IRF IRF6668PBF

PD - 97232A
IRF6668PbF
IRF6668TRPbF
l
l
l
l
l
l
l
l
l
l
DirectFET™ Power MOSFET ‚
RoHs Compliant 
Lead-Free (Qualified up to 260°C Reflow)
Application Specific MOSFETs
Ideal for High Performance Isolated Converter
Primary Switch Socket
Optimized for Synchronous Rectification
Low Conduction Losses
High Cdv/dt Immunity
Low Profile (<0.7mm)
Dual Sided Cooling Compatible 
Compatible with existing Surface Mount Techniques 
Typical values (unless otherwise specified)
VDSS
RDS(on)
VGS
12mΩ@ 10V
80V max ±20V max
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
7.8nC
1.6nC
40nC
12nC
4.0V
tot
22nC
DirectFET™ ISOMETRIC
MZ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MZ
Description
The IRF6668PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and
vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing
methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems,
improving previous best thermal resistance by 80%.
The IRF6668PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V-60V
ETSI input voltage range systems. The IRF6668PbF is also ideal for secondary side synchronous rectification in regulated
isolated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables
high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high
performance isolated DC-DC converters.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TC = 25°C
ID @ TC = 70°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) (mΩ)
60
ID = 12A
50
40
30
T J = 125°C
20
10
T J = 25°C
0
4
6
8
10
12
14
16
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate-to-Source Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
f
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
80
±20
55
44
170
24
23
V
A
mJ
A
12.0
ID= 12A
10.0
VDS= 64V
VDS= 40V
8.0
6.0
4.0
2.0
0.0
0
2
4
6
8
10 12 14 16 18 20 22 24
QG, Total Gate Charge (nC)
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.088mH, RG = 25Ω, IAS = 23A.
1
08/28/06
IRF6668PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
80
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.097
–––
Static Drain-to-Source On-Resistance
–––
12
15
VGS(th)
Gate Threshold Voltage
3.0
4.0
4.9
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 80V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
22
–––
–––
Total Gate Charge
–––
22
31
gfs
Qg
Qgs1
Pre-Vth Gate-to-Source Charge
–––
4.8
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.6
–––
V
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 12A i
VDS = VGS, ID = 100µA
VDS = 64V, VGS = 0V, TJ = 125°C
VGS = -20V
S
VDS = 10V, ID = 12A
VDS = 40V
nC
VGS = 10V
Qgd
Gate-to-Drain Charge
–––
7.8
12
ID = 12A
Qgodr
–––
7.8
–––
See Fig. 15
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
9.4
–––
Qoss
Output Charge
–––
12
–––
nC
RG(Internal)
Gate Resistance
–––
1.0
–––
Ω
td(on)
Turn-On Delay Time
–––
19
–––
tr
Rise Time
–––
13
–––
td(off)
Turn-Off Delay Time
–––
7.1
–––
tf
Fall Time
–––
23
–––
Ciss
Input Capacitance
–––
1320
–––
Coss
Output Capacitance
–––
310
–––
Crss
Reverse Transfer Capacitance
–––
76
–––
VDS = 16V, VGS = 0V
VDD = 40V, VGS = 10Vi
ID = 12A
ns
RG = 6.2Ω
See Fig. 16 & 17
VGS = 0V
pF
VDS = 25V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
Min.
Typ. Max. Units
–––
–––
ISM
Pulsed Source Current
MOSFET symbol
81
(Body Diode)
A
–––
–––
170
Conditions
showing the
integral reverse
VSD
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 12A, VGS = 0V i
trr
Reverse Recovery Time
–––
34
51
ns
TJ = 25°C, IF = 12A
Qrr
Reverse Recovery Charge
–––
40
60
nC
di/dt = 100A/µs iSee Fig. 18
(Body Diode)g
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6668PbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
em
km
lm
fm
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
0.022
W/°C
Thermal Response ( Z thJC )
10
1
D = 0.50
0.1
0.01
0.20
0.10
0.05
0.02
0.01
τJ
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ1
τ2
τ2
C i= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
τ3
τ3
τC
Ri (°C/W) τi (sec)
0.3173 0.000048
0.5283 0.000336
0.5536 0.001469
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
‰ Used double sided cooling , mounting pad.
Š Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‹ Rθ is measured at TJ of approximately 90°C.
‰ Mounted to a PCB with
small clip heatsink (still air)
Š Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6668PbF
1000
1000
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
100
10
6.0V
6.0V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
1
0.1
1
10
0.1
1000
2.0
VDS = 10V
≤60µs PULSE WIDTH
ID = 12A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
10
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
100
T J = 150°C
10
T J = 25°C
T J = -40°C
1
0.1
VGS = 10V
1.5
1.0
0.5
2
4
6
8
10
12
60
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
Typical RDS(on) ( mΩ)
Ciss
Coss
Crss
100
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
50
C oss = C ds + C gd
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
10000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
40
30
20
10
0
10
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
20
40
60
80
100
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs. Drain Current
www.irf.com
IRF6668PbF
1000
T J = 150°C
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 25°C
T J = -40°C
10
1
100µsec
1msec
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0
0.1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0
VSD, Source-to-Drain Voltage (V)
10
100
VDS, Drain-to-Source Voltage (V)
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
60
Typical VGS(th) , Gate threshold Voltage (V)
6.0
50
ID, Drain Current (A)
1
40
30
20
10
0
5.0
4.0
3.0
ID
ID
ID
ID
= 100µA
= 250µA
= 1.0mA
= 1.0A
2.0
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS , Single Pulse Avalanche Energy (mJ)
100
ID
TOP
4.3A
7.6A
BOTTOM 23A
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6668PbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6668PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6668PbF
DirectFET™ Outline Dimension, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.35
6.25
B
4.80 5.05
C
3.95
3.85
D
0.45
0.35
E
0.72
0.68
F
0.72
0.68
G
0.97
0.93
H
0.67
0.63
J
0.32
0.28
K
1.26
1.13
L
2.66
2.53
M
0.616 0.676
R
0.020 0.080
P
0.17
0.08
IMPERIAL
MAX
MAX
0.246 0.250
0.189 0.201
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.037 0.038
0.025 0.026
0.011 0.013
0.044 0.050
0.100 0.105
0.0235 0.0274
0.0008 0.0031
0.003 0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6668PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6668TRPBF). For 1000 parts on 7"
reel, order IRF6668TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MIN
MAX
CODE
MAX
MIN
MIN
MAX
MAX
12.992
6.9
A
N.C
N.C
177.77 N.C
330.0
N.C
0.795
B
0.75
N.C
N.C
19.06
20.2
N.C
N.C
0.504
C
0.53
0.50
13.5
12.8
0.520
13.2
12.8
0.059
D
0.059
1.5
N.C
1.5
N.C
N.C
N.C
E
3.937
2.31
58.72
N.C
100.0
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.488
0.47
11.9
12.4
N.C
0.567
14.4
12.01
H
0.469
0.47
11.9
11.9
0.606
N.C
15.4
12.01
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/06
www.irf.com
9