PD - 97232A IRF6668PbF IRF6668TRPbF l l l l l l l l l l DirectFET Power MOSFET RoHs Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for High Performance Isolated Converter Primary Switch Socket Optimized for Synchronous Rectification Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques Typical values (unless otherwise specified) VDSS RDS(on) VGS 12mΩ@ 10V 80V max ±20V max Qg Qgd Qgs2 Qrr Qoss Vgs(th) 7.8nC 1.6nC 40nC 12nC 4.0V tot 22nC DirectFET ISOMETRIC MZ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MZ Description The IRF6668PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6668PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V-60V ETSI input voltage range systems. The IRF6668PbF is also ideal for secondary side synchronous rectification in regulated isolated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TC = 25°C ID @ TC = 70°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical RDS(on) (mΩ) 60 ID = 12A 50 40 30 T J = 125°C 20 10 T J = 25°C 0 4 6 8 10 12 14 16 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com f f VGS, Gate-to-Source Voltage (V) VDS Max. Units 80 ±20 55 44 170 24 23 V A mJ A 12.0 ID= 12A 10.0 VDS= 64V VDS= 40V 8.0 6.0 4.0 2.0 0.0 0 2 4 6 8 10 12 14 16 18 20 22 24 QG, Total Gate Charge (nC) Fig 2. Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.088mH, RG = 25Ω, IAS = 23A. 1 08/28/06 IRF6668PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 80 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 0.097 ––– Static Drain-to-Source On-Resistance ––– 12 15 VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -11 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 80V, VGS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 22 ––– ––– Total Gate Charge ––– 22 31 gfs Qg Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.8 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.6 ––– V V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 12A i VDS = VGS, ID = 100µA VDS = 64V, VGS = 0V, TJ = 125°C VGS = -20V S VDS = 10V, ID = 12A VDS = 40V nC VGS = 10V Qgd Gate-to-Drain Charge ––– 7.8 12 ID = 12A Qgodr ––– 7.8 ––– See Fig. 15 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 9.4 ––– Qoss Output Charge ––– 12 ––– nC RG(Internal) Gate Resistance ––– 1.0 ––– Ω td(on) Turn-On Delay Time ––– 19 ––– tr Rise Time ––– 13 ––– td(off) Turn-Off Delay Time ––– 7.1 ––– tf Fall Time ––– 23 ––– Ciss Input Capacitance ––– 1320 ––– Coss Output Capacitance ––– 310 ––– Crss Reverse Transfer Capacitance ––– 76 ––– VDS = 16V, VGS = 0V VDD = 40V, VGS = 10Vi ID = 12A ns RG = 6.2Ω See Fig. 16 & 17 VGS = 0V pF VDS = 25V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current Min. Typ. Max. Units ––– ––– ISM Pulsed Source Current MOSFET symbol 81 (Body Diode) A ––– ––– 170 Conditions showing the integral reverse VSD Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V i trr Reverse Recovery Time ––– 34 51 ns TJ = 25°C, IF = 12A Qrr Reverse Recovery Charge ––– 40 60 nC di/dt = 100A/µs iSee Fig. 18 (Body Diode)g Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6668PbF Absolute Maximum Ratings e e f Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter em km lm fm RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 0.022 W/°C Thermal Response ( Z thJC ) 10 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 R2 R2 R3 R3 τC τ1 τ2 τ2 C i= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) τ3 τ3 τC Ri (°C/W) τi (sec) 0.3173 0.000048 0.5283 0.000336 0.5536 0.001469 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6668PbF 1000 1000 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 100 10 6.0V 6.0V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 1 0.1 1 10 0.1 1000 2.0 VDS = 10V ≤60µs PULSE WIDTH ID = 12A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 10 Fig 5. Typical Output Characteristics Fig 4. Typical Output Characteristics 100 T J = 150°C 10 T J = 25°C T J = -40°C 1 0.1 VGS = 10V 1.5 1.0 0.5 2 4 6 8 10 12 60 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Typical RDS(on) ( mΩ) Ciss Coss Crss 100 Vgs = 7.0V Vgs = 8.0V Vgs = 10V Vgs = 15V 50 C oss = C ds + C gd 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 10000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 40 30 20 10 0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current www.irf.com IRF6668PbF 1000 T J = 150°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 25°C T J = -40°C 10 1 100µsec 1msec 10 10msec 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 VSD, Source-to-Drain Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 60 Typical VGS(th) , Gate threshold Voltage (V) 6.0 50 ID, Drain Current (A) 1 40 30 20 10 0 5.0 4.0 3.0 ID ID ID ID = 100µA = 250µA = 1.0mA = 1.0A 2.0 25 50 75 100 125 150 -75 -50 -25 T C , Case Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 13. Threshold Voltage vs. Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 100 ID TOP 4.3A 7.6A BOTTOM 23A 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6668PbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6668PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6668PbF DirectFET Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 6.35 6.25 B 4.80 5.05 C 3.95 3.85 D 0.45 0.35 E 0.72 0.68 F 0.72 0.68 G 0.97 0.93 H 0.67 0.63 J 0.32 0.28 K 1.26 1.13 L 2.66 2.53 M 0.616 0.676 R 0.020 0.080 P 0.17 0.08 IMPERIAL MAX MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.037 0.038 0.025 0.026 0.011 0.013 0.044 0.050 0.100 0.105 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6668PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6668TRPBF). For 1000 parts on 7" reel, order IRF6668TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MIN MAX CODE MAX MIN MIN MAX MAX 12.992 6.9 A N.C N.C 177.77 N.C 330.0 N.C 0.795 B 0.75 N.C N.C 19.06 20.2 N.C N.C 0.504 C 0.53 0.50 13.5 12.8 0.520 13.2 12.8 0.059 D 0.059 1.5 N.C 1.5 N.C N.C N.C E 3.937 2.31 58.72 N.C 100.0 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.488 0.47 11.9 12.4 N.C 0.567 14.4 12.01 H 0.469 0.47 11.9 11.9 0.606 N.C 15.4 12.01 LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/06 www.irf.com 9