TOSHIBA TA8696F

TA8696F
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA8696F
γ Correction IC for LCD TV
TA8696F operates with a power supply voltage of 3.3 to 7.5 V
and can be directly driven with a dry battery.
Features
·
Enables high-precision γ correction using logarithmic
compression.
·
γ correction for normally white LCD panel is possible.
·
Offset/cancel input circuit enables high-quality γ correction
without distorting the primary color input signals.
·
Cut-off voltage and drive voltage can be independently
controlled.
·
Unsusceptible to negative effects of fluctuation of power
supply voltage.
·
Either latch mode or through mode can be selected using the CH display mode switching pin.
Weight: 0.63 g (typ.)
Block Diagram
(+13 V)
H.VCC
Cutoff
VO Center
F.F. Output
HD
VD
CP
30
29
28
27
B
G
Input offset
COM control
Output
26
25
B
G
R
24
23
22
Pulse Modulation
F.F. H.GND
Control
21
20
18
17
16
Current Conversion
Output Amp
F.F.
19
Polarity Switching
Level Control
Input Detection
CH Display Switching
Current Conversion
g Correction
Reference Voltage
Input Latch
1
Offset, Cancel
2
3
4
B
G
R
Channel Mode Channel Input
5
BS/H
Current Conversion
6
7
8
9
B
G
R
L.GND
Input
10
11
RS/H
Vref
12
13
B
14
G
Drive
1
15
COM L.VCC
(+4 V)
2002-02-13
TA8696F
Pin Function
Pin No.
Pin Name
Reference
Voltage
(V)
Reference
Current
(mA)
1
Mode Switch
0
0
CH display mode switching (latch mode/through mode)
2
CH B Input
0
0
CH display signal blue input
3
CH G Input
0
0
CH display signal green input
4
CH R Input
0
0
CH display signal red input
5
BS/H
1.6
0
Blue input signal sample and hold capacitor
6
B Input
1.6
0
Blue primary color input
7
G Input
1.6
0
Green primary color input
8
R Input
1.6
0
Red primary color input
9
L.GND
0
-8.1
Low-voltage signal GND
10
RS/H
1.6
0
Red input signal sample and hold capacitor
11
Vref
1.6
0
Internal reference voltage
12
B Drive
2
0
B-axis drive control
13
R Drive
2
0
R-axis drive control
14
COM Drive
2
0
Common drive control
15
L.VCC
4.0
8.1
16
g Offset
2
0
g correction starting point control
17
COM Cut-off
2
0
Common cut-off control
18
R Cut-off
2
0
R-axis cut-off control
19
B Cut-off
2
0
B-axis cut-off control
Function
Low-voltage signal VCC
20
H.GND
0
-4.6
21
F.F. CONT.
1.4
¾
22
R Output
6.5
0
Red signal input
23
G Output
6.5
0
Green signal input
24
B Output
6.5
0
Blue signal input
25
VO Center
6.5
0
Signal output center voltage control
26
H.VCC
13.0
4.6
27
F.F. Output
0.2
0
Flip-flop output
28
CP
0.9
0
Clamp pulse input
29
VD
1.4
0
Vertical drive pulse input
30
HD
0.9
0
Horizontal drive pulse input
High-voltage signal GND
¾
High-voltage signal VCC
Note 1: Reference voltage and reference current are for DC bias with no signal.
The current which flows into the IC considered to be positive current.
2
2002-02-13
TA8696F
Pin No.
Pin Name and Function
Typical Signal Level
Internal bias
Switches channel indication
mode
1
0V
ViL = GND
50 kW
High level: Character mode
VTH = 1.9 V
Low level: Latch mode
ViH Max = L.VCC
(synchronized with HD)
L.VCC
ViH = L.VCC
1
30 kW
Mode switch
Interface Current
ViL Min = GND
Clamped on L.VCC and GND
0V
5V
2
CH G input
3
CH R input
4
0V
VTH = 1.7 V
Channel indication signal
ViH Max = 5.5 V
Input pin
ViL Min = GND
2
3
4
60 kW
40 kW
Internal bias
CH B input
Clamped on GND
L.VCC
RS/H
External capacitance 1 mF
Regenerate B/R-axis direct Permissible load current
current voltage
0
Capaciator pin
100 W
1.6 V
5
10
1 kW 1 kW
Clamped on L.VCC and GND
50 mA
10
Internal bias
100 W
5
BS/H
8
R input
Primary color input pins
1.6 V
White signal level
1.6 V
Black signal level
0.9 V
Maximum input level 1.4 Vp-p
Clamped on L.VCC and GND
6
7
8
8 kW
14 kW
50 mA
7
G input
Internal bias
50 mA
6
B input
2 kW
L.VCC
5 kW
L.VCC
Permissible load current
0
Clamped on L.VCC and GND
11
3
50 mA
Internal standard voltage
reference pin
30 kW
1.6 V
32 kW
Vref
11
Internal bias
2002-02-13
TA8696F
Pin No.
Pin Name and Function
Typical Signal Level
Interface Current
R drive
ViH Max = L.VCC
18
R cut-off
ViL Min = GND
19
B cut-off
Clamped on L.VCC and GND
12
13
18
19
40 kW
150 mA
13
5 kW
Internal bias L.VCC/2
50 mA
B drive
50 mA
12
5 kW
L.VCC
5 kW
L.VCC
20 kW
Internal bias L.VCC/2
17
COM cut-off
ViH Max = L.VCC
ViL Min = GND
Clamped on L.VCC and GND
40 kW
14
17
50 mA
COM drive
50 mA
14
5 kW
L.VCC
Internal bias L.VCC/2
g off-set
ViH Max = L.VCC
ViL Min = GND
16
40 kW
50 mA
Clamped on L.VCC and GND
100 mA
16
Inverted in sync with VD
22
23
24
50 kW
6.5 kW
B output
25 kW
G output
24
100 mA
23
6.5 kW
R output
H.VCC
50 kW
22
11.5 Black
signal level
8.5 White
signal level
6.5
4.5 White
signal level
1.5 Black
signal level
Clamped on H.VCC and GND
4
2002-02-13
TA8696F
Pin Name and Function
Pin No.
Typical Signal Level
Interface Current
65 kW
H.VCC
Internal bias H.VCC/2
VO center
ViH Max = H.VCC
25
65 kW
25
ViL Min = GND
100 mA
Clamped on H.VCC and GND
H.VCC
F.F. output
Maximum sink current
0.5 mA
27
(VoL Max = 0.3 V)
30 W 8 kW
27
13 W
Desaturated open collector
output
VoH Max = H.VCC
Clamped on H.VCC and GND
Be sure CP is correspondent
to the back porch of primary
color input signal.
28
Clamp pulse input
50 mA
Input
CP
L.VCC
5V
0V
CP
VTH = 1.6 V
1 kW
28
ViH Max = 5.5 V
ViL Min = GND
Clamped on H.VCC and GND
Be sure VD falls within the
vertical blanking period of
primary color input signal.
29
3.0 V
45 kW
5V
0V
VD input
Vertical drive pulse input
H.VCC
1V
29
VTH =
ViH Max = 5.5 V
ViL Min = GND
21
Clamped on H.VCC and GND
Be sure HD falls within the
horizontal blanking period of
primary color input signal.
5V
0V
30
HD input
50 mA
50 mA
L.VCC
1H
VTH = 0.9 V
30
1 kW
ViH Max = 5.5 V
ViL Min = GND
Clamped on GND
5
2002-02-13
TA8696F
Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
Power supply voltage
L.VCC
8
V
Power supply voltage
H.VCC
14.5
V
PD
890
mW
Power dissipation
qja
7.2
mW/°C
Operating temperature
Topr
-20 to +75
°C
Storage temperature
Tstg
-55 to 150
°C
Power dissipation lowering rate
Note 2: When the IC is operated at 25°C or higher, reduce power dissipation by 12.8 mW per degree.
Recommended Power Supply Voltage
Pin
No.
Pin Name
Min
Typ.
Max
15
L.VCC
3.3
5.0
7.5
26
H.VCC
10.0
13.0
14.0
Unit
V
Electrical Characteristics (unless otherwise specified, VCC = 4 V, Ta = 25°C)
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Primary color input white signal level
¾
2
The same conditions are given
to R/G/B-axis.
¾
1.6
¾
V
Primary color input black signal level
¾
2
The same conditions are given
to R/G/B-axis.
¾
0.9
¾
V
CH indication signal level
¾
2
The same conditions are given
to R/G/B-axis.
3
5
5.5
V
Timing pulse level
¾
2
HD , VD , LD
3
5
5.5
V
Operating power supply current (1)
¾
2
Pin 15.L.VCC = 4 V No load.
5.8
8.4
10.9
mA
Operating power supply current (2)
¾
2
Pin 26.H.VCC = 13 V No load.
3.2
4.6
6.0
mA
Input signal dynamic range
¾
2
¾
1.2
1.4
1.6
V
Input signal pin resistor
RIN
2
¾
10.5
14.0
17.5
kW
Input signal pin capacity
CIN
2
¾
¾
1
3
pF
Black signal level off-set
¾
2
¾
100
200
mV
Black signal level off-set difference in
the axes
¾
2
¾
¾
50
100
mV
Black signal level off-set adjustment
amount
¾
2
¾
¾
0.3
¾
V
Black signal level off-set adjustment
sensitivity
¾
2
¾
¾
300
¾
mV/V
Input off-set elimination capacity
¾
2
¾
20
26
¾
dB
Off-set cancel difference in the axes
¾
2
¾
¾
50
¾
mV
Typical gain
¾
2
Drive adjustment open
9.4
12.4
15.4
dB
Typical gain difference in the axes
¾
2
Drive adjustment open
¾
0.5
¾
dB
Typical gain difference in the polarity
¾
2
Drive adjustment open
¾
0.5
¾
dB
Maximum gain
¾
2
¾
15.4
18.4
¾
dB
Minimum gain
¾
2
¾
¾
-20
-10
dB
Characteristics
[1] Operating range
[2] Electrical characteristics
g off-set open
6
2002-02-13
TA8696F
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Gain control sensitivity
¾
2
¾
¾
6
¾
dB/V
Polarity reverse center voltage
¾
2
6.3
6.5
6.7
V
Polarity reverse center voltage
difference in the axes
¾
2
¾
¾
50
100
mV
Polarity reverse center voltage
variable range
¾
2
¾
¾
2
¾
V
Polarity reverse center voltage
controlling sensitivity
¾
2
¾
¾
1
¾
V/V
Typical cut-off level (N.W)
¾
2
±4.8
±5
±5.2
V
Cut-off level difference in the axes
¾
2
¾
¾
50
100
mV
Cut-off level variable amount
¾
2
¾
¾
±4
¾
V
Cut-off level controlling sensitivity
¾
2
¾
¾
2
¾
V/V
Output dynamic range
¾
2
¾
¾
10
¾
Vp-p
Output impedance
¾
2
¾
¾
10
¾
W
Frequency characteristic
¾
2
Loaded amount 120 pF, -3dB
point
3
4
¾
MHz
Frequency characteristic difference in
the axes
¾
2
Loaded amount 120 pF, -3dB
point
¾
0.1
0.3
MHz
Slew rate
¾
2
Loaded amount 120 pF
¾
4
¾
V/ms
Slew rate difference in the axes
¾
2
Loaded amount 120 pF
¾
¾
10
%
Crosstalk in the axes
¾
2
¾
¾
50
40
dB
Direct current transmission rate
¾
2
¾
¾
100
¾
%
S/N N
¾
2
¾
40
50
¾
dB
CH indication signal threshold
¾
2
¾
¾
2.2
¾
V
CH indication mode switch threshold
¾
2
¾
¾
2.2
¾
V
CH indication output delay (line mode)
¾
2
¾
¾
1
¾
ms
CH indication output delay (dot mode)
¾
2
¾
¾
0.1
¾
ms
CH indication latch minimum
operation voltage
¾
2
¾
¾
¾
3
V
HD pulse threshold
¾
2
¾
1.3
1.6
1.9
V
LD pulse threshold
¾
2
¾
1.3
1.6
1.9
V
VD pulse threshold
¾
2
¾
1.3
1.6
1.9
V
F.F. minimum operation voltage
¾
2
¾
¾
¾
10
V
F.F. phase delay
¾
2
¾
¾
3
¾
ms
F.F. response frequency
¾
2
¾
20
¾
¾
kHz
F.F. output high level
¾
2
¾
11.0
13.0
¾
V
F.F. output low level
¾
2
¾
0.1
0.3
0.5
V
g correction value (1) NW
¾
2
¾
¾
0.35
¾
¾
g correction value (2) NW
¾
2
¾
¾
20
¾
¾
g correction value difference in the
axes (1)
¾
2
¾
¾
¾
10
%
g correction value difference in the
axes (2)
¾
2
¾
¾
¾
10
%
Characteristics
Vo center pin open
Difference from Vo center
voltage
7
2002-02-13
TA8696F
Test Circuit 1
Direct Current Characteristic
VD
CP
10 mF/25 V
26
25
24
F.F. H.VCC VO
Output
Center
Channel Input
B
23
22
G
R
21
20
19
H.GND
B
Output
17
G
COM
16
g Offset
Cutoff
Input
Drive
B
G
R
BS/H
B
G
R
1
2
3
4
5
6
7
8
L.GND RS/H
9
10
C10
1 mF/50 V
Channel
Mode
C5
18
Vref
B
G
11
12
13
COM L.VCC
14
15
10 mF/10 V
HD
27
0.01 mF
C15A
28
C15B
29
1 mF/50 V
30
0.01 mF
C26A
C26B
H.VCC
13.0 V
L.VCC
4.0 V
Note 3: Connect test pins directly to IC pins. (not shown above.)
Test value is written as V.1 to V.30.
Test Circuit 2
Alternating Current Characteristic
23
22
B
G
R
20 kW
VR16
20 kW
VR17
20 kW
VR18
20
19
18
17
H.GND
B
G
COM
Output
16
g Offset
Cutoff
Drive
R
BS/H
B
G
R
1
2
3
4
5
6
7
8
L.GND RS/H
9
1 mF/50 V
G
10
B
G
11
12
13
COM L.VCC
14
15
T15
L.VCC
SW 12 SW 13 SW 14
VR12
T1 to T30
Power supply and bias signal apply pins.
Vref
0.01 mF
Input
B
C5
20 kW
VR19
120 pF
21
10 mF/10 V
C15B
Channel Input
24
20 kW
C15A
25
Channel
Mode
SW 11
120 pF
C22
120 pF
C23
C24
50 kW
10 mF/25 V
VR25
0.01 mF
C26A
26
20 kW
VR14
27
F.F. H.VCC VO
Output
Center
20 kW
VR13
28
CP
SW 19 SW 18 SW 17 SW 16
1 mF/50 V
29
VD
SW 25 SW 24 SW 23 SW 22
C10
30
HD
20 kW C26B
R27
T26 H.VCC
M1 to M30
Power voltage and waveform testing pins.
Note 4: The numbers of testing pins are not shown above because they are the same as IC pin numbers.
8
2002-02-13
TA8696F
Input/Output Characteristic to V14
g Curve (G-axis)
11.5
5.0
Drive adjustment point
V14 = 0.5 ® 3.5 V
10.5
9.5
V14 = 0.5 V
4.0
(V)
3.0
Vout
Output level
(V)
8.5
V14 = 3.5 V
7.5
6.5
5.5
4.5
2.0
3.5
2.5
Adjustment point
1.0
0.8
1.0
1.2
Input level
1.4
1.5
0
1.6
0.2
0.4
0.6
(V)
0.8
1
1.2
1.4
13
10.5
11.7
V16 = 3.0 V
9.5
V17 = 0.5 ® 3.5 V
V17 = 2.0 V
V17 = 0.5 V
10.4
V16 = 2.0 V
9.1
V16 = 1.0 V
(V)
V16 = 4.0 V
6.5
Vout
Vout
(V)
8.5
5.5
7.8
6.5
3.9
3.5
2.6
2.5
1.3
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0
0
2.0
Vin (V)
V17 = 3.5 V
5.2
4.5
0.2
2
Input/Output Characteristic to V17
11.5
1.5
0
1.8
Vin (V)
Input/Output Characteristic
to a Change of V16
7.5
1.6
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Vin (V)
9
2002-02-13
TA8696F
H.VCC
(+13 V)
30
29
28
20 kW
27
26
25
B
B
G
R
24
23
22
Pulse Modulation
Input offset
COM control
21
H.GND
20
19
18
17
16
Current Conversion
Output Amp
F.F.
G
Output
0.01 mF
CP
47 mF
VD
Cutoff
VO Center
F.F. Output
HD
0.01 mF
Typical Application Circuits
Polarity Switching
Level Control
Input Detection
CH Display Switching
Current Conversion
g Correction
Reference Voltage
4
B
G
R
Channel Mode Channel Input
5
BS/H
6
7
8
9
B
G
R
L.GND
10
11
12
13
14
RS/H
Input
B
G
Drive
○
15
0.01 mF
3
Current Conversion
47 mF
2
1 mF
1
Offset, Cancel
1 mF
Input Latch
COM L.VCC
(+4 V)
All control VR is 20 kB. Connect 0.01 mF close to each control pin.
10
2002-02-13
TA8696F
Package Dimensions
Weight: 0.63 g (typ.)
11
2002-02-13
TA8696F
RESTRICTIONS ON PRODUCT USE
000707EBA
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
· The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
· The products described in this document are subject to the foreign exchange and foreign trade laws.
· The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
· The information contained herein is subject to change without notice.
12
2002-02-13