24
Data
data byte; see Table 24 and Table note 2
P
STOP condition
X = LSB slave address read/write control bit; X = 0, order to write (the circuit is slave receiver);
X = 1, order to read (the circuit is slave transmitter)
[1]
The SAA7144HL supports the fast mode I2C-bus specification extension (data rate up to 400 kbit/s).
[2]
If more than one byte DATA is transmitted the subaddress pointer is automatically incremented.
9.2 I2C-bus register description
Table 23:
Register subaddresses map
Subaddress Description
Access
Reference
00h
chip version
read only
Section 9.3.1
01h to 04h
front-end part
read and write Section 9.3.2 to Section 9.3.5
05h
reserved
-
06h to 11h
decoder part
read and write Section 9.3.6 to Section 9.3.17
12h
reserved
-
13h
decoder part
read and write Section 9.3.18
14h to 1Eh
reserved
-
-
1Fh
video decoder status byte
read only
Section 9.3.19
20h to 3Fh
reserved
-
-
40h to 5Bh
general purpose data slicer
read and write Section 9.3.20 to
Section 9.3.25
5Ch
for testability
-
-
5Dh
reserved
-
-
5Eh
sliced data identification code
read and write Section 9.3.26
5Fh
reserved
-
60h to 62h
general purpose data slicer status read only
Section 9.3.27 and
Section 9.3.28
63h to FFh
reserved
-
-
9397 750 14454
Product data sheet
-
-
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
33 of 64
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
Philips Semiconductors
9397 750 14454
Product data sheet
Table 24:
I2C-bus receiver/transmitter overview
Rev. 01 — 21 April 2005
7
6
5
4
3
2
1
0
Chip version (read only)
00h
ID07
ID06
ID05
ID04
-
-
-
-
Increment delay
01h
[1]
[1]
[1]
[1]
IDEL3
IDEL2
IDEL1
IDEL0
Analog control 1
02h
FUSE1
FUSE0
GUDL1
GUDL0
MODE3
MODE2
MODE1
MODE0
Analog control 2
03h
[1]
HLNRS
VBSL
WPOFF
HOLDG
GAFIX
[1]
GAI18
Analog control 3
04h
GAI17
GAI16
GAI15
GAI14
GAI13
GAI12
GAI11
GAI10
Reserved
05h
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
Horizontal sync begin
06h
HSB7
HSB6
HSB5
HSB4
HSB3
HSB2
HSB1
HSB0
Horizontal sync stop
07h
HSS7
HSS6
HSS5
HSS4
HSS3
HSS2
HSS1
HSS0
Sync control
08h
AUFD
FSEL
FOET
HTC1
HTC0
HPLL
VNOI1
VNOI0
Luminance control
09h
BYPS
PREF
BPSS1
BPSS0
VBLB
UPTCV
APER1
APER0
Luminance brightness
0Ah
BRIG7
BRIG6
BRIG5
BRIG4
BRIG3
BRIG2
BRIG1
BRIG0
Luminance contrast
0Bh
CONT7
CONT6
CONT5
CONT4
CONT3
CONT2
CONT1
CONT0
Chrominance saturation
0Ch
SATN7
SATN6
SATN5
SATN4
SATN3
SATN2
SATN1
SATN0
Chrominance hue control
0Dh
HUEC7
HUEC6
HUEC5
HUEC4
HUEC3
HUEC2
HUEC1
HUEC0
Chrominance control
0Eh
[1]
CSTD2
CSTD1
CSTD0
DCCF
FCTC
CHBW1
CHBW0
Chrominance gain control
0Fh
ACGC
CGAIN6
CGAIN5
CGAIN4
CGAIN3
CGAIN2
CGAIN1
CGAIN0
Format/delay control
10h
OFTS1
OFTS0
HDEL1
HDEL0
VRLN
YDEL2
YDEL1
YDEL0
Output control 1
11h
[1]
[1]
[1]
[1]
OEYC
[1]
VIPB
COLO
Reserved
12h
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
Output control 3
13h
ADLSB
[1]
[1]
OLDSB
[1]
[1]
[1]
[1]
Reserved
14h to 1Eh
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
Decoder status byte (read only,
OLDSB = 0)
1Fh
INTL
HLVLN
FIDT
GLIMT
GLIMB
WIPA
COPRO
RDCAP
Decoder status byte (read only,
OLDSB = 1)
1Fh
INTL
HLCK
FIDT
GLIMT
GLIMB
WIPA
SLTCA
CODE
Reserved
20h to 3Fh
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
CLKSEL1
CLKSEL0
[1]
Slicer control
40h
FISET
HAM_N
FCE
HUNT_N
[1]
Line control register 2
41h
LCR02_7
LCR02_6
LCR02_5
LCR02_4
LCR02_3
LCR02_2
LCR02_1
LCR02_0
Line control register 3 to 23
42h to 56h
LCRN_7
LCRN_6
LCRN_5
LCRN_4
LCRN_3
LCRN_2
LCRN_1
LCRN_0
Line control register 24
57h
LCR24_7
LCR24_6
LCR24_5
LCR24_4
LCR24_3
LCR24_2
LCR24_1
LCR24_0
Framing code
58h
FC7
FC6
FC5
FC4
FC3
FC2
FC1
FC0
SAA7144HL
Subaddress
Quadruple video input processor
34 of 64
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Register function
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
I2C-bus receiver/transmitter overview …continued
Register function
Subaddress
7
6
5
4
3
2
1
0
Horizontal offset
59h
HOFF7
HOFF6
HOFF5
HOFF4
HOFF3
HOFF2
HOFF1
HOFF0
Vertical offset
5Ah
VOFF7
VOFF6
VOFF5
VOFF4
VOFF3
VOFF2
VOFF1
VOFF0
[1]
VOFF8
[1]
HOFF10
HOFF9
HOFF8
Horizontal offset (MSBs), vertical offset
(MSB) and field offset
5Bh
FOFF
[1]
For testability
5Ch
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
Reserved
5Dh
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
Sliced data identification code
5Eh
[1]
[1]
SDID5
SDID4
SDID3
SDID2
SDID1
SDID0
Reserved
5Fh
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
Slicer status 1 (read only)
60h
-
FC8V
FC7V
VPSV
PPV
CCV
-
-
Slicer status 2 (read only)
61h
-
-
F21_N
LN8
LN7
LN6
LN5
LN4
Slicer status 3 (read only)
62h
LN3
LN2
LN1
LN0
DT3
DT2
DT1
DT0
Reserved
63h to FFh
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
Rev. 01 — 21 April 2005
[1]
Philips Semiconductors
9397 750 14454
Product data sheet
Table 24:
All unused control bits must be programmed with logic 0 to ensure compatibility to future enhancements.
SAA7144HL
Quadruple video input processor
35 of 64
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
SAA7144HL
Philips Semiconductors
Quadruple video input processor
9.3 I2C-bus detail
The I2C-bus receiver slave address is 48h/49h and 4Ah/4Bh. Subaddresses 05h, 12h,
14h to 1Eh, 20h to 3Fh, 5Ch, 5Dh, 5Fh and 63h to FFh are reserved.
9.3.1 Subaddress 00h (read only register)
Table 25:
Chip version
Function
Logic levels
ID07
ID06
ID05
ID04
Chip Version (CV)
CV3
CV2
CV1
CV0
9.3.2 Subaddress 01h
Table 26:
Horizontal increment delay
Function
IDEL3
IDEL2
IDEL1
IDEL0
No update
1
1
1
1
Minimum delay
1
1
1
0
Recommended position 1
0
0
0
Maximum delay
0
0
0
0
The programming of the horizontal increment delay is used to match internal processing
delays to the delay of the ADC. Use recommended position only.
9.3.3 Subaddress 02h
Table 27:
Analog control 1 - bit description
Bit
Symbol
Description
7 and 6
FUSE[1:0]
analog function select; see Figure 6
00 = amplifier plus anti-alias filter bypassed
01 = amplifier plus anti-alias filter bypassed
10 = amplifier active
11 = amplifier plus anti-alias filter active
5 and 4
GUDL[1:0]
update hysteresis for 9-bit gain; see Figure 7
00 = off
01 = ±1 LSB
10 = ±2 LSB
11 = ±3 LSB
3 to 0
MODE[3:0]
channel input selector
0000 = select CVBS (automatic gain) from AI11; see Figure 25
0001 = select CVBS (automatic gain) from AI12; see Figure 25
XXXX = reserved; see Table note 1
[1]
X = don’t care.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
36 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
AI12
ADC
AI11
MODE[3:0]
001aab319
Fig 25. Mode switch for video inputs AI11 or AI12.
9.3.4 Subaddress 03h
Table 28:
Analog control 2 - bit description
Bit
Symbol
7
-
not used; has to be set to logic 0
6
HLNRS
HL not reference select
Description
0 = normal clamping if decoder is in unlocked state
1 = reference select if decoder is in unlocked state
5
VBSL
AGC hold during vertical blanking period
0 = short vertical blanking (AGC disabled during equalization and
serration pulses)
1 = long vertical blanking (AGC disabled from start of
pre-equalization pulses until start of active video (line 22 for 60 Hz,
line 24 for 50 Hz)
4
WPOFF
white peak off
0 = white peak control active
1 = white peak off
3
HOLDG
automatic gain control integration
0 = AGC active
1 = AGC integration hold (freeze)
2
GAFIX
gain control fix
0 = automatic gain controlled by MODE[3:0]
1 = gain is user programmable via GAI1
1
-
not used; has to be set to logic 0
0
GAI18
sign bit of gain control; see Table 29
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
37 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
9.3.5 Subaddress 04h
Table 29:
Analog control 3; static gain control
Decimal value
Gain (dB) Sign bit Control bits 7 to 0
GAI18
GAI17
GAI16
GAI15
GAI14
GAI13
GAI12
GAI11
GAI10
0...
≈−3
0
0
0
0
0
0
0
0
0
...117...
≈0
0
0
1
1
1
0
1
0
1
...511
≈6
1
1
1
1
1
1
1
1
1
HSB5
HSB4
HSB3
HSB2
HSB1
HSB0
9.3.6 Subaddress 06h
Table 30:
Horizontal sync begin
Delay time (step size = 8/LLC)
Control bits 7 to 0
−128...−109 (50 Hz)
forbidden (outside available central counter range)
HSB7
HSB6
−128...−108 (60 Hz)
−108 (50 Hz)...
1
0
0
1
0
1
0
0
−107 (60 Hz)...
1
0
0
1
0
1
0
1
...108 (50 Hz)
0
1
1
0
1
1
0
0
...107 (60 Hz)
0
1
1
0
1
0
1
1
109...127 (50 Hz)
forbidden (outside available central counter range)
108...127 (60 Hz)
Recommended value for raw data
type; see Figure 22
1
1
1
0
1
0
0
1
HSS5
HSS4
HSS3
HSS2
HSS1
HSS0
9.3.7 Subaddress 07h
Table 31:
Horizontal sync stop
Delay time (step size = 8/LLC)
Control bits 7 to 0
−128...−109 (50 Hz)
forbidden (outside available central counter range)
HSS7
HSS6
−128...−108 (60 Hz)
−108 (50 Hz)...
1
0
0
1
0
1
0
0
−107 (60 Hz)...
1
0
0
1
0
1
0
1
...108 (50 Hz)
0
1
1
0
1
1
0
0
...107 (60 Hz)
0
1
1
0
1
0
1
1
109...127 (50 Hz)
forbidden (outside available central counter range)
1
0
1
108...127 (60 Hz)
Recommended value for raw data
type; see Figure 22
0
0
0
0
9397 750 14454
Product data sheet
1
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
38 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
9.3.8 Subaddress 08h
Table 32:
Sync control - bit description
Bit
Symbol
Description
7
AUFD
automatic field detection
0 = field state directly controlled via FSEL
1 = automatic field detection
6
FSEL
field selection
0 = 50 Hz, 625 lines
1 = 60 Hz, 525 lines
5
FOET
forced ODD/EVEN toggle
0 = ODD/EVEN signal toggles only with interlaced source
1 = ODD/EVEN signal toggles fieldwise even if source is non-interlaced
4 and 3
HTC[1:0]
horizontal time constant selection
00 = TV mode (recommended for poor quality TV signals only; do not use for new
applications)
01 = VTR mode (recommended if a deflection control circuit is directly connected to
SAA7144HL)
10 = reserved
11 = fast locking mode (recommended setting)
2
HPLL
horizontal PLL
0 = PLL closed
1 = PLL open; horizontal frequency fixed
1 and 0
VNOI[1:0]
vertical noise reduction
00 = normal mode (recommended setting)
01 = fast mode [applicable for stable sources only; automatic field detection (AUFD) must be
disabled]
10 = free running mode
11 = vertical noise reduction bypassed
9.3.9 Subaddress 09h
Table 33:
Luminance control - bit description
Bit
Symbol
Description
7
BYPS
chrominance trap bypass
0 = chrominance trap active; default for CVBS mode
1 = chrominance trap bypassed
6
PREF
prefilter active; see Figure 11 to Figure 16
0 = bypassed
1 = active
5 and 4
BPSS[1:0]
aperture band-pass (center frequency)
00 = center frequency is 4.1 MHz
01 = center frequency is 3.8 MHz; see Table note 1
10 = center frequency is 2.6 MHz; see Table note 1
11 = center frequency is 2.9 MHz; see Table note 1
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
39 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 33:
Luminance control - bit description …continued
Bit
Symbol
Description
3
VBLB
vertical blanking luminance bypass
0 = active luminance processing
1 = chrominance trap and peaking stage are disabled during VBI lines determined by
VREF = 0; see Table 41
2
UPTCV
update time interval for analog AGC value
0 = horizontal update (once per line)
1 = vertical update (once per field)
1 and 0
APER[1:0]
aperture factor; see Figure 11 to Figure 16
00 = aperture factor is 0
01 = aperture factor is 0.25
10 = aperture factor is 0.5
11 = aperture factor is 1.0
[1]
Not to be used with bypassed chrominance trap.
9.3.10 Subaddress 0Ah
Table 34:
Luminance brightness control
Offset
Control bits 7 to 0
BRIG7
BRIG6
BRIG5
BRIG4
BRIG3
BRIG2
BRIG1
BRIG0
255 (bright)
1
1
1
1
1
1
1
1
128 (CCIR level)
1
0
0
0
0
0
0
0
0 (dark)
0
0
0
0
0
0
0
0
CONT5
CONT4
CONT3
CONT2
CONT1
CONT0
9.3.11 Subaddress 0Bh
Table 35:
Luminance contrast control
Gain
Control bits 7 to 0
CONT7
CONT6
1.999 (maximum)
0
1
1
1
1
1
1
1
1.109 (CCIR level)
0
1
0
0
0
1
1
1
1.0
0
1
0
0
0
0
0
0
0 (luminance off)
0
0
0
0
0
0
0
0
−1 (inverse luminance)
1
1
0
0
0
0
0
0
−2 (inverse luminance)
1
0
0
0
0
0
0
0
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
40 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
9.3.12 Subaddress 0Ch
Table 36:
Chrominance saturation control
Gain
Control bits 7 to 0
SATN7
SATN6
SATN5
SATN4
SATN3
SATN2
SATN1
SATN0
1.999 (maximum)
0
1
1
1
1
1
1
1
1.0 (CCIR level)
0
1
0
0
0
0
0
0
0 (color off)
0
0
0
0
0
0
0
0
−1 (inverse chrominance)
1
1
0
0
0
0
0
0
−2 (inverse chrominance)
1
0
0
0
0
0
0
0
9.3.13 Subaddress 0Dh
Table 37:
Chrominance hue control
Hue phase (deg)
Control bits 7 to 0
HUEC7
HUEC6
HUEC5
HUEC4
HUEC3
HUEC2
HUEC1
HUEC0
+178.6...
0
1
1
1
1
1
1
1
...0...
0
0
0
0
0
0
0
0
...−180
1
0
0
0
0
0
0
0
9.3.14 Subaddress 0Eh
Table 38:
Chrominance control - bit description
Bit
Symbol
Description
50 Hz
60 Hz
7
-
not used; has to be set to logic 0
6 to 4
CSTD[2:0]
color standard selection
000 = PAL BGHIN
NTSC M (or NTSC-Japan with special level
adjustment: brightness subaddress
0Ah = 95h; contrast subaddress 0Bh = 48h)
001 = NTSC 4.43 (50 Hz)
PAL 4.43 (60 Hz)
010 = combination-PAL N
NTSC 4.43 (60 Hz)
011 = NTSC N
PAL M
100 = reserved; do not use
101 = SECAM
reserved
110 = reserved; do not use
111 = reserved; do not use
3
DCCF
disable chrominance comb filter
0 = chrominance comb filter on (during lines determined by VREF = 1; see Table 41)
1 = chrominance comb filter permanently off
2
FCTC
fast color time constant
0 = nominal time constant
1 = fast time constant
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
41 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 38:
Chrominance control - bit description …continued
Bit
Symbol
Description
50 Hz
1 and 0
CHBW[1:0]
60 Hz
chrominance bandwidth
00 = small bandwidth (≈ 620 kHz)
01 = nominal bandwidth (≈ 800 kHz)
10 = medium bandwidth (≈ 920 kHz)
11 = wide bandwidth (≈ 1000 kHz)
9.3.15 Subaddress 0Fh
Table 39:
Chrominance gain control - bit description
Bit
Symbol
Description
7
ACGC
automatic chrominance gain control
0 = on
1 = programmable gain via CGAIN[6:0]
6 to 0
CGAIN[6:0]
chrominance gain value (if AGC is set to logic 1)
0000000 = minimum gain (0.5)
0100100 = nominal gain (1.125)
1111111 = maximum gain (7.5)
9.3.16 Subaddress 10h
Table 40:
Format/delay control - bit description
Bit
Symbol
Description
7 and 6
OFTS[1:0]
output format selection; V-flag generation in SAV/EAV codes; see Table 9 and Table 10
00 = standard ITU-R BT 656 format
01 = V-flag in SAV/EAV is generated by VREF
10 = V-flag in SAV/EAV is generated by data type
11 = reserved
5 and 4
HDEL[1:0]
fine position of HS
00 = 0 × 2/LLC
01 = 1 × 2/LLC
10 = 2 × 2/LLC
11 = 3 × 2/LLC
3
VRLN
VREF pulse position and length; see Table 41
2 to 0
YDEL[2:0]
luminance delay compensation (steps in 2/LLC)
100 = −4... × 2/LLC
000 = ...0... × 2/LLC
011 = ...3 × 2/LLC
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
42 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 41:
VREF pulse position and length VRLN SA 10 (bit 3)
VRLN
VREF at 60 Hz 525 lines
0
Length
1
240
Line number
VREF at 50 Hz 625 lines
0
242
1
286
288
first
last
first
last
first
last
first
last
Field
1 [1]
19 (22)
258 (261)
18 (21)
259 (262)
24
309
23
310
Field
2 [1]
282 (285)
521 (524)
281 (284)
522 (525)
337
622
336
623
[1]
The numbers given in parenthesis refer to ITU line counting.
9.3.17 Subaddress 11h
Table 42:
Output control 1 - bit description
Bit
Symbol
Description
7 to 4
-
not used; have to be set to logic 0
3
OEYC
output enable Y-CB-CR data
0 = VPO-bus high-impedance
1 = output VPO-bus active
2
-
not used; has to be set to logic 0
1
VIPB
Y-CB-CR decoder bypassed
0 = processed data to VPO output
1 = ADC data to VPO output; dependent on mode settings
0
COLO
color on
0 = automatic color killer
1 = color forced on
9.3.18 Subaddress 13h
Table 43:
Output control 3 - bit description
Bit
Symbol
Description
7
ADLSB
analog-to-digital converter output bits on VPO7 to VPO0 in bypass mode (VIPB = 1, used for
test purposes); see Table note 1
0 = AD8 to AD1 (MSBs) on VPO7 to VPO0
1 = AD7 to AD0 (LSBs) on VPO7 to VPO0
6 and 5
-
not used; have to be set to logic 0
4
OLDSB
selection bit for status byte functionality
0 = default status information; see Table 44
1 = old status information, for compatibility reasons; see Table 44
3 to 0
[1]
-
not used; have to be set to logic 0
Video input selection via MODE[3:0] (subaddress 02h; see Figure 25).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
43 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
9.3.19 Subaddress 1Fh (read only register)
Table 44:
Status byte - bit description
Bit
Symbol
Description
7
INTL
status bit for interlace detection
0 = non-interlaced
1 = interlaced
6
HLCK
status bit for locked horizontal frequency (OLDSB = 1)
0 = locked
1 = unlocked
HLVLN
status bit for horizontal/vertical loop (OLDSB = 0)
0 = locked
1 = unlocked
5
FIDT
identification bit for detected field frequency
0 = 50 Hz
1 = 60 Hz
4
GLIMT
gain value for active luminance channel is limited [max (top)]; active HIGH
3
GLIMB
gain value for active luminance channel is limited [min (bottom)]; active HIGH
2
WIPA
white peak loop is activated; active HIGH
1
SLTCA
slow time constant active in WIPA mode; active HIGH (OLDSB = 1)
COPRO
Macrovision® copy protection detection according to Macrovision® detect specification
revision 7.01 (OLDSB = 0).
CODE
color signal in accordance with selected standard has been detected; active HIGH (OLDSB = 1)
RDCAP
ready for capture (all internal loops locked); active HIGH (OLDSB = 0)
0
9.3.20 Subaddress 40h
Table 45:
Slicer control - bit description
Bit
Symbol
Description
7
FISET
field size select
0 = 50 Hz field rate
1 = 60 Hz field rate
6
HAM_N
hamming check
0 = hamming check for 2 bytes after framing code, dependent on data type (default)
1 = no hamming check
5
FCE
framing code error
0 = one framing code error allowed
1 = no framing code errors allowed
4
HUNT_N
amplitude searching
0 = amplitude searching active (default)
1 = amplitude searching stopped
3
-
not used; has to be set to logic 0
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
44 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 45:
Slicer control - bit description …continued
Bit
Symbol
Description
2 and 1
CLKSEL[1:0]
data slicer clock selection
00 = reserved
01 = 13.5 MHz (default)
10 = reserved
11 = reserved
0
-
not used; has to be set to logic 0
9.3.21 Subaddresses 41h to 57h
Table 46:
LCR register 2 to 24; see Table 7
LCR register 2 to 24 (41h to 57h)
Framing code
Bit 7 to 4
DT3 to
DT0 [1]
Bit 3 to 0
DT3 to DT0 [1]
WST625
teletext EuroWST, CCST
27h
0000
0000
CC625
European closed caption
001
0001
0001
VPS
video programming service
9951h
0010
0010
WSS
wide screen signalling bits
1E3C1Fh
0011
0011
WST525
US teletext (WST)
27h
0100
0100
CC525
US closed caption (line 21)
001
0101
0101
Test line
video component signal, VBI region
-
0110
0110
Intercast™
oversampled CVBS data
-
0111
0111
General text
teletext
programmable
1000
1000
VITC625
VITC/EBU time codes (Europe)
programmable
1001
1001
VITC/SMPTE time codes (USA)
programmable
1010
1010
Reserved
reserved
-
1011
1011
NABTS
US NABTS
-
1100
1100
Japtext
MOJI (Japanese)
programmable (A7h)
1101
1101
JFS
Japanese format switch (L20/22)
programmable
1110
1110
Active video
video component signal, active video
region (default)
-
1111
1111
[1]
The assignment of the upper and lower nibbles to the corresponding field depends on the setting of FOFF (subaddress 5Bh, bit 7);
see Table 47.
Table 47:
Setting of FOFF (subaddress 5Bh, bit 7)
FOFF
Bit 7 to 4
Bit 3 to 0
0
field 1
field 2
1
field 2
field 1
9.3.22 Subaddress 58h
Table 48:
Framing code - bit description
Bit
Symbol
Description
7 to 0
FC[7:0]
framing code for programmable data types; 40h (default)
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
45 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
9.3.23 Subaddresses 59h and 5Bh
Table 49:
Horizontal offset - bit description
Bit
Symbol
Description
Subaddress 5Bh
2 to 0
HOFF[10:8]
horizontal offset; recommended value: 03h
Subaddress 59h
7 to 0
HOFF[7:0]
horizontal offset; recommended value: 54h
9.3.24 Subaddresses 5Ah and 5Bh
Table 50:
Vertical offset - bit description
Bit
Symbol
Description
Subaddress 5Bh
4
VOFF8
vertical offset
Subaddress 5Ah
7 to 0
VOFF[7:0]
vertical offset
00h = minimum value 0, if VOFF8 = 0
38h = maximum value 312, if VOFF8 = 1
07h = value for 50 Hz 625 lines input, if VOFF8 = 0
0Ah = value for 60 Hz 525 lines input, if VOFF8 = 0
9.3.25 Subaddress 5Bh
Table 51:
Field offset, MSBs for vertical and horizontal offsets - bit description
Bit
Symbol
Description
7
FOFF
field offset
0 = no modification of internal field indicator
1 = invert field indicator (even/odd; default)
6 and 5
-
not used; have to be set to logic 0
4
VOFF8
vertical offset; see Table 50
3
-
not used; has to be set to logic 0
2 to 0
HOFF[10:8]
horizontal offset; see Table 49
9.3.26 Subaddress 5Eh
Table 52:
Sliced data identification code - bit description
Bit
Symbol
Description
7 and 6
-
not used; have to be set to logic 0
5 to 0
SDID[5:0]
sliced data identification code; SDID[5:0] = 000000 (default)
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
46 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
9.3.27 Subaddress 60h (read only register)
Table 53:
Slicer status 1 - bit description
Bit
Symbol
Description
7
-
not used; has to be set to logic 0
6 and 5
FC8V and
FC7V
framing code valid
00 = no framing code in the last frame
01 = framing code with 1 error detected in the last frame
1X [1] = framing code without errors detected in the last frame
4
VPSV
VPS valid
0 = no VPS in the last frame
1 = VPS detected
3
PPV
PALplus valid
0 = no PALplus in the last frame
1 = PALplus detected
2
CCV
closed caption valid
0 = no closed caption in the last frame
1 = closed caption detected
1 and 0
[1]
-
not used; have to be set to logic 0
X = don’t care.
9.3.28 Subaddresses 61h and 62h (read only register)
Table 54:
Slicer status 2 and 3 - bit description
Bit
Symbol
Description
Subaddress 61h
7 and 6
-
not used; have to be set to logic 0
5
F21_N
internal used slicer status bit
4 to 0
LN[8:4]
line number
Subaddress 62h
7 to 4
LN[3:0]
line number
3 to 0
DT[3:0]
data type according to Table 7
10. I2C-bus start set-up
The given values force the following behavior of the SAA7144HL:
• The analog input AI11 expects a signal in CVBS format; analog anti-alias filter and
AGC active
• Automatic field detection enabled, PAL BDGHI or NTSC M standard expected
• Standard ITU-R BT 656 output format enabled, VBI data slicer disabled; see Table 55
Table note 2
• Contrast, brightness and saturation control in accordance with ITU standards
• Chrominance processing with nominal bandwidth (800 kHz).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
47 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 55:
I2C-bus start set-up values
Subaddress
Function
(hexadecimal)
Name [1]
00
chip version
ID07 to ID04
read only
01
increment delay
X, X, X, X, IDEL[3:0]
0 0 0 0 1 0 0 0 08
02
analog control 1
FUSE[1:0], GUDL[1:0], MODE[3:0]
1 0 0 0 0 0 0 0 80
03
analog control 2
X, HLNRS, VBSL, WPOFF, HOLDG, 0 0 1 1 0 0 0 1 31
GAFIX, X, GAI18
04
analog control 3
GAI1[7:0]
05
reserved
06
horizontal sync begin
HSB[7:0]
1 1 1 0 1 0 0 1 E9
07
horizontal sync stop
HSS[7:0]
0 0 0 0 1 1 0 1 0D
08
sync control
AUFD, FSEL, FOET, HTC[1:0],
HPLL, VNOI[1:0]
1 0 0 1 1 0 0 0 98
09
luminance control
BYPS, PREF, BPSS[1:0], VBLB,
UPTCV, APER[1:0]
0 0 0 0 0 0 0 1 01
0A
luminance brightness
BRIG[7:0]
1 0 0 0 0 0 0 0 80
0B
luminance contrast
CONT[7:0]
0 1 0 0 0 1 1 1 47
0C
chrominance saturation
SATN[7:0]
0 1 0 0 0 0 0 0 40
0D
chrominance hue control
HUEC[7:0]
0 0 0 0 0 0 0 0 00
0E
chrominance control
X, CSTD[2:0], DCCF, FCTC,
CHBW[1:0]
0 0 0 0 0 0 0 1 01
0F
chrominance gain control
ACGC, CGAIN[6:0]
0 0 1 0 1 0 1 0 2A
10
format/delay control
OFTS[1:0], HDEL[1:0], VRLN,
YDEL[2:0]
0 0 0 0 0 0 0 0 00
11
output control 1
X, X, X, X, OEYC, X, VIPB, COLO
0 0 0 0 1 0 0 0 0C
12
reserved
Values (binary)
Start
7 6 5 4 3 2 1 0 (hexadecimal)
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 01
13
output control 3
14 to 1E
reserved
ADLSB, X, X, OLDSB, X, X, X, X
1F
decoder status byte
20 to 3F
reserved
40
slicer control
41 to 57
line control register 2 to 24 LCRn[7:0]
1 1 1 1 1 1 1 1 FF [2]
58
programmable framing
code
FC[7:0]
0 0 0 0 0 0 0 0 00
59
horizontal offset for slicer
HOFF[7:0]
0 1 0 1 0 1 0 0 54 [2]
5A
vertical offset for slicer
VOFF[7:0]
0 0 0 0 0 1 1 1 07 [2]
5B
field offset and MSBs for
horizontal and vertical
offset
FOFF, X, X, VOFF8, X, HOFF[10:8]
1 0 0 0 0 0 1 1 83 [2]
5C and 5D
reserved
5E
sliced data identification
code
5F
reserved
0 0 0 0 0 0 0 0 00
INTL, HLVLN, FIDT, GLIMT, GLIMB, read only
WIPA, COPRO, RDCAP
0 0 0 0 0 0 0 0 00
FISET, HAM_N, FCE, HUNT_N, X,
CLKSEL[1:0], X
0 0 0 0 0 0 1 0 02 [2]
0 0 0 0 0 0 0 0 00
X, X, SDID[5:0]
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00
9397 750 14454
Product data sheet
0 0 0 0 0 0 0 0 00
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
48 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 55:
I2C-bus start set-up values …continued
Subaddress
Function
(hexadecimal)
Name [1]
60
slicer status 1
-, FC8V, FC7V, VPSV, PPV, CCV, -, - read only
61
slicer status 2
-, -, F21_N, LN[8:4]
62
slicer status 3
LN[3:0], DT[3:0]
63 to FF
reserved
Start
7 6 5 4 3 2 1 0 (hexadecimal)
read only
read only
0 0 0 0 0 0 0 0 00
[1]
All X values must be set to logic 0. For SECAM decoding set register 0Eh to 50h.
[2]
For proper data slicer programming refer to Table 11 to Table 14 and Table 7.
9397 750 14454
Product data sheet
Values (binary)
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
49 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
11. Limiting values
Table 56: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). All ground pins connected together and all supply
pins connected together.
Symbol
Parameter
Conditions
Min
Max
Unit
VDDD
digital supply voltage
−0.5
+4.6
V
VDDA
analog supply voltage
−0.5
+4.6
V
Vi(a)
analog input voltage
−0.5
VDDA + 0.5
(4.6 max)
V
Vo(a)
analog output voltage
−0.5
VDDA + 0.5
V
Vi(d)
digital input voltage
outputs in 3-state
−0.5
+5.5
V
Vo(d)
digital output voltage
outputs active
−0.5
VDDD + 0.5
V
∆VSS
voltage difference between VSSA(all) and VSS(all)
-
100
mV
Tstg
storage temperature
−65
+150
°C
Tamb
ambient temperature
0
70
°C
Tamb(bias)
ambient temperature under bias
electrostatic discharge voltage
Vesd
[1]
Class 2 according to JESD22-A114-B.
[2]
Class B according to EIA/JESD22-A115-A.
−10
+80
°C
human body model
[1]
-
±2000
V
machine model
[2]
-
±200
V
12. Thermal characteristics
Table 57:
Thermal characteristics
Symbol
Parameter
Conditions
Typ
Unit
Rth(j-a)
thermal resistance from junction to ambient
in free air
30
K/W
13. Characteristics
Table 58: Characteristics
VDDD = 3.0 V to 3.6 V; VDDA = 3.1 V to 3.5 V; Tamb = 25 °C; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
3.0
3.3
3.6
V
-
125
165
mA
Supplies
VDDD
digital supply voltage
IDDD
digital supply current
(IDDDI + IDDDE)
VDDA
analog supply voltage
3.1
3.3
3.5
V
IDDA
analog supply current
(IDDA0 + IDDA1)
-
210
250
mA
PA+D
analog and digital power
-
1.1
-
W
-
±8
-
µA
all outputs unloaded
Analog part
Iclamp
clamping current
VI = 0.9 V DC
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
50 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 58: Characteristics …continued
VDDD = 3.0 V to 3.6 V; VDDA = 3.1 V to 3.5 V; Tamb = 25 °C; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Vi(p-p)
input voltage
(peak-to-peak value)
for normal video levels
1 V (p-p), termination
18/56 Ω and AC coupling
required; coupling
capacitor = 47 nF
0.5
0.7
1.4
V
Zi
input impedance
clamping current off
200
-
-
kΩ
Ci
input capacitance
-
-
10
pF
αcs
channel crosstalk
between inputs of one
instance AI11_x and
AI12_x (e.g. AI11_A to
AI12_A)
fi = 5 MHz
-
-
−50
dB
αinstance
crosstalk between two
decoder instances
CVBS inputs with different
line frequencies
-
−40
-
dB
at −3 dB
-
7
-
MHz
9-bit analog-to-digital converter
B
bandwidth
φdiff
differential phase
(amplifier plus anti-alias
filter bypassed)
-
2
-
deg
Gdiff
differential gain (amplifier
plus anti-alias filter
bypassed)
-
2
-
%
fclk(ADC)
ADC clock frequency
12.8
-
14.3
MHz
DLE
DC differential linearity
error
-
0.7
-
LSB
ILE
DC integral linearity error
-
1
-
LSB
V
Digital inputs
VIL(SCL,SDA)
LOW-level input voltage
pins SDA and SCL
−0.5
-
+0.3VDDD
VIH(SCL,SDA)
HIGH-level input voltage
pins SDA and SCL
0.7VDDD
-
VDDD + 0.5 V
VIL(n)
LOW-level input voltage
all other inputs
−0.3
-
+0.8
V
VIH(n)
HIGH-level input voltage
all other inputs
2.0
-
5.5
V
ILI
input leakage current
-
-
1
µA
ILI/O
I/O leakage current
-
-
10
µA
Ci
input capacitance
-
-
8
pF
Ci(n)
input capacitance all
other inputs
-
-
5
pF
-
-
0.4
V
−0.5
-
+0.4
V
2.4
-
VDDD + 0.5 V
outputs at 3-state
Digital outputs
VOL(SCL,SDA) LOW-level output voltage SDA/SCL at 3 mA sink
pins SDA and SCL
current
VOL
LOW-level output voltage IOL = 2 mA
VOH
HIGH-level output
voltage
IOH = −2 mA
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
51 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 58: Characteristics …continued
VDDD = 3.0 V to 3.6 V; VDDA = 3.1 V to 3.5 V; Tamb = 25 °C; unless otherwise specified.
Symbol
Parameter
Conditions
VOL(clk)
LOW-level output voltage IOL = 2 mA
for LLC clock
VOH(clk)
HIGH-level output
voltage for LLC clock
IOH = −2 mA
Min
Typ
Max
Unit
−0.5
-
+0.6
V
2.4
-
VDDD + 0.5 V
15
-
40
pF
Data and control output timing; see Figure 26 [1]
CL
output load capacitance
tOHD;DAT
output hold time
CL = 15 pF
4
-
-
ns
tPD
propagation delay
CL = 25 pF
-
-
22
ns
tPDZ
propagation delay to
3-state
-
-
22
ns
15
-
40
pF
35
-
39
ns
Clock output timing (LLC); see Figure 26
CL(LLC)
output load capacitance
Tcy
cycle time
δLLC
duty factors for tLLCH/tLLC CL = 25 pF
40
-
60
%
tr
rise time LLC
-
-
5
ns
tf
fall time LLC
-
-
5
ns
nominal frequency
40
-
60
%
50 Hz field
-
15625
-
Hz
60 Hz field
-
15734
-
Hz
-
-
5.7
%
-
4433619
-
Hz
LLC
Clock input timing (XTALI)
δXTALI
duty factor for
tXTALIH/tXTALI
Horizontal PLL
fHn
∆fH/fHn
nominal line frequency
permissible static
deviation
Subcarrier PLL
fSCn
∆fSC
nominal subcarrier
frequency
PAL BGHIN
NTSC M; NTSC Japan
-
3579545
-
Hz
PAL M
-
3575612
-
Hz
combination-PAL N
-
3582056
-
Hz
±400
-
-
Hz
-
24.576
-
MHz
lock-in range
Crystal oscillator
fn
nominal frequency
3rd harmonic
∆f/fn
permissible nominal
frequency deviation
-
-
±50
10−6
∆Tf/fn(T)
permissible nominal
frequency deviation with
temperature
-
-
±20
10−6
Crystal specification (X1)
Tamb(X1)
operating ambient
temperature
0
-
70
°C
CL
load capacitance
8
-
-
pF
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
52 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
Table 58: Characteristics …continued
VDDD = 3.0 V to 3.6 V; VDDA = 3.1 V to 3.5 V; Tamb = 25 °C; unless otherwise specified.
Symbol
Parameter
Rs
series resonance
resistor
C1
motional capacitance
-
1.5 ± 20 % -
fF
C0
parallel capacitance
-
3.5 ± 20 % -
pF
[1]
Conditions
Min
Typ
Max
Unit
-
40
80
Ω
The effects of rise and fall times are included in the calculation of tOHD;DAT, tPD and tPDZ. Timings and levels refer to drawings and
conditions illustrated in Figure 26.
Table 59:
Processing delay
Function
Typical analog delay
AI22 −> ADC(in) (ns)
Digital delay
ADC(in) −> VPO (LLC CLOCKS);
YDEL2 to YDEL0 = 0
Without amplifier or anti-alias filter
15
157
With amplifier, without anti-alias filter
25
With amplifier and anti-alias filter
75
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
53 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
14. Timing diagrams
tLLC
tLLCL
2.6 V
1.5 V
0.6 V
LLC
tr
tf
tLLCH
tPD
tOHD;DAT
2.4 V
VPO
0.6 V
001aab316
Fig 26. Clock/data output timing.
burst
CVBS input
28 × 1/LLC
burst
RAW DATA on VPO-bus
157 × 1/LLC
Y-DATA on VPO-bus
processing delay CVBS- > VPO(1)
sync clipped
001aab317
(1) See Table 59.
Fig 27. Horizontal timing diagram.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
54 of 64
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x
8
R18 18 Ω
C2
47 nF
AI11_A
R19 18 Ω
C3
47 nF
AI12_A
C4
47 nF
AI1D_A
AI11_A
AI12_A
R26
56 Ω
R30
56 Ω
R34
33 Ω
DNC1,
DNC4,
DNC7 to
DNC11
AGND AGND AGND
R20 18 Ω
47 nF
AI11_B
C6
47 nF
AI12_B
C7
47 nF
AI1D_B
C5
AI11_B
R21 18 Ω
AI12_B
R27
56 Ω
R31
56 Ω
R35
33 Ω
Rev. 01 — 21 April 2005
DNC3,
DNC12,
DNC14 to
DNC18
AGND AGND AGND
9
6
2
1
18
19
11
digital
100 nF DGND
100 nF DGND
100 nF DGND
R40
3.3 Ω
R42
3.3 Ω
R44
3.3 Ω
R46
3.3 Ω
59
58
54
55
74
69
73
TDI
TDO
VSSDE
VDDDE
VSSDI
VDDDI
VSSDE
VSSDI
VDDDI
16
VDDDE
analog
10
100 nF DGND
DGND
DNC2
100 nF
VSSA1(DECB)
VDDA1(DECB)
15
3.3 V
AGND
C21
AGND_B
100 nF
VSSA0(DECB)
AGND
C19
VDDA0(DECB)
100 nF
AGND
VSSA1(DECA)
VDDA1(DECA)
AGND_A
VSSA0(DECA)
VDDA0(DECA)
100 nF
C17
R54
0Ω
70 117
118
119
120
121
3
4
5
116
115
114
113
110
107
106
105
7, 22, 39, 40,
41, 42, 43
103
101
100
99
95
94
89
87
12
13
14
79
77
72
71
68
67
65
64
17, 44, 66, 75,
76, 78, 82
SAA7144HL
DNC6,
DNC26 to
DNC31
36, 123, 124, 125,
126, 127, 128
as close as possible to the IC
analog
3.3 V
29
VSSA0(DECC)
VDDA0(DECC)
28
26
21
20
37
38
35
31
30
C14
C16
C18
C20
100 nF
100 nF
100 nF
100 nF
AGND
digital
Fig 28. Application diagram of SAA7144HL.
AGND
AGND
80
84
81
2
3
1
C23
C24
10 pF
10 pF
C25
AGND
85
L1
10 µH
3.3 V
100 nF
91
96
97
109
108 111
5
6
7
8
5
6
7
8
RN3
33 Ω
VPO0_B
VPO1_B
VPO2_B
VPO3_B
VPO4_B
VPO5_B
VPO6_B
VPO7_B
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
RN5
33 Ω
VPO0_C
VPO1_C
VPO2_C
VPO3_C
VPO4_C
VPO5_C
VPO6_C
VPO7_C
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
RN7
33 Ω
VPO0_D
VPO1_D
VPO2_D
VPO3_D
VPO4_D
VPO5_D
VPO6_D
VPO7_D
4
3
2
1
4
3
2
1
5
6
7
8
5
6
7
8
RN9
33 Ω
RN4
33 Ω
RN6
33 Ω
RN8
33 Ω
RN10
33 Ω
8
1 RN11
SCL_AB
46
SDA_AB
7
2 0Ω
47
SCL_CD
6
3
48
SDA_CD
5
4
49
LLC_A
R48
33 Ω
104
R49
33 Ω
LLC_B
86
LLC_C
R50
33 Ω
63
R51
33 Ω
LLC_D
50
DNC13
45
as close as
DNC25 possible to the IC
122
112
R41
3.3 Ω
R43
3.3 Ω
R45
3.3 Ω
R47
3.3 Ω
100 nF
100 nF
100 nF
100 nF
VPOA0
VPOA1
VPOA2
VPOA3
VPOA4
VPOA5
VPOA6
VPOA7
VPOB0
VPOB1
VPOB2
VPOB3
VPOB4
VPOB5
VPOB6
VPOB7
VPOC0
VPOC1
VPOC2
VPOC3
VPOC4
VPOC5
VPOC6
VPOC7
DGND
DGND
DGND
VPOB[0:7]
VPOC[0:7]
VPOD[0:7]
VPOD0
VPOD1
VPOD2
VPOD3
VPOD4
VPOD5
VPOD6
VPOD7
SCL_AB
SDA_AB
SCL_CD
SDA_CD
CLK0
CLK1
CLK2
CLK3
CLK[0:3]
4.7 kΩ
(4×)
3.3 V
DGND
10 nF
C22
DGND
93
4
3
2
1
4
3
2
1
VPOA[0:7]
3.3 V
001aab216
SAA7144HL
AGND AGND AGND
VPO0_A
VPO1_A
VPO2_A
VPO3_A
VPO4_A
VPO5_A
VPO6_A
VPO7_A
VSSDE
R37
33 Ω
34
VSSDI
R33
56 Ω
33
VDDDE
AI1D_D
VDDDI
AI12_D
47 nF
VSSDE
47 nF
C13
VDDDE
C12
32
BST0
BST1
BST2
Quadruple video input processor
55 of 64
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
R29
56 Ω
47 nF
VSSDI
R25 18 Ω
AI12_D
AI11_D
C11
VDDDI
R24 18 Ω
AI11_D
27, 83, 88, 90,
92, 98, 102
XTALI
AGND AGND AGND
VDDDA
DNC5,
DNC19 to
DNC24
62
61
60
57
56
53
52
51
25
VSSDA
R36
33 Ω
XTALO
AI1D_C
R32
56 Ω
VSSA1(DECD)
47 nF
C10
R28
56 Ω
24
AGND_D
AI12_C
VDDA1(DECD)
47 nF
VSSA0(DECD)
C9
23
VDDA0(DECD)
AI12_C
AI11_C
VSSA1(DECC)
R23 18 Ω
47 nF
VDDA1(DECC)
AI11_C
C8
AGND_C
R22 18 Ω
BST[0:2]
TDI
TDO
TMS
TCK
TRST_N
Philips Semiconductors
AGND
C15
15. Application information
9397 750 14454
Product data sheet
3.3 V
SAA7144HL
Philips Semiconductors
Quadruple video input processor
15.1 Recommended printed-circuit board layout
The SAA7144HL consists of analog and digital areas. Due to this special care needs to be
taken for design of layout regarding crosstalk by analog and digital supply interaction.
It is recommended to use four layer Printed-Circuit Board (PCB). Top and bottom layer for
signal wires, one for ground plane and one for supply plane. Split of analog and digital
supply layer areas shows best video performance.
The ground and supply plane need to be close to each other to achieve capacitive
behavior. Due to this size, distance and also material is responsible for layer capacitor
value. Additional decoupling isles are required.
DIGITAL SUPPLY LAYERS 2b, 3b
R
SAA7144HL
A31
C
C
A32
A42
digital supply:
analog supply:
VDDA
layer 3a
L (HF trap)
3.3 V
VDDD
Clayer
100 nF
VSSA
layer:
1 signals
2a VSSA
2b VSSD
3a VDDA
3b VDDD
4 signals
ITU 656
BUS D
A41
ITU 656
BUS C
A22
C
R
R
C
A21
R
CVBS INPUTS
A12
ITU 656
BUS B
A11
OUTPUTS
ITU 656
BUS A
ANALOG SUPPLY LAYERS 2a, 3a
layer 2a
R
layer 3b
L (HF trap)
3.3 V
4Ω
Clayer
GNDA
direct to plane
VSSD
layer 2b
GNDD
direct to plane
001aab320
Fig 29. Supply method.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
56 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
16. Test information
16.1 Boundary scan test
The SAA7144HL has built-in logic and five dedicated pins to support boundary scan
testing which allows board testing without special hardware (nails). The SAA7144HL
follows the “IEEE Std. 1149.1 - Standard Test Access Port and Boundary - Scan
Architecture” set by the Joint Test Action Group (JTAG) chaired by Philips.
The 5 special pins are: Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRST_N),
Test Data Input (TDI) and Test Data Output (TDO).
The Boundary Scan Test (BST) functions BYPASS, EXTEST, INTEST, SAMPLE, CLAMP
and IDCODE are all supported (see Table 60). Details about the JTAG BST-test can be
found in the specification “IEEE Std. 1149.1”.
Table 60:
BST instructions supported by the SAA7144HL
Instruction
Description
BYPASS
This mandatory instruction provides a minimum length serial path (1 bit) between
pins TDI and TDO when no test operation of the component is required.
EXTEST
This mandatory instruction allows testing of off-chip circuitry and board level
interconnections.
INTEST
This optional instruction allows testing of the internal logic (no support for
customers available).
SAMPLE
This mandatory instruction can be used to take a sample of the inputs during
normal operation of the component. It can also be used to preload data values into
the latched outputs of the boundary scan register.
CLAMP
This optional instruction is useful for testing when not all ICs have BST. This
instruction addresses the bypass register while the boundary scan register is in
external test mode.
IDCODE
This optional instruction will provide information on the components manufacturer,
part number and version number.
16.1.1 Initialization of boundary scan circuit
The Test Access Port (TAP) controller of an IC should be in the reset state
(TEST_LOGIC_RESET) when the IC is in the functional mode. This reset state also
forces the instruction register into a functional instruction such as IDCODE or BYPASS.
To solve the power-up reset, the standard specifies that the TAP controller will be forced
asynchronously to the TEST_LOGIC_RESET state by setting the TRST_N pin LOW.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
57 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
16.1.2 Device identification codes
A device identification register is specified in “IEEE Std. 1149.1b-1994”. It is a 32-bit
register which contains fields for the specification of the IC manufacturer, the IC part
number and the IC version number. Its biggest advantage is the possibility to check for the
correct ICs mounted after production and determination of the version number of ICs
during field service.
When the IDCODE instruction is loaded into the BST instruction register, the identification
register will be connected internally between pins TDI and TDO of the IC. The
identification register will load a component specific code during the
CAPTURE_DATA_REGISTER state of the TAP controller and this code can subsequently
be shifted out. At board level, this code can be used to verify component manufacturer,
type and version number. The device identification register contains 32 bits, numbered
31 to 0, where bit 31 is the most significant bit (nearest to TDI) and bit 0 is the least
significant bit (nearest to TDO); see Figure 30.
MSB
31
TDI
LSB
28 27
12 11
1
nnnn
0011010110100000
00000010101
4-bit
version
code
16-bit part number
11-bit manufacturer
identification
0
1
TDO
001aab315
Fig 30. 32 bits of identification code.
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
58 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
17. Package outline
LQFP128: plastic low profile quad flat package; 128 leads; body 14 x 20 x 1.4 mm
SOT425-1
c
y
X
A
102
103
65
64
ZE
e
E HE
A A2 A
1
(A 3)
θ
wM
Lp
bp
pin 1 index
L
detail X
39
128
1
38
v M A
ZD
wM
bp
e
D
B
HD
v M B
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
mm
1.6
0.15
0.05
1.45
1.35
0.25
0.27
0.17
0.20
0.09
20.1
19.9
14.1
13.9
0.5
HD
HE
22.15 16.15
21.85 15.85
L
Lp
v
w
y
1
0.75
0.45
0.2
0.12
0.1
Z D(1) Z E(1)
0.81
0.59
0.81
0.59
θ
7o
o
0
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT425-1
136E28
MS-026
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
00-01-19
03-02-20
Fig 31. Package outline SOT425-1 (LQFP128).
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
59 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
18. Soldering
18.1 Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology. A more in-depth account of
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages
(document order number 9398 652 90011).
There is no soldering method that is ideal for all surface mount IC packages. Wave
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch
SMDs. In these situations reflow soldering is recommended.
18.2 Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement. Driven by legislation and
environmental forces the worldwide use of lead-free solder pastes is increasing.
Several methods exist for reflowing; for example, convection or convection/infrared
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)
vary between 100 seconds and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste
material. The top-surface temperature of the packages should preferably be kept:
• below 225 °C (SnPb process) or below 245 °C (Pb-free process)
– for all BGA, HTSSON..T and SSOP..T packages
– for packages with a thickness ≥ 2.5 mm
– for packages with a thickness < 2.5 mm and a volume ≥ 350 mm3 so called
thick/large packages.
• below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.
18.3 Wave soldering
Conventional single wave soldering is not recommended for surface mount devices
(SMDs) or printed-circuit boards with a high component density, as solder bridging and
non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically
developed.
If wave soldering is used the following conditions must be observed for optimal results:
• Use a double-wave soldering method comprising a turbulent wave with high upward
pressure followed by a smooth laminar wave.
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be
parallel to the transport direction of the printed-circuit board;
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
60 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
– smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the
transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
• For packages with leads on four sides, the footprint must be placed at a 45° angle to
the transport direction of the printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most
applications.
18.4 Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be
limited to 10 seconds at up to 300 °C.
When using a dedicated tool, all other leads can be soldered in one operation within
2 seconds to 5 seconds between 270 °C and 320 °C.
18.5 Package related soldering information
Table 61:
Suitability of surface mount IC packages for wave and reflow soldering methods
Package [1]
Soldering method
Wave
Reflow [2]
BGA, HTSSON..T [3], LBGA, LFBGA, SQFP,
SSOP..T [3], TFBGA, VFBGA, XSON
not suitable
suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,
HVSON, SMS
not suitable [4]
suitable
PLCC [5], SO, SOJ
suitable
suitable
not
recommended [5] [6]
suitable
SSOP, TSSOP, VSO, VSSOP
not
recommended [7]
suitable
CWQCCN..L [8], PMFP [9], WQCCN..L [8]
not suitable
LQFP, QFP, TQFP
[1]
For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);
order a copy from your Philips Semiconductors sales office.
[2]
All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit
Packages; Section: Packing Methods.
[3]
These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package
body peak temperature must be kept as low as possible.
9397 750 14454
Product data sheet
not suitable
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
61 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
[4]
These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink
on the top side, the solder might be deposited on the heatsink surface.
[5]
If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave
direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[6]
Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
[7]
Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
[8]
Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by
using a hot bar soldering process. The appropriate soldering profile can be provided on request.
[9]
Hot bar soldering or manual soldering is suitable for PMFP packages.
19. Revision history
Table 62:
Revision history
Document ID
Release date
Data sheet status
Change notice
Doc. number
Supersedes
SAA7144HL_1
20050421
Product data sheet
-
9397 750 14454
-
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
62 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
20. Data sheet status
Level
Data sheet status [1]
Product status [2] [3]
Definition
I
Objective data
Development
This data sheet contains data from the objective specification for product development. Philips
Semiconductors reserves the right to change the specification in any manner without notice.
II
Preliminary data
Qualification
This data sheet contains data from the preliminary specification. Supplementary data will be published
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in
order to improve the design and supply the best possible product.
III
Product data
Production
This data sheet contains data from the product specification. Philips Semiconductors reserves the
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant
changes will be communicated via a Customer Product/Process Change Notification (CPCN).
[1]
Please consult the most recently issued data sheet before initiating or completing a design.
[2]
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at
URL http://www.semiconductors.philips.com.
[3]
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
21. Definitions
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Short-form specification — The data in a short-form specification is
extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are
free from patent, copyright, or mask work right infringement, unless otherwise
specified.
Limiting values definition — Limiting values given are in accordance with
the Absolute Maximum Rating System (IEC 60134). Stress above one or
more of the limiting values may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or at any
other conditions above those given in the Characteristics sections of the
specification is not implied. Exposure to limiting values for extended periods
may affect device reliability.
Application information — Applications that are described herein for any
of these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.
23. Trademarks
22. Disclaimers
Intercast — is a trademark of Intel Corporation.
Macrovision — is a registered trademark of Macrovision Corporation.
Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
24. Contact information
For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: [email protected]
9397 750 14454
Product data sheet
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Rev. 01 — 21 April 2005
63 of 64
SAA7144HL
Philips Semiconductors
Quadruple video input processor
25. Contents
1
2
2.1
2.2
3
4
5
6
7
7.1
7.2
8
8.1
8.2
8.2.1
8.2.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
9
9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11
9.3.12
9.3.13
9.3.14
9.3.15
9.3.16
9.3.17
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Features of each of the four video decoder
instances A, B, C and D . . . . . . . . . . . . . . . . . . 2
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Quick reference data . . . . . . . . . . . . . . . . . . . . . 3
Ordering information . . . . . . . . . . . . . . . . . . . . . 3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pinning information . . . . . . . . . . . . . . . . . . . . . . 5
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5
Functional description . . . . . . . . . . . . . . . . . . . 8
Analog input processing . . . . . . . . . . . . . . . . . . 9
Analog control circuits. . . . . . . . . . . . . . . . . . . . 9
Clamping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Gain control . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chrominance processing . . . . . . . . . . . . . . . . 12
Luminance processing . . . . . . . . . . . . . . . . . . 16
Synchronization . . . . . . . . . . . . . . . . . . . . . . . 20
Clock generation circuit . . . . . . . . . . . . . . . . . 21
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . 21
Multistandard VBI data slicer . . . . . . . . . . . . . 23
VBI-raw data bypass. . . . . . . . . . . . . . . . . . . . 23
Digital output port . . . . . . . . . . . . . . . . . . . . . . 24
2
I C-bus description . . . . . . . . . . . . . . . . . . . . . 32
I2C-bus format. . . . . . . . . . . . . . . . . . . . . . . . . 32
I2C-bus register description . . . . . . . . . . . . . . 33
I2C-bus detail . . . . . . . . . . . . . . . . . . . . . . . . . 36
Subaddress 00h (read only register) . . . . . . . 36
Subaddress 01h . . . . . . . . . . . . . . . . . . . . . . . 36
Subaddress 02h . . . . . . . . . . . . . . . . . . . . . . . 36
Subaddress 03h . . . . . . . . . . . . . . . . . . . . . . . 37
Subaddress 04h . . . . . . . . . . . . . . . . . . . . . . . 38
Subaddress 06h . . . . . . . . . . . . . . . . . . . . . . . 38
Subaddress 07h . . . . . . . . . . . . . . . . . . . . . . . 38
Subaddress 08h . . . . . . . . . . . . . . . . . . . . . . . 39
Subaddress 09h . . . . . . . . . . . . . . . . . . . . . . . 39
Subaddress 0Ah . . . . . . . . . . . . . . . . . . . . . . . 40
Subaddress 0Bh . . . . . . . . . . . . . . . . . . . . . . . 40
Subaddress 0Ch . . . . . . . . . . . . . . . . . . . . . . . 41
Subaddress 0Dh . . . . . . . . . . . . . . . . . . . . . . . 41
Subaddress 0Eh . . . . . . . . . . . . . . . . . . . . . . . 41
Subaddress 0Fh . . . . . . . . . . . . . . . . . . . . . . . 42
Subaddress 10h . . . . . . . . . . . . . . . . . . . . . . . 42
Subaddress 11h . . . . . . . . . . . . . . . . . . . . . . . 43
9.3.18
9.3.19
9.3.20
9.3.21
9.3.22
9.3.23
9.3.24
9.3.25
9.3.26
9.3.27
9.3.28
Subaddress 13h . . . . . . . . . . . . . . . . . . . . . . .
Subaddress 1Fh (read only register) . . . . . . .
Subaddress 40h . . . . . . . . . . . . . . . . . . . . . . .
Subaddresses 41h to 57h . . . . . . . . . . . . . . .
Subaddress 58h . . . . . . . . . . . . . . . . . . . . . . .
Subaddresses 59h and 5Bh. . . . . . . . . . . . . .
Subaddresses 5Ah and 5Bh . . . . . . . . . . . . .
Subaddress 5Bh. . . . . . . . . . . . . . . . . . . . . . .
Subaddress 5Eh. . . . . . . . . . . . . . . . . . . . . . .
Subaddress 60h (read only register) . . . . . . .
Subaddresses 61h and 62h (read only
43
44
44
45
45
46
46
46
46
47
register) . . . . . . . . . . . . . . . . . . . . . . . . . 47
10
11
12
13
14
15
15.1
16
16.1
16.1.1
16.1.2
17
18
18.1
18.2
18.3
18.4
18.5
19
20
21
22
23
24
I2C-bus
start set-up . . . . . . . . . . . . . . . . . . . . .
Limiting values . . . . . . . . . . . . . . . . . . . . . . . .
Thermal characteristics . . . . . . . . . . . . . . . . .
Characteristics . . . . . . . . . . . . . . . . . . . . . . . .
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . .
Application information . . . . . . . . . . . . . . . . .
Recommended printed-circuit board layout . .
Test information. . . . . . . . . . . . . . . . . . . . . . . .
Boundary scan test . . . . . . . . . . . . . . . . . . . .
Initialization of boundary scan circuit . . . . . . .
Device identification codes. . . . . . . . . . . . . . .
Package outline . . . . . . . . . . . . . . . . . . . . . . . .
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction to soldering surface mount
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . .
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . .
Manual soldering . . . . . . . . . . . . . . . . . . . . . .
Package related soldering information . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . . .
Data sheet status. . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . . .
47
50
50
50
54
55
56
57
57
57
58
59
60
60
60
60
61
61
62
63
63
63
63
63
© Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.
Date of release: 21 April 2005
Document number: 9397 750 14454
Published in The Netherlands