TA8696F TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA8696F γ Correction IC for LCD TV TA8696F operates with a power supply voltage of 3.3 to 7.5 V and can be directly driven with a dry battery. Features · Enables high-precision γ correction using logarithmic compression. · γ correction for normally white LCD panel is possible. · Offset/cancel input circuit enables high-quality γ correction without distorting the primary color input signals. · Cut-off voltage and drive voltage can be independently controlled. · Unsusceptible to negative effects of fluctuation of power supply voltage. · Either latch mode or through mode can be selected using the CH display mode switching pin. Weight: 0.63 g (typ.) Block Diagram (+13 V) H.VCC Cutoff VO Center F.F. Output HD VD CP 30 29 28 27 B G Input offset COM control Output 26 25 B G R 24 23 22 Pulse Modulation F.F. H.GND Control 21 20 18 17 16 Current Conversion Output Amp F.F. 19 Polarity Switching Level Control Input Detection CH Display Switching Current Conversion g Correction Reference Voltage Input Latch 1 Offset, Cancel 2 3 4 B G R Channel Mode Channel Input 5 BS/H Current Conversion 6 7 8 9 B G R L.GND Input 10 11 RS/H Vref 12 13 B 14 G Drive 1 15 COM L.VCC (+4 V) 2002-02-13 TA8696F Pin Function Pin No. Pin Name Reference Voltage (V) Reference Current (mA) 1 Mode Switch 0 0 CH display mode switching (latch mode/through mode) 2 CH B Input 0 0 CH display signal blue input 3 CH G Input 0 0 CH display signal green input 4 CH R Input 0 0 CH display signal red input 5 BS/H 1.6 0 Blue input signal sample and hold capacitor 6 B Input 1.6 0 Blue primary color input 7 G Input 1.6 0 Green primary color input 8 R Input 1.6 0 Red primary color input 9 L.GND 0 -8.1 Low-voltage signal GND 10 RS/H 1.6 0 Red input signal sample and hold capacitor 11 Vref 1.6 0 Internal reference voltage 12 B Drive 2 0 B-axis drive control 13 R Drive 2 0 R-axis drive control 14 COM Drive 2 0 Common drive control 15 L.VCC 4.0 8.1 16 g Offset 2 0 g correction starting point control 17 COM Cut-off 2 0 Common cut-off control 18 R Cut-off 2 0 R-axis cut-off control 19 B Cut-off 2 0 B-axis cut-off control Function Low-voltage signal VCC 20 H.GND 0 -4.6 21 F.F. CONT. 1.4 ¾ 22 R Output 6.5 0 Red signal input 23 G Output 6.5 0 Green signal input 24 B Output 6.5 0 Blue signal input 25 VO Center 6.5 0 Signal output center voltage control 26 H.VCC 13.0 4.6 27 F.F. Output 0.2 0 Flip-flop output 28 CP 0.9 0 Clamp pulse input 29 VD 1.4 0 Vertical drive pulse input 30 HD 0.9 0 Horizontal drive pulse input High-voltage signal GND ¾ High-voltage signal VCC Note 1: Reference voltage and reference current are for DC bias with no signal. The current which flows into the IC considered to be positive current. 2 2002-02-13 TA8696F Pin No. Pin Name and Function Typical Signal Level Internal bias Switches channel indication mode 1 0V ViL = GND 50 kW High level: Character mode VTH = 1.9 V Low level: Latch mode ViH Max = L.VCC (synchronized with HD) L.VCC ViH = L.VCC 1 30 kW Mode switch Interface Current ViL Min = GND Clamped on L.VCC and GND 0V 5V 2 CH G input 3 CH R input 4 0V VTH = 1.7 V Channel indication signal ViH Max = 5.5 V Input pin ViL Min = GND 2 3 4 60 kW 40 kW Internal bias CH B input Clamped on GND L.VCC RS/H External capacitance 1 mF Regenerate B/R-axis direct Permissible load current current voltage 0 Capaciator pin 100 W 1.6 V 5 10 1 kW 1 kW Clamped on L.VCC and GND 50 mA 10 Internal bias 100 W 5 BS/H 8 R input Primary color input pins 1.6 V White signal level 1.6 V Black signal level 0.9 V Maximum input level 1.4 Vp-p Clamped on L.VCC and GND 6 7 8 8 kW 14 kW 50 mA 7 G input Internal bias 50 mA 6 B input 2 kW L.VCC 5 kW L.VCC Permissible load current 0 Clamped on L.VCC and GND 11 3 50 mA Internal standard voltage reference pin 30 kW 1.6 V 32 kW Vref 11 Internal bias 2002-02-13 TA8696F Pin No. Pin Name and Function Typical Signal Level Interface Current R drive ViH Max = L.VCC 18 R cut-off ViL Min = GND 19 B cut-off Clamped on L.VCC and GND 12 13 18 19 40 kW 150 mA 13 5 kW Internal bias L.VCC/2 50 mA B drive 50 mA 12 5 kW L.VCC 5 kW L.VCC 20 kW Internal bias L.VCC/2 17 COM cut-off ViH Max = L.VCC ViL Min = GND Clamped on L.VCC and GND 40 kW 14 17 50 mA COM drive 50 mA 14 5 kW L.VCC Internal bias L.VCC/2 g off-set ViH Max = L.VCC ViL Min = GND 16 40 kW 50 mA Clamped on L.VCC and GND 100 mA 16 Inverted in sync with VD 22 23 24 50 kW 6.5 kW B output 25 kW G output 24 100 mA 23 6.5 kW R output H.VCC 50 kW 22 11.5 Black signal level 8.5 White signal level 6.5 4.5 White signal level 1.5 Black signal level Clamped on H.VCC and GND 4 2002-02-13 TA8696F Pin Name and Function Pin No. Typical Signal Level Interface Current 65 kW H.VCC Internal bias H.VCC/2 VO center ViH Max = H.VCC 25 65 kW 25 ViL Min = GND 100 mA Clamped on H.VCC and GND H.VCC F.F. output Maximum sink current 0.5 mA 27 (VoL Max = 0.3 V) 30 W 8 kW 27 13 W Desaturated open collector output VoH Max = H.VCC Clamped on H.VCC and GND Be sure CP is correspondent to the back porch of primary color input signal. 28 Clamp pulse input 50 mA Input CP L.VCC 5V 0V CP VTH = 1.6 V 1 kW 28 ViH Max = 5.5 V ViL Min = GND Clamped on H.VCC and GND Be sure VD falls within the vertical blanking period of primary color input signal. 29 3.0 V 45 kW 5V 0V VD input Vertical drive pulse input H.VCC 1V 29 VTH = ViH Max = 5.5 V ViL Min = GND 21 Clamped on H.VCC and GND Be sure HD falls within the horizontal blanking period of primary color input signal. 5V 0V 30 HD input 50 mA 50 mA L.VCC 1H VTH = 0.9 V 30 1 kW ViH Max = 5.5 V ViL Min = GND Clamped on GND 5 2002-02-13 TA8696F Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit Power supply voltage L.VCC 8 V Power supply voltage H.VCC 14.5 V PD 890 mW Power dissipation qja 7.2 mW/°C Operating temperature Topr -20 to +75 °C Storage temperature Tstg -55 to 150 °C Power dissipation lowering rate Note 2: When the IC is operated at 25°C or higher, reduce power dissipation by 12.8 mW per degree. Recommended Power Supply Voltage Pin No. Pin Name Min Typ. Max 15 L.VCC 3.3 5.0 7.5 26 H.VCC 10.0 13.0 14.0 Unit V Electrical Characteristics (unless otherwise specified, VCC = 4 V, Ta = 25°C) Symbol Test Circuit Test Condition Min Typ. Max Unit Primary color input white signal level ¾ 2 The same conditions are given to R/G/B-axis. ¾ 1.6 ¾ V Primary color input black signal level ¾ 2 The same conditions are given to R/G/B-axis. ¾ 0.9 ¾ V CH indication signal level ¾ 2 The same conditions are given to R/G/B-axis. 3 5 5.5 V Timing pulse level ¾ 2 HD , VD , LD 3 5 5.5 V Operating power supply current (1) ¾ 2 Pin 15.L.VCC = 4 V No load. 5.8 8.4 10.9 mA Operating power supply current (2) ¾ 2 Pin 26.H.VCC = 13 V No load. 3.2 4.6 6.0 mA Input signal dynamic range ¾ 2 ¾ 1.2 1.4 1.6 V Input signal pin resistor RIN 2 ¾ 10.5 14.0 17.5 kW Input signal pin capacity CIN 2 ¾ ¾ 1 3 pF Black signal level off-set ¾ 2 ¾ 100 200 mV Black signal level off-set difference in the axes ¾ 2 ¾ ¾ 50 100 mV Black signal level off-set adjustment amount ¾ 2 ¾ ¾ 0.3 ¾ V Black signal level off-set adjustment sensitivity ¾ 2 ¾ ¾ 300 ¾ mV/V Input off-set elimination capacity ¾ 2 ¾ 20 26 ¾ dB Off-set cancel difference in the axes ¾ 2 ¾ ¾ 50 ¾ mV Typical gain ¾ 2 Drive adjustment open 9.4 12.4 15.4 dB Typical gain difference in the axes ¾ 2 Drive adjustment open ¾ 0.5 ¾ dB Typical gain difference in the polarity ¾ 2 Drive adjustment open ¾ 0.5 ¾ dB Maximum gain ¾ 2 ¾ 15.4 18.4 ¾ dB Minimum gain ¾ 2 ¾ ¾ -20 -10 dB Characteristics [1] Operating range [2] Electrical characteristics g off-set open 6 2002-02-13 TA8696F Symbol Test Circuit Test Condition Min Typ. Max Unit Gain control sensitivity ¾ 2 ¾ ¾ 6 ¾ dB/V Polarity reverse center voltage ¾ 2 6.3 6.5 6.7 V Polarity reverse center voltage difference in the axes ¾ 2 ¾ ¾ 50 100 mV Polarity reverse center voltage variable range ¾ 2 ¾ ¾ 2 ¾ V Polarity reverse center voltage controlling sensitivity ¾ 2 ¾ ¾ 1 ¾ V/V Typical cut-off level (N.W) ¾ 2 ±4.8 ±5 ±5.2 V Cut-off level difference in the axes ¾ 2 ¾ ¾ 50 100 mV Cut-off level variable amount ¾ 2 ¾ ¾ ±4 ¾ V Cut-off level controlling sensitivity ¾ 2 ¾ ¾ 2 ¾ V/V Output dynamic range ¾ 2 ¾ ¾ 10 ¾ Vp-p Output impedance ¾ 2 ¾ ¾ 10 ¾ W Frequency characteristic ¾ 2 Loaded amount 120 pF, -3dB point 3 4 ¾ MHz Frequency characteristic difference in the axes ¾ 2 Loaded amount 120 pF, -3dB point ¾ 0.1 0.3 MHz Slew rate ¾ 2 Loaded amount 120 pF ¾ 4 ¾ V/ms Slew rate difference in the axes ¾ 2 Loaded amount 120 pF ¾ ¾ 10 % Crosstalk in the axes ¾ 2 ¾ ¾ 50 40 dB Direct current transmission rate ¾ 2 ¾ ¾ 100 ¾ % S/N N ¾ 2 ¾ 40 50 ¾ dB CH indication signal threshold ¾ 2 ¾ ¾ 2.2 ¾ V CH indication mode switch threshold ¾ 2 ¾ ¾ 2.2 ¾ V CH indication output delay (line mode) ¾ 2 ¾ ¾ 1 ¾ ms CH indication output delay (dot mode) ¾ 2 ¾ ¾ 0.1 ¾ ms CH indication latch minimum operation voltage ¾ 2 ¾ ¾ ¾ 3 V HD pulse threshold ¾ 2 ¾ 1.3 1.6 1.9 V LD pulse threshold ¾ 2 ¾ 1.3 1.6 1.9 V VD pulse threshold ¾ 2 ¾ 1.3 1.6 1.9 V F.F. minimum operation voltage ¾ 2 ¾ ¾ ¾ 10 V F.F. phase delay ¾ 2 ¾ ¾ 3 ¾ ms F.F. response frequency ¾ 2 ¾ 20 ¾ ¾ kHz F.F. output high level ¾ 2 ¾ 11.0 13.0 ¾ V F.F. output low level ¾ 2 ¾ 0.1 0.3 0.5 V g correction value (1) NW ¾ 2 ¾ ¾ 0.35 ¾ ¾ g correction value (2) NW ¾ 2 ¾ ¾ 20 ¾ ¾ g correction value difference in the axes (1) ¾ 2 ¾ ¾ ¾ 10 % g correction value difference in the axes (2) ¾ 2 ¾ ¾ ¾ 10 % Characteristics Vo center pin open Difference from Vo center voltage 7 2002-02-13 TA8696F Test Circuit 1 Direct Current Characteristic VD CP 10 mF/25 V 26 25 24 F.F. H.VCC VO Output Center Channel Input B 23 22 G R 21 20 19 H.GND B Output 17 G COM 16 g Offset Cutoff Input Drive B G R BS/H B G R 1 2 3 4 5 6 7 8 L.GND RS/H 9 10 C10 1 mF/50 V Channel Mode C5 18 Vref B G 11 12 13 COM L.VCC 14 15 10 mF/10 V HD 27 0.01 mF C15A 28 C15B 29 1 mF/50 V 30 0.01 mF C26A C26B H.VCC 13.0 V L.VCC 4.0 V Note 3: Connect test pins directly to IC pins. (not shown above.) Test value is written as V.1 to V.30. Test Circuit 2 Alternating Current Characteristic 23 22 B G R 20 kW VR16 20 kW VR17 20 kW VR18 20 19 18 17 H.GND B G COM Output 16 g Offset Cutoff Drive R BS/H B G R 1 2 3 4 5 6 7 8 L.GND RS/H 9 1 mF/50 V G 10 B G 11 12 13 COM L.VCC 14 15 T15 L.VCC SW 12 SW 13 SW 14 VR12 T1 to T30 Power supply and bias signal apply pins. Vref 0.01 mF Input B C5 20 kW VR19 120 pF 21 10 mF/10 V C15B Channel Input 24 20 kW C15A 25 Channel Mode SW 11 120 pF C22 120 pF C23 C24 50 kW 10 mF/25 V VR25 0.01 mF C26A 26 20 kW VR14 27 F.F. H.VCC VO Output Center 20 kW VR13 28 CP SW 19 SW 18 SW 17 SW 16 1 mF/50 V 29 VD SW 25 SW 24 SW 23 SW 22 C10 30 HD 20 kW C26B R27 T26 H.VCC M1 to M30 Power voltage and waveform testing pins. Note 4: The numbers of testing pins are not shown above because they are the same as IC pin numbers. 8 2002-02-13 TA8696F Input/Output Characteristic to V14 g Curve (G-axis) 11.5 5.0 Drive adjustment point V14 = 0.5 ® 3.5 V 10.5 9.5 V14 = 0.5 V 4.0 (V) 3.0 Vout Output level (V) 8.5 V14 = 3.5 V 7.5 6.5 5.5 4.5 2.0 3.5 2.5 Adjustment point 1.0 0.8 1.0 1.2 Input level 1.4 1.5 0 1.6 0.2 0.4 0.6 (V) 0.8 1 1.2 1.4 13 10.5 11.7 V16 = 3.0 V 9.5 V17 = 0.5 ® 3.5 V V17 = 2.0 V V17 = 0.5 V 10.4 V16 = 2.0 V 9.1 V16 = 1.0 V (V) V16 = 4.0 V 6.5 Vout Vout (V) 8.5 5.5 7.8 6.5 3.9 3.5 2.6 2.5 1.3 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0 2.0 Vin (V) V17 = 3.5 V 5.2 4.5 0.2 2 Input/Output Characteristic to V17 11.5 1.5 0 1.8 Vin (V) Input/Output Characteristic to a Change of V16 7.5 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Vin (V) 9 2002-02-13 TA8696F H.VCC (+13 V) 30 29 28 20 kW 27 26 25 B B G R 24 23 22 Pulse Modulation Input offset COM control 21 H.GND 20 19 18 17 16 Current Conversion Output Amp F.F. G Output 0.01 mF CP 47 mF VD Cutoff VO Center F.F. Output HD 0.01 mF Typical Application Circuits Polarity Switching Level Control Input Detection CH Display Switching Current Conversion g Correction Reference Voltage 4 B G R Channel Mode Channel Input 5 BS/H 6 7 8 9 B G R L.GND 10 11 12 13 14 RS/H Input B G Drive ○ 15 0.01 mF 3 Current Conversion 47 mF 2 1 mF 1 Offset, Cancel 1 mF Input Latch COM L.VCC (+4 V) All control VR is 20 kB. Connect 0.01 mF close to each control pin. 10 2002-02-13 TA8696F Package Dimensions Weight: 0.63 g (typ.) 11 2002-02-13 TA8696F RESTRICTIONS ON PRODUCT USE 000707EBA · TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · The products described in this document are subject to the foreign exchange and foreign trade laws. · The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice. 12 2002-02-13