NX3L1T3157 Low-ohmic single-pole double-throw switch Rev. 05 — 28 July 2008 Product data sheet 1. General description The NX3L1T3157 provides one low-ohmic single-pole double-throw analog switch, suitable for use as an analog or digital multiplexer/demultiplexer. It has a digital select input (S) with Schmitt trigger action, two independent inputs/outputs (Y0, Y1) and a common input/output (Z). Schmitt trigger action at the select input (S) makes the circuit tolerant to slower input rise and fall times across the entire VCC range from 1.4 V to 3.6 V. A low input voltage threshold allows pin S to be driven by lower level logic signals without a significant increase in supply current ICC. This makes it possible for the NX3L1T3157 to switch 3.6 V signals with a 1.8 V digital controller, eliminating the need for logic level translation. The NX3L1T3157 allows signals with amplitude up to VCC to be transmitted from Z to Y0 or Y1; or from Y0 or Y1 to Z. Its low ON resistance (0.5 Ω) and flatness (0.13 Ω) ensures minimal attenuation and distortion of transmitted signals. 2. Features n Wide supply voltage range from 1.4 V to 3.6 V n Very low ON resistance (peak): u 1.6 Ω (typical) at VCC = 1.4 V u 1.0 Ω (typical) at VCC = 1.65 V u 0.55 Ω (typical) at VCC = 2.3 V u 0.50 Ω (typical) at VCC = 2.7 V n Break-before-make switching n High noise immunity n ESD protection: u HBM JESD22-A114E Class 3A exceeds 7500 V u MM JESD22-A115-A exceeds 200 V u CDM AEC-Q100-011 revision B exceeds 1000 V n CMOS low-power consumption n Latch-up performance exceeds 100 mA per JESD 78 Class II Level A n Direct interface with TTL levels at 3.0 V n Control input accepts voltages above supply voltage n Very low supply current, even when input is below VCC n High current handling capability (350 mA continuous current under 3.3 V supply) n Specified from −40 °C to +85 °C and from −40 °C to +125 °C NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 3. Applications n Cell phone n PDA n Portable media player 4. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description Version NX3L1T3157GW −40 °C to +125 °C SC-88 plastic surface-mounted package; 6 leads SOT363 NX3L1T3157GM −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1.45 × 0.5 mm SOT886 5. Marking Table 2. Marking Type number Marking code NX3L1T3157GW MI NX3L1T3157GM MI 6. Functional diagram Y1 S Z S 6 1 Y1 Z 4 Y0 3 Y0 001aac354 Fig 1. Logic symbol 001aac355 Fig 2. Logic diagram NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 2 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 7. Pinning information 7.1 Pinning NX3L1T3157 NX3L1T3157 Y1 1 6 Y1 1 6 S GND 2 5 VCC Y0 3 4 Z S GND 2 5 VCC Y0 3 4 Z 001aah441 Transparent top view 001aai329 Fig 3. Pin configuration SOT363 (SC-88) Fig 4. Pin configuration SOT886 (XSON6) 7.2 Pin description Table 3. Pin description Symbol Pin Description Y1 1 independent input or output GND 2 ground (0 V) Y0 3 independent input or output Z 4 common output or input VCC 5 supply voltage S 6 select input 8. Functional description Table 4. Function table[1] Input S Channel on L Y0 H Y1 [1] H = HIGH voltage level; L = LOW voltage level. NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 3 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 9. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter VCC supply voltage Conditions Min Max Unit −0.5 +4.6 V −0.5 +4.6 V −0.5 VCC + 0.5 V VI input voltage [1] VSW switch voltage [2] IIK input clamping current VI < −0.5 V −50 - mA ISK switch clamping current VI < −0.5 V or VI > VCC + 0.5 V - ±50 mA ISW switch current VSW > −0.5 V or VSW < VCC + 0.5 V; source or sink current - ±350 mA VSW > −0.5 V or VSW < VCC + 0.5 V; pulsed at 1 ms duration, < 10 % duty cycle; peak current - ±500 mA −65 +150 °C - 250 mW Tstg storage temperature total power dissipation Ptot Tamb = −40 °C to +125 °C [3] [1] The minimum input voltage rating may be exceeded if the input current rating is observed. [2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed. [3] For SC-88 package: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. For XSON6 package: above 45 °C the value of Ptot derates linearly with 2.4 mW/K. 10. Recommended operating conditions Table 6. Recommended operating conditions Symbol Parameter VCC supply voltage VI input voltage VSW switch voltage Tamb ambient temperature ∆t/∆V input transition rise and fall rate Conditions select input S [1] VCC = 1.4 V to 3.6 V [2] Min Max Unit 1.4 3.6 V 0 3.6 V 0 VCC V −40 +125 °C - 200 ns/V [1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch. [2] Applies to control signal levels. NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 4 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 11. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground 0 V). Symbol Parameter VIH VIL HIGH-level input voltage LOW-level input voltage Tamb = 25 °C Conditions Tamb = −40 °C to +125 °C Unit Min Typ Max Min Max Max (85 °C) (125 °C) VCC = 1.4 V to 1.6 V 0.9 - - 0.9 - - V VCC = 1.65 V to 1.95 V 0.9 - - 0.9 - - V VCC = 2.3 V to 2.7 V 1.1 - - 1.1 - - V VCC = 2.7 V to 3.6 V 1.3 - - 1.3 - - V VCC = 1.4 V to 1.6 V - - 0.3 - 0.3 0.3 V VCC = 1.65 V to 1.95 V - - 0.4 - 0.4 0.3 V VCC = 2.3 V to 2.7 V - - 0.4 - 0.4 0.4 V VCC = 2.7 V to 3.6 V - - 0.5 - 0.5 0.5 V II input leakage current select input S; VI = GND to 3.6 V; VCC = 1.4 V to 3.6 V - - - - ±0.5 ±1 µA IS(OFF) OFF-state leakage current Y0 and Y1 port; VCC = 1.4 V to 3.6 V; see Figure 5 - - ±5 - ±50 ±500 nA IS(ON) ON-state leakage current Z port; VCC = 1.4 V to 3.6 V; see Figure 6 - - ±5 - ±50 ±500 nA ICC supply current VI = VCC or GND; VCC = 3.6 V; VSW = GND or VCC - - 100 - 690 6000 nA ∆ICC additional VI = 2.6 V; VCC = 3.6 V; supply current VSW = GND or VCC - 0.35 0.7 - 1 1 µA VI = 1.8 V; VCC = 3.6 V; VSW = GND or VCC - 2.5 4 - 5 5 µA VI = 1.8 V; VCC = 2.5 V; VSW = GND or VCC - 50 200 - 300 500 nA CI input capacitance - 1.0 - - - - pF CS(OFF) OFF-state capacitance - 35 - - - - pF CS(ON) ON-state capacitance - 130 - - - - pF NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 5 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 11.1 Test circuits VCC VIL or VIH S Y0 1 Z Y1 2 switch switch S 1 VIH 2 VIL IS VO VI GND 001aac358 VI = 0.3 V or VCC − 0.3 V; VO = VCC − 0.3 V or 0.3 V. Fig 5. Test circuit for measuring OFF-state leakage current VCC VIL or VIH IS S Y0 1 Z Y1 2 switch S 1 VIH 2 VIL switch VI VO GND 001aac359 VI = 0.3 V or VCC − 0.3 V; VO = VCC − 0.3 V or 0.3 V. Fig 6. Test circuit for measuring ON-state leakage current 11.2 ON resistance Table 8. ON resistance At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 8 to Figure 13. Symbol RON(peak) ∆RON Parameter ON resistance (peak) ON resistance mismatch between channels Tamb = −40 °C to +85 °C Tamb = −40 °C to +125 °C Unit Conditions Min Typ[1] Max Min Max VCC = 1.4 V - 1.6 3.7 - 4.1 Ω VCC = 1.65 V - 1.0 1.6 - 1.7 Ω VCC = 2.3 V - 0.55 0.8 - 0.9 Ω VCC = 2.7 V - 0.5 0.75 - 0.9 Ω VI = GND to VCC; ISW = 100 mA; see Figure 7 VI = GND to VCC; ISW = 100 mA [2] VCC = 1.4 V - 0.04 0.3 - 0.3 Ω VCC = 1.65 V - 0.04 0.2 - 0.3 Ω VCC = 2.3 V - 0.02 0.08 - 0.1 Ω VCC = 2.7 V - 0.02 0.075 - 0.1 Ω NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 6 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch Table 8. ON resistance …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 8 to Figure 13. Symbol RON(flat) Parameter Tamb = −40 °C to +85 °C Tamb = −40 °C to +125 °C Unit Conditions ON resistance (flatness) Min Typ[1] Max Min Max VCC = 1.4 V - 1.0 3.3 - 3.6 Ω VCC = 1.65 V - 0.5 1.2 - 1.3 Ω VCC = 2.3 V - 0.15 0.3 - 0.35 Ω VCC = 2.7 V - 0.13 0.3 - 0.35 Ω [3] VI = GND to VCC; ISW = 100 mA [1] Typical values are measured at Tamb = 25 °C. [2] Measured at identical VCC, temperature and input voltage. [3] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical VCC and temperature. 11.3 ON resistance test circuit and graphs 001aag564 1.6 RON (Ω) 1.2 (1) VSW V VCC S VIL or VIH Z Y0 1 switch Y1 2 VI 0.8 switch (2) S 1 VIL 2 VIH 0.4 (3) (4) (5) ISW 0 GND 0 1 2 RON = VSW / ISW. 3 4 VI (V) 001aag563 (1) VCC = 1.5 V. (2) VCC = 1.8 V. (3) VCC = 2.5 V. (4) VCC = 2.7 V. (5) VCC = 3.3 V. Measured at Tamb = 25 °C. Fig 7. Test circuit for measuring ON resistance Fig 8. Typical ON resistance as a function of input voltage NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 7 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 001aag565 1.6 001aag566 1.0 RON (Ω) RON (Ω) 0.8 1.2 (1) (2) (3) (4) 0.6 (1) (2) (3) (4) 0.8 0.4 0.4 0.2 0 0 0 1 2 3 0 1 2 VI (V) (1) Tamb = 125 °C. (1) Tamb = 125 °C. (2) Tamb = 85 °C. (2) Tamb = 85 °C. (3) Tamb = 25 °C. (3) Tamb = 25 °C. (4) Tamb = −40 °C. (4) Tamb = −40 °C. Fig 9. ON resistance as a function of input voltage; VCC = 1.5 V 001aag567 1.0 3 VI (V) Fig 10. ON resistance as a function of input voltage; VCC = 1.8 V 001aag568 1.0 RON (Ω) RON (Ω) 0.8 0.8 0.6 0.6 (1) (2) (3) (4) 0.4 0.4 0.2 0.2 0 (1) (2) (3) (4) 0 0 1 2 3 0 VI (V) 2 3 VI (V) (1) Tamb = 125 °C. (1) Tamb = 125 °C. (2) Tamb = 85 °C. (2) Tamb = 85 °C. (3) Tamb = 25 °C. (3) Tamb = 25 °C. (4) Tamb = −40 °C. (4) Tamb = −40 °C. Fig 11. ON resistance as a function of input voltage; VCC = 2.5 V Fig 12. ON resistance as a function of input voltage; VCC = 2.7 V NX3L1T3157_5 Product data sheet 1 © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 8 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 001aag569 1.0 RON (Ω) 0.8 0.6 (1) (2) (3) (4) 0.4 0.2 0 0 1 2 3 4 VI (V) (1) Tamb = 125 °C. (2) Tamb = 85 °C. (3) Tamb = 25 °C. (4) Tamb = −40 °C. Fig 13. ON resistance as a function of input voltage; VCC = 3.3 V 12. Dynamic characteristics Table 9. Dynamic characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 16. Symbol Parameter ten tdis enable time disable time 25 °C Conditions Unit Min Max Min Max (85 °C) Max (125 °C) VCC = 1.4 V to 1.6 V - 50 90 - 120 120 ns VCC = 1.65 V to 1.95 V - 36 70 - 80 90 ns VCC = 2.3 V to 2.7 V - 24 45 - 50 55 ns VCC = 2.7 V to 3.6 V - 22 40 - 45 50 ns VCC = 1.4 V to 1.6 V - 32 70 - 80 90 ns VCC = 1.65 V to 1.95 V - 20 55 - 60 65 ns VCC = 2.3 V to 2.7 V - 12 25 - 30 35 ns VCC = 2.7 V to 3.6 V - 10 20 - 25 30 ns S to Z or Yn; see Figure 14 S to Z or Yn; see Figure 14 NX3L1T3157_5 Product data sheet −40 °C to +125 °C Typ[1] © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 9 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch Table 9. Dynamic characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 16. Symbol Parameter tb-m 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min Max (85 °C) Max (125 °C) - 19 - 9 - - ns VCC = 1.65 V to 1.95 V - 17 - 7 - - ns VCC = 2.3 V to 2.7 V - 13 - 4 - - ns VCC = 2.7 V to 3.6 V - 10 - 3 - - ns break-before-make see Figure 15 time VCC = 1.4 V to 1.6 V [2] [1] Typical values are measured at Tamb = 25 °C and VCC = 1.5 V, 1.8 V, 2.5 V and 3.3 V respectively. [2] Break-before-make guaranteed by design. 12.1 Waveform and test circuits VI VM S input GND ten VOH Y1 connected to VEXT tdis VX Z output OFF to HIGH HIGH to OFF VX GND tdis Y0 connected to VEXT Z output HIGH to OFF OFF to HIGH VOH ten VX VX 001aag570 GND Measurement points are given in Table 10. Logic level: VOH is typical output voltage level that occurs with the output load. Fig 14. Enable and disable times Table 10. Measurement points Supply voltage Input Output VCC VM VX 1.4 V to 3.6 V 0.5VCC 0.9VOH NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 10 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch VCC S Y0 Z G VI V VO RL Y1 VEXT = 1.5 V CL GND 001aag571 a. Test circuit VI 0.5VI 0.9VO 0.9VO VO tb-m 001aag572 b. Input and output measurement points Fig 15. Test circuit for measuring break-before-make timing VCC G VI V VO RL S Y0 1 Z Y1 2 switch VEXT = 1.5 V CL GND 001aag642 Test data is given in Table 11. Definitions test circuit: RL = Load resistance. CL = Load capacitance including jig and probe capacitance. VEXT = External voltage for measuring switching times. Fig 16. Load circuit for switching times Table 11. Test data Supply voltage Input Load VCC VI tr, tf CL RL 1.4 V to 3.6 V VCC ≤ 2.5 ns 35 pF 50 Ω NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 11 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 12.2 Additional dynamic characteristics Table 12. Additional dynamic characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V); VI = GND or VCC (unless otherwise specified); tr = tf ≤ 2.5 ns; Tamb = 25 °C. Symbol Parameter Conditions THD fi = 20 Hz to 20 kHz; RL = 32 Ω; see Figure 17 total harmonic distortion Min 0.15 - % VCC = 1.65 V; VI = 1.2 V (p-p) - 0.10 - % VCC = 2.3 V; VI = 1.5 V (p-p) - 0.015 - % - 0.024 - % - 60 - MHz - −90 - dB - 0.21 - V VCC = 1.5 V - 3 - pC VCC = 1.8 V - 4 - pC VCC = 2.5 V - 6 - pC VCC = 3.3 V - 9 - pC VCC = 2.7 V; VI = 2 V (p-p) αiso isolation (OFF-state) fi = 100 kHz; RL = 50 Ω; see Figure 19 Vct crosstalk voltage between digital inputs and switch; fi = 1 MHz; CL = 50 pF; RL = 50 Ω; see Figure 20 [1] VCC = 1.4 V to 3.6 V [1] VCC = 1.4 V to 3.6 V VCC = 1.4 V to 3.6 V charge injection [1] Unit - RL = 50 Ω; see Figure 18 Qinj Max VCC = 1.4 V; VI = 1 V (p-p) −3 dB frequency response f(−3dB) Typ [1] fi = 1 MHz; CL = 0.1 nF; RL = 1 MΩ; Vgen = 0 V; Rgen = 0 Ω; see Figure 21 fi is biased at 0.5VCC. 12.3 Test circuits VCC 0.5VCC RL S VIL or VIH Z Y0 1 switch Y1 2 fi switch S 1 VIL 2 VIH D GND 001aag573 Fig 17. Test circuit for measuring total harmonic distortion NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 12 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch VCC 0.5VCC RL S VIL or VIH Y0 1 switch Y1 2 Z fi switch S 1 VIL 2 VIH dB GND 001aag574 Adjust fi voltage to obtain 0 dBm level at output. Increase fi frequency until dB meter reads −3 dB. Fig 18. Test circuit for measuring the frequency response when channel is in ON-state 0.5VCC VCC 0.5VCC RL RL S VIL or VIH Y0 1 switch Y1 2 Z fi switch S 1 VIH 2 VIL dB GND 001aag561 Adjust fi voltage to obtain 0 dBm level at input. Fig 19. Test circuit for measuring isolation (OFF-state) NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 13 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch VCC VI G logic input S Y0 1 Z Y1 2 switch S 1 VIL 2 VIH switch RL RL 0.5VCC 0.5VCC CL V VO 001aah442 a. Test circuit logic input (S) off on off Vct VO 001aah443 b. Input and output pulse definitions Fig 20. Test circuit for measuring crosstalk voltage between digital inputs and switch NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 14 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch VCC S Y0 1 Z Y1 2 switch Rgen VI G VO RL CL Vgen GND 001aac366 a. Test circuit logic (S) off input on VO off ∆VO 001aac478 b. Input and output pulse definitions Definition: Qinj = ∆VO × CL. ∆VO = output voltage variation. Rgen = generator resistance. Vgen = generator voltage. Fig 21. Test circuit for measuring charge injection NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 15 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 13. Package outline Plastic surface-mounted package; 6 leads SOT363 D E B y X A HE 6 5 v M A 4 Q pin 1 index A A1 1 2 e1 3 bp c Lp w M B e detail X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 max bp c D E e e1 HE Lp Q v w y mm 1.1 0.8 0.1 0.30 0.20 0.25 0.10 2.2 1.8 1.35 1.15 1.3 0.65 2.2 2.0 0.45 0.15 0.25 0.15 0.2 0.2 0.1 OUTLINE VERSION REFERENCES IEC SOT363 JEDEC JEITA SC-88 EUROPEAN PROJECTION ISSUE DATE 04-11-08 06-03-16 Fig 22. Package outline SOT363 (SC-88) NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 16 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm SOT886 b 1 2 3 4× (2) L L1 e 6 5 e1 4 e1 6× A (2) A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A (1) max A1 max b D E e e1 L L1 mm 0.5 0.04 0.25 0.17 1.5 1.4 1.05 0.95 0.6 0.5 0.35 0.27 0.40 0.32 Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. OUTLINE VERSION SOT886 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 04-07-15 04-07-22 MO-252 Fig 23. Package outline SOT886 (XSON6) NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 17 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 14. Abbreviations Table 13. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal-Oxide Semiconductor ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model PDA Personal Digital Assistant TTL Transistor-Transistor Logic 15. Revision history Table 14. Revision history Document ID Release date Data sheet status Change notice Supersedes NX3L1T3157_5 20080728 Product data sheet - NX3L1T3157_4 Modifications: • Added type number NX3L1T3157GW (SC-88 / SOT363 package) NX3L1T3157_4 20080718 Product data sheet - NX3L1T3157_3 NX3L1T3157_3 20080408 Product data sheet - NX3L1T3157_2 NX3L1T3157_2 20080306 Product data sheet - NX3L1T3157_1 NX3L1T3157_1 20080103 Product data sheet - - NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 18 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 16.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] NX3L1T3157_5 Product data sheet © NXP B.V. 2008. All rights reserved. Rev. 05 — 28 July 2008 19 of 20 NX3L1T3157 NXP Semiconductors Low-ohmic single-pole double-throw switch 18. Contents 1 2 3 4 5 6 7 7.1 7.2 8 9 10 11 11.1 11.2 11.3 12 12.1 12.2 12.3 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Functional description . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended operating conditions. . . . . . . . 4 Static characteristics. . . . . . . . . . . . . . . . . . . . . 5 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ON resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ON resistance test circuit and graphs. . . . . . . . 7 Dynamic characteristics . . . . . . . . . . . . . . . . . . 9 Waveform and test circuits . . . . . . . . . . . . . . . 10 Additional dynamic characteristics . . . . . . . . . 12 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 18 Legal information. . . . . . . . . . . . . . . . . . . . . . . 19 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 19 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Contact information. . . . . . . . . . . . . . . . . . . . . 19 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2008. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 28 July 2008 Document identifier: NX3L1T3157_5