PD - 97133 IRF6674TRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) RoHS Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l High Cdv/dt Immunity l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l VDSS VGS RDS(on) 60V max ±20V max Qg tot 24nC 9.0mΩ@ 10V Qgd Vgs(th) 8.3nC 4.0V DirectFET ISOMETRIC MZ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SH SJ SP MZ MN Description The IRF6674PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6674PbF is optimized for primary side sockets in forward and push-pull isolated DC-DC topologies, for 48V and 36V-60V input voltage range systems. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DCDC converters. Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current h 30 TJ = 125°C 10 TJ = 25°C 0 4 6 8 10 12 14 VGS, Gate-to-Source Voltage (V) 16 Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com V e e f VGS, Gate-to-Source Voltage (V) Typical R DS (on) (mΩ) ID = 13.4A 20 Units 60 ±20 13.4 10.7 67 134 98 13.4 h 50 40 Max. A mJ A 14 ID= 13.4A 12 VDS = 48V VDS = 30V 10 8 6 4 2 0 0 10 20 30 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.272mH, RG = 25Ω, IAS = 13.4A. 1 4/24/08 IRF6674TRPbF Electrical Characteristic @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Conditions Units VGS = 0V, ID = 250μA BVDSS Drain-to-Source Breakdown Voltage 60 ––– ––– V ΔΒVDSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.07 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 9.0 11 mΩ VGS = 10V, ID = 13.4A i VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 V ΔVGS(th)/ΔTJ Gate Threshold Voltage Coefficient ––– -11 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 μA VDS = 60V, VGS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 16 ––– ––– gfs Qg Total Gate Charge ––– 24 36 Qgs1 Pre-Vth Gate-to-Source Charge ––– 5.4 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.9 ––– VDS = VGS, ID = 100μA VDS = 48V, VGS = 0V, TJ = 125°C VGS = -20V S VDS = 25V, ID = 13.4A VDS = 30V nC VGS = 10V Qgd Gate-to-Drain Charge ––– 8.3 12 ID = 13.4A Qgodr ––– 8.4 ––– See Fig. 15 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 10.2 ––– Qoss Output Charge ––– 14 ––– nC RG Gate Resistance ––– 1.0 ––– Ω td(on) Turn-On Delay Time ––– 7.0 ––– VDD = 30V, VGS = 10Vi tr Rise Time ––– 12 ––– ID = 13.4A td(off) Turn-Off Delay Time ––– 12 ––– tf Fall Time ––– 8.7 ––– Ciss Input Capacitance ––– 1350 ––– Coss Output Capacitance ––– 390 ––– Crss Reverse Transfer Capacitance ––– 105 ––– Coss Output Capacitance ––– 1580 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 290 ––– VGS = 0V, VDS = 48V, f=1.0MHz Min. Typ. Max. ns VDS = 16V, VGS = 0V RG = 6.2 Ω VGS = 0V pF VDS = 25V Diode Characteristics Parameter IS ISM Continuous Source Current (Body Diode) TJ= 25°C ––– Pulsed Source Current ––– ––– Units 67 A ––– Conditions MOSFET symbol integral reverse 134 (Body Diode)g D showing the G S p-n junction diode. TJ = 25°C, IS = 13.4A, VGS = 0V i VSD Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 32 48 ns TJ = 25°C, IF = 13.4A, VDD = 50V Qrr Reverse Recovery Charge ––– 36 54 nC di/dt = 100A/μs c Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF6674TRPbF Absolute Maximum Ratings e e f Max. Units 3.6 2.3 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. Units ––– 12.5 20 ––– 1.0 35 ––– ––– 1.4 ––– °C/W Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ1 τ2 τ2 1E-005 τ3 τ3 τ4 τ4 τ Ri (°C/W) 0.023002 0.269754 0.770575 0.337715 τι (sec) 0.000008 0.000072 0.001409 0.005778 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = Pdm x Zthjc + Tc 0.001 1E-006 R4 R4 τC Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 3 IRF6674TRPbF 100 TOP BOTTOM 10 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 VGS 15V 10V 8.0V 7.0V 6.0V 6.0V 6.0V 10 TOP BOTTOM ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 150°C Tj = 25°C 1 1 0.1 1 10 0.1 VDS , Drain-to-Source Voltage (V) 2.0 ID = 13.4A Typical RDS(on) (Normalized) ID, Drain-to-Source Current(Α) 10 Fig 5. Typical Output Characteristics 1000 100 TJ = 150°C TJ = 25°C TJ = -40°C 10 1 VDS = 10V VGS = 10V 1.5 1.0 ≤60μs PULSE WIDTH 0.1 2.0 4.0 6.0 8.0 10.0 0.5 12.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 100000 Fig 7. Normalized On-Resistance vs. Temperature (Normalized) DS(on) Ciss Typical R Coss Crss 100 TJ , Junction Temperature (°C) TA= 25°C Coss = Cds + Cgd 1000 20 40 60 80 100 120 140 160 50 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 C, Capacitance(pF) 1 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 40 VGS = 7.0V VGS = 8.0V 30 VGS = 10V VGS = 15V 20 10 0 10 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current www.irf.com IRF6674TRPbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 100 TJ = 150°C TJ = 25°C 10 TJ = -40°C 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100μsec 10 1msec 1 VGS = 0V 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 0.1 1.4 1 10 100 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 5.0 VGS(th) Gate threshold Voltage (V) 14 12 ID , Drain Current (A) 10msec TC = 25°C Tj = 150°C Single Pulse 10 8 6 4 2 4.5 4.0 3.5 ID = 250μA ID = 100μA 3.0 2.5 0 2.0 25 50 75 100 125 150 -75 -50 -25 TJ , Ambient Temperature (°C) 0 25 50 75 100 125 150 TJ , Temperature ( °C ) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Ambient Temperature EAS, Single Pulse Avalanche Energy (mJ) 400 ID 4.5A 9.3A BOTTOM 26.8A TOP 300 200 100 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6674TRPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V A I AS 0.01Ω tp Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr t d(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6674TRPbF Driver Gate Drive D.U.T + - - RG * • • • • D.U.T. ISD Waveform Reverse Recovery Current VDD ** P.W. Period *** + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel ISD *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G=GATE D=DRAIN S=SOURCE D D S G S D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com 7 IRF6674TRPbF DirectFET Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS CODE A B C D E F G H J K L M N P METRIC MIN MAX 6.25 6.35 4.80 5.05 3.85 3.95 0.35 0.45 0.68 0.72 0.68 0.72 0.93 0.97 0.63 0.67 0.28 0.32 1.13 1.26 2.53 2.66 0.59 0.70 0.03 0.08 0.08 0.17 IMPERIAL MIN MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.037 0.038 0.025 0.026 0.011 0.013 0.044 0.050 0.100 0.105 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package 8 www.irf.com IRF6674TRPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6674MTRPBF). For 1000 parts on 7" reel, order IRF6674MTR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MAX MIN CODE MAX MIN MAX MIN MAX 6.9 N.C 12.992 A 330.0 N.C 177.77 N.C N.C 0.75 0.795 B N.C 20.2 N.C 19.06 N.C N.C 0.53 0.504 C 0.50 12.8 0.520 13.5 13.2 12.8 0.059 0.059 D N.C 1.5 1.5 N.C N.C N.C 2.31 3.937 E N.C 100.0 58.72 N.C N.C N.C N.C N.C F 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 12.4 11.9 0.567 14.4 12.01 H 0.47 0.469 11.9 11.9 N.C 0.606 15.4 12.01 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/08 www.irf.com 9