PD - 97234 IRF6628PbF IRF6628TRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) RoHs Compliant VDSS VGS RDS(on) RDS(on) l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs 25V max ±20V max 1.9mΩ@ 10V 2.5mΩ@ 4.5V l Ideal for CPU Core DC-DC Converters Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) l Low Conduction Losses 31nC 12nC 4.1nC 26nC 21nC 1.9V l High Cdv/dt Immunity l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l DirectFET ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6628PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6628PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6628PbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6628PbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical RDS(on) (mΩ) 10 ID = 27A 8 6 4 T J = 125°C 2 T J = 25°C 0 3 4 5 6 7 8 9 10 11 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f VGS, Gate-to-Source Voltage (V) VDS Max. Units 25 ±20 27 22 160 220 38 22 V A mJ A 6.0 ID= 22A VDS= 20V VDS= 13V 5.0 4.0 VDS= 5.0V 3.0 2.0 1.0 0.0 0 10 20 30 40 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.16mH, RG = 25Ω, IAS = 22A. 1 07/11/06 IRF6628PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Drain-to-Source Breakdown Voltage 25 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 16 ––– Static Drain-to-Source On-Resistance ––– 1.9 2.5 ––– 2.5 3.3 V Gate Threshold Voltage 1.35 1.9 2.35 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -6.0 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA gfs Qg ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 27A i VGS = 4.5V, ID = 22A i VGS(th) IGSS Conditions Typ. Max. Units BVDSS VDS = VGS, ID = 100µA VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 13V, ID = 22A Forward Transconductance 100 ––– ––– Total Gate Charge ––– 31 47 Qgs1 Pre-Vth Gate-to-Source Charge ––– 7.5 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 4.1 ––– Qgd Gate-to-Drain Charge ––– 12 ––– ID = 22A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 7.4 ––– See Fig. 15 Qsw ––– 16 ––– Qoss RG Output Charge Gate Resistance ––– ––– 21 1.2 ––– 2.2 td(on) Turn-On Delay Time ––– 20 ––– VDD = 13V, VGS = 4.5Vi ID = 22A VDS = 13V nC nC VGS = 4.5V VDS = 16V, VGS = 0V Ω tr Rise Time ––– 83 ––– td(off) Turn-Off Delay Time ––– 17 ––– Clamped Inductive Load tf Fall Time ––– 6.7 ––– Ciss Input Capacitance ––– 3770 ––– See Fig. 17 VGS = 0V Coss Output Capacitance ––– 970 ––– Crss Reverse Transfer Capacitance ––– 500 ––– Min. Typ. Max. Units ns pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ––– ––– 3.5 ––– ––– 220 (Body Diode) ISM Pulsed Source Current Conditions MOSFET symbol A showing the integral reverse VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 22A, VGS = 0V i trr Reverse Recovery Time ––– 21 32 ns TJ = 25°C, IF = 22A Qrr Reverse Recovery Charge ––– 26 39 nC di/dt = 250A/µs iSee Fig. 18 (Body Diode)g Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6628PbF Absolute Maximum Ratings e e f Max. Units 2.8 1.8 96 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter em km lm fm RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.3 ––– °C/W 0.022 W/°C Thermal Response ( Z thJA ) 100 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ1 τ2 τ2 τ3 τ4 τ3 Ci= τi/Ri Ci= τi/Ri 0.01 0.001 1E-006 0.0001 τ4 τA τi (sec) 1.2801 0.000322 8.7256 0.164798 21.75 2.2576 13.2511 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 Ri (°C/W) R4 R4 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6628PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 10 ≤60µs PULSE WIDTH 1 Tj = 25°C BOTTOM 10 2.5V ≤60µs PULSE WIDTH 2.5V Tj = 150°C 0.1 1 0.1 1 10 100 1000 0.1 Fig 4. Typical Output Characteristics 100 1000 2.0 VDS = 15V ≤60µs PULSE WIDTH ID = 27A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 10 Fig 5. Typical Output Characteristics 1000 100 T J = 150°C T J = 25°C T J = -40°C 10 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 1 0.1 V GS = 10V 1.5 1.0 V GS = 4.5V 0.5 1 2 3 4 5 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 18 16 Typical RDS(on) ( mΩ) C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Crss 14 TJ = 25°C 12 10 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 50 100 150 200 250 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6628PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100 10 T J = 150°C T J = 25°C T J = -40°C 1 100µsec 10 1msec 10msec 1 0.1 VGS = 0V T A = 25°C T J = 150°C Single Pulse 0.01 0 0.4 0.6 0.8 1.0 0.01 1.2 Fig 10. Typical Source-Drain Diode Forward Voltage 1.00 10.00 100.00 Fig11. Maximum Safe Operating Area 3.0 Typical VGS(th) Gate threshold Voltage (V) 160 140 120 ID, Drain Current (A) 0.10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 100 80 60 40 20 2.5 2.0 ID = 100µA 1.5 50 75 100 125 ID = 1mA ID = 1.0A 1.0 0.5 0 25 ID = 250µA -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 160 ID 7.0A 8.1A BOTTOM 22A 140 TOP 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6628PbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6628PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6628PbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.616 0.020 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.676 0.080 0.17 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 DirectFET Part Marking 8 www.irf.com IRF6628PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6628TRPBF). For 1000 parts on 7" reel, order IRF6628TR1PBF STANDARD OPTION METRIC CODE MAX MIN A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MAX MIN MAX 12.992 N.C 177.77 N.C 0.795 N.C 19.06 N.C 0.504 13.5 0.520 12.8 0.059 1.5 N.C N.C 3.937 58.72 N.C N.C N.C N.C 0.724 13.50 0.488 11.9 0.567 12.01 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MIN MAX 6.9 N.C 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 11.90 0.484 12.30 0.215 5.45 0.219 5.55 0.201 5.10 0.209 5.30 0.256 0.264 6.50 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/06 www.irf.com 9