IRF IRF6662

PD - 97039
IRF6662
DirectFET™ Power MOSFET
Typical values (unless otherwise specified)
Lead and Bromide Free
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible
Ultra Low Package Inductance
Optimized for High Frequency Switching
Ideal for High Performance Isolated Converter
Primary Switch Socket
Optimized for Synchronous Rectification
Low Conduction Losses
Compatible with existing Surface Mount Techniques
VDSS
VGS
RDS(on)
100V max ±20V max 17.5mΩ@ 10V
Qg
Qgd
Vgs(th)
6.8nC
3.9V
tot
22nC
DirectFET™ ISOMETRIC
MZ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MZ
Description
The IRF6662 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided
cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6662 is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications
(36V - 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled
with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements,
and makes this device ideal for high performance isolated DC-DC converters.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Typical RDS(on) (mΩ)
100
ID = 4.9A
80
60
T J = 125°C
40
20
T J = 25°C
0
4
6
8
10
12
14
16
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
VGS, Gate-to-Source Voltage (V)
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
Max.
Units
100
±20
8.3
6.6
47
66
39
4.9
V
A
mJ
A
12.0
ID= 4.9A
10.0
8.0
VDS= 80V
VDS= 50V
VDS= 20V
6.0
4.0
2.0
0.0
0
5
10
15
20
25
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs.
Gate-to-Source Voltage
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 3.2mH, RG = 25Ω, IAS = 4.9A.
1
08/05/05
IRF6662
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Max.
Conditions
Units
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
100
–––
–––
V
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.10
–––
V/°C
Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance
–––
17.5
22
VGS = 10V, ID = 8.2A
VGS(th)
Gate Threshold Voltage
3.0
–––
4.9
mΩ
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-9.7
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 100V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
11
–––
–––
gfs
Qg
Total Gate Charge
–––
22
31
Qgs1
Pre-Vth Gate-to-Source Charge
–––
4.9
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.2
–––
VDS = VGS, ID = 100µA
VDS = 80V, VGS = 0V, TJ = 125°C
VGS = -20V
S
VDS = 10V, ID = 4.9A
VDS = 50V
nC
VGS = 10V
Qgd
Gate-to-Drain Charge
–––
6.8
10
ID = 4.9A
Qgodr
–––
9.1
–––
See Fig. 17
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
8.0
–––
Qoss
Output Charge
–––
11
–––
nC
RG
Gate Resistance
–––
1.2
–––
Ω
td(on)
tr
Turn-On Delay Time
Rise Time
–––
–––
11
7.5
–––
–––
td(off)
Turn-Off Delay Time
–––
24
–––
tf
Fall Time
–––
5.9
–––
Ciss
Input Capacitance
–––
1360
–––
Coss
Output Capacitance
–––
270
–––
Crss
Reverse Transfer Capacitance
–––
61
–––
Coss
Output Capacitance
–––
1340
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
160
–––
VGS = 0V, VDS = 80V, f=1.0MHz
Min.
Typ.
Max.
–––
–––
2.5
VDS = 16V, VGS = 0V
VDD = 50V, VGS = 10V
ID = 4.9A
ns
RG=6.2Ω
VGS = 0V
pF
VDS = 25V
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
Units
MOSFET symbol
A
–––
–––
Conditions
D
showing the
66
integral reverse
G
VSD
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 4.9A, VGS = 0V
trr
Reverse Recovery Time
–––
34
51
ns
TJ = 25°C, IF = 4.9A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
50
75
nC
di/dt = 100A/µs
S
(Body Diode)
Notes:
Pulse width ≤ 400µs; duty cycle ≤ 2%.
Repetitive rating; pulse width limited by max. junction temperature.
2
www.irf.com
IRF6662
Absolute Maximum Ratings
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τA
τ2
τ1
τ2
τ3
τ3
τ4
1.2801
τA
τ4
Ci= τi/Ri
Ci τi/Ri
τi (sec)
0.000322
8.7256
0.164798
21.7500
2.2576
13.2511
69
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
TC measured with thermocouple incontact with top (Drain) of part.
Rθ is measured at TJ of approximately 90°C.
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6662
100
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
10
6.0V
BOTTOM
6.0V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
1
1
10
0.1
100
100
2.0
VDS = 10V
≤60µs PULSE WIDTH
10
VGS = 10V
ID = 8.2A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
10
Fig 5. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
T J = -40°C
1
0.1
1.5
1.0
0.5
3
4
5
6
7
8
-60 -40 -20 0
Fig 6. Typical Transfer Characteristics
100000
Fig 7. Normalized On-Resistance vs. Temperature
45
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
40
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
10000
Ciss
1000
Coss
100
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Crss
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
35
30
25
20
15
10
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
0
10
20
30
40
50
60
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs. Drain Current
www.irf.com
IRF6662
1000
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
VGS = 0V
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100
T J = 150°C
T J = 25°C
10
T J = -40°C
1
100µsec
10
1msec
10msec
1
T A = 25°C
Tj = 150°C
Single Pulse
0.1
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
10
100
1000
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
10
Typical VGS(th) Gate threshold Voltage (V)
7.0
8
ID, Drain Current (A)
1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
6
4
2
0
25
50
75
100
125
ID = 100µA
ID = 250µA
6.0
ID = 1.0mA
ID = 1.0A
5.0
4.0
3.0
2.0
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T A , Ambient Temperature (°C)
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Ambient Temperature
EAS , Single Pulse Avalanche Energy (mJ)
160
ID
140
TOP
1.6A
1.9A
BOTTOM 4.9A
120
100
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6662
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
I AS
0.01Ω
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
RD
VDS
VDS
90%
VGS
D.U.T.
RG
+
- VDD
10V
Pulse Width ≤ 1 µs
10%
VGS
td(on)
tr
td(off)
tf
Duty Factor ≤ 0.1 %
Fig 17a. Switching Time Test Circuit
6
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6662
D.U.T
Driver Gate Drive
+
-
-
-
RG
•
•
•
•
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6662
DirectFET™ Outline Dimension, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.35
6.25
B
4.80
5.05
C
3.95
3.85
D
0.35
0.45
0.72
E
0.68
F
0.72
0.68
G
0.97
0.93
H
0.63
0.67
J
0.32
0.28
K
1.26
1.13
L
2.53
2.66
M
0.70
0.59
N
0.08
0.03
P
0.08
0.17
IMPERIAL
MAX
0.246
0.189
0.152
0.014
0.027
0.027
0.037
0.025
0.011
0.044
0.100
0.023
0.001
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.038
0.026
0.013
0.050
0.105
0.028
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6662
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6662). For 1000 parts on 7" reel,
order IRF6662TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MAX
CODE
MIN
MAX
MIN
MIN
MAX
MAX
12.992
6.9
N.C
A
N.C
177.77 N.C
330.0
N.C
0.795
B
0.75
N.C
N.C
19.06
20.2
N.C
N.C
0.504
C
0.53
0.50
0.520
13.5
12.8
13.2
12.8
0.059
D
0.059
N.C
1.5
1.5
N.C
N.C
N.C
3.937
E
2.31
N.C
58.72
100.0
N.C
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
0.724
18.4
13.50
G
0.488
0.47
11.9
N.C
12.4
0.567
14.4
12.01
H
0.469
0.47
11.9
N.C
11.9
0.606
15.4
12.01
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
7.90
0.319
8.10
0.154
0.161
3.90
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.201
0.209
5.10
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/05
www.irf.com
9