IRF IRGP20B120U-EP

PD- 95897
IRGP20B120U-EP
INSULATED GATE BIPOLAR TRANSISTOR
UltraFast IGBT
Features
• UltraFast Non Punch Through (NPT)
Technology
• 10 µs Short Circuit capability
• Square RBSOA
• Positive VCE(on) Temperature Coefficient
• Extended lead TO-247 package
• Lead-Free
C
VCES = 1200V
VCE(on) typ. = 3.05V
G
VGE = 15V, IC = 20A, 25°C
E
Benefits
n-channel
• Benchmark efficiency above 20KHz
• Optimized for Welding, UPS, and Induction Heating
applications
• Rugged with UltraFast performance
• Low EMI
• Significantly Less Snubber required
• Excellent Current sharing in Parallel operation
• Longer leads for easier mounting
TO-247AD
Absolute Maximum Ratings
Parameter
V CES
IC @ TC = 25°C
I C @ TC = 100°C
I CM
I LM
V GE
EAS @ TC =25°C
PD @ TC = 25°C
P D @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current (Fig.1)
Continuous Collector Current (Fig.1)
Pulsed Collector Current (Fig.3, Fig. CT.5)
Clamped Inductive Load Current(Fig.4, Fig. CT.2)
Gate-to-Emitter Voltage
Avalanche Energy, single pulse
IC = 25A, VCC = 50V, RGE = 25ohm
L = 200µH (Fig. CT.6)
Maximum Power Dissipation (Fig.2)
Maximum Power Dissipation (Fig.2)
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Max.
Units
1200
40
20
120
120
± 20
65
V
A
V
mJ
300
120
-55 to + 150
W
300, (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
°C
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case - IGBT
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Wt
Z θJC
Weight
Transient Thermal Impedance Junction-to-Case
www.irf.com
Min.
Typ.
Max.
Units
–––
–––
–––
–––
0.24
–––
0.42
–––
40
°C/W
–––
6 (0.21)
–––
g (oz)
(Fig.18)
1
09/14/04
IRGP20B120U-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Min.
1200
∆V(BR)CES / ∆Tj Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation
VCE(on)
VGE(th)
Voltage
Gate Threshold Voltage
∆VGE(th) / ∆Tj
Temperature Coeff. of Threshold Voltage
gfe
Forward Transconductance
ICES
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
4.0
13.6
Typ.
+1.2
3.05
3.37
4.23
3.89
4.31
5.0
- 1.2
15.7
Max. Units
V
V/°C
3.45
3.80
4.85
V
4.50
5.06
6.0
V
Conditions
Fig.
VGE = 0V,Ic =250 µA
o
VGE = 0V, Ic = 1 mA ( 25 -125 C )
IC = 20A, VGE = 15V
5, 6
IC = 25A, VGE = 15V
7, 8
IC = 40A, VGE = 15V
9
IC = 20A, VGE = 15V, TJ = 125°C
10
IC = 25A, VGE = 15V, TJ = 125°C
VCE = VGE, IC = 250 µA
8,9,10,11
o
o
S
VCE = 50V, IC = 20A, PW=80µs
mV/ C VCE = VGE, IC = 1 mA (25 -125 C)
17.8
250
420 750
1482 2200
±100
VGE = 0V, VCE = 1200V
µA VGE = 0V, VCE = 1200V, TJ =125°C
VGE = 0V, VCE = 1200V, TJ =150°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Eon
Turn-On Switching Loss *
Eoff
Turn-Off Switching Loss *
Typ.
169
24
82
850
425
Etot
Total Switching Loss *
1275 1800
T J = 25 C, Energy losses include tail
and diode reverse recovery
Eon
Turn-on Switching Loss *
Ic = 20A, VCC = 600V
Eoff
Turn-off Switching Loss *
1350 1550
610 875
Qg
Total Gate charge (turn-on)
Qge
Gate - Emitter Charge (turn-on)
Qgc
Gate - Collector Charge (turn-on)
Min.
Max. Units
Conditions
IC = 20A
254
36
nC VCC = 600V
VGE = 15V
126
IC = 20A, VCC = 600V
1050
650
µJ VGE = 15V, Rg = 5Ω, L = 200µH
Fig.
17
CT 1
CT 4
WF1
o
µJ
WF2
12, 14
VGE = 15V, Rg = 5Ω, L = 200µH
CT 4
o
Etot
Total Switching Loss *
1960 2425
T J = 125 C, Energy losses include tail
and diode reverse recovery
td(on)
Turn - on delay time
Ic = 20A, VCC = 600V
tr
Rise time
td(off)
Turn - off delay time
tf
Fall time
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
50
20
204
24
2200
210
85
65
30
230
35
ns
VGE = 15V, Rg = 5Ω, L = 200µH
o
TJ = 125 C
Reverse bias safe operating area
13, 15
CT 4
WF1
WF2
VGE = 0V
pF
VCC = 30V
16
f = 1.0 MHz
o
RBSOA
WF 1 & 2
TJ = 150 C, Ic = 120A
VCC = 1000V, VP = 1200V
FULL SQUARE
4
CT 2
Rg = 5Ω, VGE = +15V to 0V
o
SCSOA
Short Circuit Safe Operating Area
10
----
----
µs
TJ = 150 C
VCC = 900V, VP = 1200V
CT 3
WF3
Rg = 5Ω, VGE = +15V to 0V
Le
Internal Emitter Inductance
13
nH Measured 5 mm from the package.
* Used Diode HF40D120ACE
2
www.irf.com
IRGP20B120U-EP
Fig.1 - Maximum DC Collector
Current vs. Case Temperature
Fig.2 - Power Dissipation vs. Case
Temperature
50
320
45
280
40
240
200
P t o t ( W)
30
25
I
C
( A)
35
20
160
120
15
80
10
40
5
0
0
0
40
80
120
160
0
40
T C (°C)
80
120
160
T C (°C)
Fig.4 - Reverse Bias SOA
Tj = 150°C, V GE = 15V
Fig.3 - Forward SOA
T C =25°C; Tj < 150°C
1000
1000
PULSED
2µs
100
10µs
100
( A)
10
I
1ms
I
C
C
( A)
100µ s
10
1
10ms
DC
0.1
1
1
www.irf.com
10
100
V CE (V)
1000
10000
1
10
100
V CE (V)
1000
10000
3
IRGP20B120U-EP
Fig.5 - Typical IGBT Output
Characteristics
Tj= -40°C; tp=300µs
Fig.6 - Typical IGBT Output
Characteristics
Tj=25°C; tp=300µs
60
60
V GE = 18V
55
V GE = 12V
45
V GE = 10V
45
V GE = 10V
40
V GE = 8V
40
V GE = 8V
(A)
35
30
35
30
C
25
I
I
V GE = 15V
50
V GE = 12V
C
( A)
50
V GE = 18V
55
V GE = 15V
25
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
2
5
6
V CE (V)
3
V CE (V)
4
5
6
Fig.7 - Typical IGBT Output
Characteristics
Tj=125°C; tp=300µs
60
V GE = 18V
55
V GE = 15V
V GE = 12V
45
V GE = 10V
40
V GE = 8V
35
30
I
C
(A)
50
25
20
15
10
5
0
0
1
2
3
4
V CE (V)
4
www.irf.com
IRGP20B120U-EP
Fig.10
9 - Typical V CE vs V GE
Tj= 25°C
20
18
18
16
16
14
14
12
12
( V)
20
10
8
CE
I CE =10A
I CE =20A
I CE =40A
V
V
CE
(V)
Fig.98 - Typical V CE vs V GE
Tj= -40°C
10
8
6
6
4
4
2
2
0
0
6
8
10
12 14
V GE (V)
16
18
20
6
18
225
16
200
14
175
12
150
(A)
250
12
14
V GE (V)
16
18
20
Tj=25°C
Tj=125°C
125
C
I CE =10A
I CE =20A
I CE =40A
8
10
I
( V)
CE
20
10
8
Fig.12
11 - Typ. Transfer Characteristics
V CE =20V; tp=20µ s
Fig.11
10 - Typical V CE vs V GE
Tj= 125°C
V
I CE =10A
I CE =20A
I CE =40A
100
6
75
4
50
2
25
0
0
Tj=125°C
Tj=25°C
6
www.irf.com
8
10
12 14
V GE (V)
16
18
20
0
4
8
12
V GE (V)
16
20
5
IRGP20B120U-EP
Fig.13
12 - Typical Energy Loss vs Ic
Tj=125°C; L=200µH; V CE =600V;
Rg=22 Ω ; V GE =15V
Fig.14
13 - Typical Switching Time vs Ic
Tj=125°C; L=200µH; V CE =600V;
Rg=22 Ω ; V GE =15V
6000
1000
Eon
5000
4000
t (nS)
Energy (µJ)
tdoff
3000
Eoff
100
tr
tdon
2000
tf
1000
0
10
0
10
20
30
40
50
0
10
I C (A)
20
30
40
50
I C (A)
Fig.15
14 - Typical Energy Loss vs Rg
Tj=125°C; L=200µH; V CE =600V;
I CE =20A; V GE =15V
Fig.16
15 - Typical Switching Time vs Rg
Tj=125°C; L=200µH; V CE =600V;
I CE =20A; V GE =15V
1000
3000
2800
Eon
tdoff
2600
2400
2000
1800
1600
Eoff
1400
t ( nS)
Ener gy ( uJ)
2200
tdon
100
1200
tr
1000
tf
800
600
400
200
0
10
0
5
10 15 20 25 30 35 40 45 50 55
Rg (ohms)
6
0
5
10 15 20 25 30 35 40 45 50 55
Rg (ohms)
www.irf.com
IRGP20B120U-EP
Fig.22
16 - Typical Capacitance vs V CE
V GE =0V; f=1MHz
Fig.23
17 - Typ. Gate Charge vs. V GE
I C =20A; L=600µH
10000
16
800V
12
1000
10
V GE ( V )
CapacI tance (pF)
600V
14
C ies
C oes
8
6
100
4
C res
2
0
10
0
20
40
60
80
100
0
40
80
120
160
200
Q G , Total Gate Charge (nC)
V CE (V)
Fig.24
18 - Normalized Transient Thermal Impedance, Junction-to-Case
θ
10
1
D =0.5
0.2
0.1
0.1
0.05
P DM
0.02
t1
0.01
0.01
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + T C
SINGLE
PULSE
0.001
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
10.00000
t 1 , Rectangular Pulse Duration (sec)
www.irf.com
7
IRGP20B120U-EP
Fig. CT.1 - Gate Charge Circuit (turn-off)
Fig. CT.2 - RBSOA Circuit
L
L
VCC
DUT
0
80 V
+
-
DUT
1000V
Rg
1K
Fig. CT.3 - S.C. SOA Circuit
Driver
DC
Fig. CT.4 - Switching Loss Circuit
DIODE CLAMP
L
900V
DUT
DUT /
DRIVER
VCC
Rg
Fig. CT.5 - Resistive Load Circuit
Fig. CT.6 - Unclamped Inductive Load
Circuit
R = VCC
ICM
L
DUT
VCC
Rg
DUT
VCC
Rg
8
www.irf.com
IRGP20B120U-EP
Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
1000
Fig. WF.2 - Typ. Turn-on Loss Waveform
@ Tj=125°C using Fig. CT.4
25
800
80
600
60
90% IC E
800
20
600
400
10
I CE ( A )
400
40
tr
VCE ( V)
f
I CE ( A )
t
VCE ( V)
90% test current
15
TEST CURRENT
200
5% VCE
20
10% test current
200
5
5% VCE
5% IC E
0
0
0
0
Eon Loss
Eof f Loss
-200
-5
-0.2
0.0
0.2
0.4
0.6
-200
-0.2
0.8
-20
-0.1
0.0
t i me (µs)
0.1
0.2
0.3
t i me (µs)
1200
250
1000
200
800
150
600
100
400
50
200
0
0
I CE ( A )
V CE ( V )
Fig. WF.3- Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
-50
-10
0
10
20
30
t i me (µs)
www.irf.com
9
IRGP20B120U-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
EXAMPLE: THIS IS AN IRGP30B120KD-E
WIT H ASSEMBLY
LOT CODE 5657
AS SEMBLED ON WW 35, 2000
IN T HE AS SEMBLY LINE "H"
Note: "P" in as sembly line position
indicates "Lead-Free"
PART NUMBER
INT ERNAT IONAL
RECT IFIER
LOGO
56
AS SEMBLY
LOT CODE
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/04
10
www.irf.com