IRF IRF6611PBF

PD - 97216
IRF6611PbF
IRF6611TRPbF
RoHs Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses
l High Cdv/dt Immunity
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
DirectFET™ Power MOSFET ‚
l
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 2.0mΩ@ 10V 2.6mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
12nC
3.3nC
16nC
23nC
1.7V
tot
37nC
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
DirectFET™ ISOMETRIC
MX
Description
The IRF6611PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided
cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6611PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to
reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6611PbF has been optimized for parameters that
are critical in synchronous buck converter’s SyncFET sockets.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) (mΩ)
20
ID = 27A
15
10
T J = 125°C
5
T J = 25°C
0
0
1
2
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
30
±20
32
26
150
220
310
22
V
A
mJ
A
6.0
ID= 22A
5.0
VDS= 24V
VDS= 15V
4.0
3.0
2.0
1.0
0.0
0
10
20
30
40
50
QG Total Gate Charge (nC)
Fig 2. Typical On-Resistance vs. Gate Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.91mH, RG = 25Ω, IAS = 22A.
1
05/29/06
IRF6611PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
23
–––
Static Drain-to-Source On-Resistance
–––
2.0
2.6
–––
2.6
3.4
VGS(th)
Gate Threshold Voltage
1.35
–––
2.25
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-6.7
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
VDS = 24V, VGS = 0V
–––
–––
150
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
IGSS
gfs
Qg
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
100
–––
–––
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 27A i
VGS = 4.5V, ID = 22A i
VDS = VGS, ID = 250µA
VGS = -20V
S
VDS = 15V, ID = 22A
Total Gate Charge
–––
37
56
Qgs1
Pre-Vth Gate-to-Source Charge
–––
9.8
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
3.3
–––
Qgd
Gate-to-Drain Charge
–––
12.5
Qgodr
–––
11.4
–––
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
15.8
–––
Qoss
Output Charge
–––
23
–––
nC
RG
Gate Resistance
–––
–––
2.3
Ω
td(on)
Turn-On Delay Time
–––
18
–––
VDD = 16V, VGS = 4.5Vi
tr
Rise Time
–––
57
–––
ID = 22A
td(off)
Turn-Off Delay Time
–––
24
–––
tf
Fall Time
–––
6.5
–––
Ciss
Input Capacitance
–––
4860
–––
Coss
Output Capacitance
–––
1030
–––
Crss
Reverse Transfer Capacitance
–––
480
–––
Min.
Typ. Max. Units
–––
–––
VDS = 15V
nC
VGS = 4.5V
ID = 22A
See Fig. 15
ns
VDS = 16V, VGS = 0V
Clamped Inductive Load
See Fig. 16 & 17
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
A
–––
–––
Conditions
MOSFET symbol
110
showing the
220
integral reverse
p-n junction diode.
TJ = 25°C, IS = 22A, VGS = 0V i
(Body Diode)g
VSD
Diode Forward Voltage
–––
–––
1.0
V
trr
Reverse Recovery Time
–––
24
36
ns
TJ = 25°C, IF = 22A
Qrr
Reverse Recovery Charge
–––
16
24
nC
di/dt = 100A/µs iSee Fig. 18
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6611PbF
Absolute Maximum Ratings
e
e
f
Max.
Units
3.9
2.5
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
em
km
lm
fm
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
32
–––
–––
1.4
–––
°C/W
0.031
W/°C
Thermal Response ( Z thJA )
100
10
D = 0.50
0.20
0.10
0.05
0.02
0.01
1
τJ
0.1
0.001
1E-006
1E-005
0.0001
τJ
τ1
R2
R2
R3
R3
τA
τ2
τ1
τ3
τ2
Ci= τi/Ri
Ci τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
τ3
τ
Ri (°C/W) τi (sec)
1.8310 0.000686
16.033
0.786140
14.139
28
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
‰ Used double sided cooling , mounting pad.
Š Mounted on minimum footprint full size board with metalized
‹ Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
Š Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6611PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
100
10
2.5V
2.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
BOTTOM
1
10
1
100
0.1
1000
Fig 4. Typical Output Characteristics
100
1000
1.5
VDS = 15V
≤60µs PULSE WIDTH
ID = 27A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
10
Fig 5. Typical Output Characteristics
1000
100
T J = 25°C
T J = -40°C
T J = 150°C
10
1
0.1
1.0
V GS = 10V
V GS = 4.5V
0.5
1
2
3
4
10
Typical RDS(on) Normalized ( mΩ)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Crss
Vgs = 3.0V
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
8
6
4
2
T J = 25°C
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
0
20 40 60 80 100 120 140 160 180 200
ID, Drain Current (A)
Fig 9. Normalized Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6611PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
100
10
T J = 150°C
1
T J = 25°C
T J = 40°C
1msec
10
10msec
1
Ta = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0
3.5
0
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
160
2.0
Limited by package
1.8
VGS(th) Gate threshold Voltage (V)
ID, Drain Current (A)
140
120
100
80
60
40
20
1.6
ID = 50µA
1.4
1.2
1.0
0.8
0.6
0.4
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS , Single Pulse Avalanche Energy (mJ)
1400
ID
11A
13A
BOTTOM 22A
TOP
1200
1000
800
600
400
200
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6611PbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
Fig 15a. Gate Charge Test Circuit
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6611PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
Re-Applied
Voltage
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MX Outline ƒ
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6611PbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
1.38
0.80
0.38
0.88
2.28
0.616
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
1.42
0.84
0.42
1.01
2.41
0.676
0.080
0.17
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.0274
0.0031
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6611PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6611TRPBF). For 1000 parts on 7"
reel, order IRF6611TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
METRIC
IMPERIAL
METRIC
MAX
MIN
MIN
CODE
MIN
MIN
MAX
MAX
MAX
6.9
12.992 N.C
N.C
A
177.77 N.C
330.0
N.C
0.75
0.795
N.C
B
19.06
20.2
N.C
N.C
N.C
0.53
0.504
0.50
C
13.5
12.8
0.520
12.8
13.2
0.059
0.059
D
N.C
1.5
1.5
N.C
N.C
N.C
E
2.31
3.937
N.C
58.72
100.0
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
13.50
18.4
G
0.47
0.488
N.C
11.9
12.4
0.567
12.01
14.4
H
0.47
0.469
N.C
11.9
11.9
0.606
12.01
15.4
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/