IRF IRGPS60B120KDP

PD- 95913
IRGPS60B120KDP
INSULATED GATE BIPOLAR TRANSISTOR WITH
Motor Control Co-Pack IGBT
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Super-247 Package.
• Lead-Free
VCES = 1200V
VCE(on) typ. = 2.50V
G
@ VGE = 15V,
E
ICE = 60A, Tj=25°C
N-channel
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Significantly Less Snubber Required
• Excellent Current Sharing in Parallel Operation.
Super-247™
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 25°C
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current 
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
Units
1200
105‚
60
240
240
120
60
240
± 20
595
238
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
Le
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Recommended Clip Force
Weight
Internal Emitter Inductance (5mm from package)
Min.
Typ.
Max.
–––
–––
–––
–––
20 (2)
–––
–––
–––
–––
0.24
–––
–––
6.0 (0.21)
13
0.20
0.41
–––
40
–––
–––
–––
Units
°C/W
N(kgf)
g (oz)
nH
1
9/22/04
IRGPS60B120KDP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 1200 –––
Temperature Coeff. of Breakdown Voltage ––– 0.40
Collector-to-Emitter Saturation Voltage ––– 2.33
––– 2.50
––– 2.79
––– 3.04
Gate Threshold Voltage
4.0 5.0
Temperature Coeff. of Threshold Voltage ––– -12
Forward Transconductance
––– 34.4
Zero Gate Voltage Collector Current
––– –––
––– 650
Diode Forward Voltage Drop
––– 1.82
––– 1.93
––– 1.96
––– 2.13
Gate-to-Emitter Leakage Current
––– –––
Ref.Fig.
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, I C = 1.0mA, (25°C-125°C)
5, 6
2.50
IC = 50A
VGE = 15V
7, 9
2.75
V
IC = 60A
10
3.1
IC = 50A, TJ = 125°C
3.5
IC = 60A, TJ = 125°C
11
9,10
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, I C = 1.0mA, (25°C-125°C) 11 ,12
–––
S
VCE = 50V, IC = 60A, PW=80µs
500
µA
VGE = 0V, VCE = 1200V
1350
VGE = 0V, VCE = 1200V, TJ = 125°C
2.10
IC = 50A
8
2.20
V
IC = 60A
2.20
IC = 50A, TJ = 125°C
2.40
IC = 60A, TJ = 125°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operting Area
SCSOA
Short Circuit Safe Operting Area
Erec
trr
Irr
Reverse Recovery energy of the diode
Diode Reverse Recovery time
Diode Peak Reverse Recovery Current
2
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ. Max. Units
Conditions
340 510
IC = 60A
40
60
nC VCC = 600V
165 248
VGE = 15V
3214 4870
µJ
IC = 60A, VCC = 600V
4783 5450
VGE = 15V,RG = 4.7Ω, L =200µH
8000 10320
Ls = 150nH
T J = 25°C
5032 6890
TJ = 125°C
7457 8385
µJ
Energy losses include "tail" and
12500 15275
diode reverse recovery.
72
94
IC = 15A, VCC = 600V
32
45
VGE = 15V, RG = 4.7Ω L =200µH
366 400
ns
Ls = 150nH, TJ = 125°C
45
58
4300 –––
VGE = 0V
395 –––
pF
VCC = 30V
160 –––
f = 1.0MHz
TJ = 150°C, IC = 240A, Vp =1200V
FULL SQUARE
VCC = 1000V, VGE = +15V to 0V
RG = 4.7Ω
TJ = 150°C, Vp =1200V
10 ––– –––
µs VCC = 900V, VGE = +15V to 0V,
RG = 4.7Ω
––– 3346 –––
µJ
TJ = 125°C
––– 180 –––
ns
VCC = 600V, IF = 60A, L =200µH
––– 50 –––
A
VGE = 15V,RG = 4.7Ω, Ls = 150nH
www.irf.com
Ref.Fig.
23
CT1
CT4
WF1
WF2
13,15
14, 16
CT4
WF1
WF2
22
4
CT2
CT3
WF4
17,18,19
20, 21
CT4,WF3
IRGPS60B120KDP
140
700
120
600
100
500
80
P tot (W)
IC (A)
LIMITED BY PACKAGE
60
40
400
300
200
20
100
0
0
20
40
60
80
0
100 120 140 160
0
50
100
T C (°C)
200
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature†
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
2 µs
100
10 µs
10
100 µs
DC
100
IC A)
IC (A)
150
1ms
10
1
10ms
0.1
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJS ≤ 150°C
www.irf.com
10000
1
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGPS60B120KDP
120
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
80
ICE (A)
ICE (A)
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
60
60
40
40
20
20
0
0
0
1
2
3
4
5
0
1
2
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
5
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
-40°C
25°C
125°C
100
80
IF (A)
80
ICE (A)
4
120
120
60
60
40
40
20
20
0
0
0
1
2
3
4
5
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
4
3
VCE (V)
0
1
2
3
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
10
ICE = 30A
ICE = 60A
8
ICE = 120A
VCE (V)
VCE (V)
IRGPS60B120KDP
12
ICE = 30A
10
ICE = 60A
8
ICE = 120A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
500
18
450
T J = 25°C
16
400
T J = 125°C
350
14
ICE = 30A
12
ICE (A)
VCE (V)
15
ICE = 60A
10
ICE = 120A
8
300
250
200
150
6
100
4
50
T J = 125°C
T J = 25°C
0
2
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 125°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGPS60B120KDP
12000
1000
tdOFF
Swiching Time (ns)
10000
Energy (µJ)
8000
EOFF
6000
4000
EON
tdON
100
tF
tR
2000
0
0
20
40
60
80
10
100
20
40
60
IC (A)
80
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 125°C; L=200µH; VCE= 600V
RG= 4.7Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 125°C; L=200µH; VCE= 600V
RG= 4.7Ω; VGE= 15V
25000
10000
tdOFF
20000
Swiching Time (ns)
EON
Energy (µJ)
100
15000
EOFF
10000
1000
tdON
tR
100
tF
5000
0
10
0
50
100
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 125°C; L=200µH; VCE= 600V
ICE= 60A; VGE= 15V
6
150
0
50
100
150
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 125°C; L=200µH; VCE= 600V
ICE= 60A; VGE= 15V
www.irf.com
IRGPS60B120KDP
70
60
RG = 4.7Ω
60
50
50
40
30
RG = 47 Ω
20
RG = 100 Ω
IRR (A)
IRR (A)
40
RG = 22 Ω
30
20
10
10
0
0
0
20
40
60
80
100
0
50
100
IF (A)
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 60A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 125°C
12
60
RG = 4.7Ω
4.7Ω
11
50
40
Q RR (µC)
RG = 22 Ω
30
RG = 47 Ω
20
90A
22Ω
10
60A
47 Ω
9
IRR (A)
150
8
7
100Ω
6
30A
5
RG = 100 Ω
4
10
3
2
0
0
500
1000
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 600V; VGE= 15V;
ICE= 60A; TJ = 125°C
www.irf.com
1500
0
500
1000
1500
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 600V; VGE= 15V;TJ = 125°C
7
IRGPS60B120KDP
4000
3500
Energy (µJ)
3000
4.7Ω
2500
22Ω
47Ω
2000
1500
100Ω
1000
500
0
0
20
40
60
80
100
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 125°C
16
10000
Cies
14
600V
1000
800V
10
VGE (V)
Capacitance (pF)
12
Coes
Cres
8
6
100
4
2
0
10
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
50
100 150 200 250 300 350 400
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 60A; L = 600µH
www.irf.com
IRGPS60B120KDP
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.01
0.02
0.1
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
0.01
0.02
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Normalized Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGPS60B120KDP
L
L
VCC
DUT
80 V
DUT
0
1000V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-on)
diode clamp /
DUT
Driver
D
C
L
- 5V
900V
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - RBSOA Circuit
Fig.C.T.4 - RBSOA Circuit
R=
VCC
ICM
DUT
VCC
Rg
Fig.C.T.5 - RBSOA Circuit
10
www.irf.com
IRGPS60B120KDP
Fig. WF1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
Fig. WF2 - Typ. Turn-On Loss Waveform
@ Tj=125°C using Fig. CT.4
900
90
800
120
800
80
700
105
700
70
90% ICE
600
500
400
40
300
30
200
20
200
10
100
VCE (V)
50
ICE (A)
500
75
400
60
90% test current
300
45
10% test current
tr
5% ICE
0
0
Eof f Loss
-100
-0.50
0.50
15
0
0
Eon Loss
-10
2.50
1.50
-100
4.10
4.30
Time (µs)
4.50
Time (µs)
Fig. WF.3 - Typ. Diode Recovery
Waveform
@ Tj=125°C using Fig. CT.4
400
Fig. WF.4 - Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
500
1000
80
450
900
200
V CE
60
800
40
700
QRR
0
-400
0
10%
Peak
IRR
-1000
-0.25
-40
-60
0.25
time (µS)
www.irf.com
-20
0.75
VCE (V)
20
-800
400
350
ICE
600
-200
IF (A)
VF (V)
tRR
Peak
IRR
-15
4.70
300
500
250
400
200
300
150
200
100
100
50
0
-5.00
0.00
ICE (A)
100
30
5% V CE
5% V CE
-600
90
ICE (A)
tr
VCE (V)
TEST CURRENT
60
600
0
5.00 10.00 15.00
time (µS)
11
IRGPS60B120KDP
Super-247™ Package Outline
0.13 [.005]
16.10 [.632]
15.10 [.595]
2X R 3.00 [.118]
2.00 [.079]
0.25 [.010]
5.50 [.216]
4.50 [.178]
A
B A
13.90 [.547]
13.30 [.524]
2.15 [.084]
1.45 [.058]
1.30 [.051]
0.70 [.028]
4
20.80 [.818]
19.80 [.780]
16.10 [.633]
15.50 [.611]
4
C
1
2
3
B
14.80 [.582]
13.80 [.544]
5.45 [.215]
2X
Ø 1.60 [.063]
MAX.
4.25 [.167]
3.85 [.152]
3X
1.60 [.062]
1.45 [.058]
0.25 [.010]
B A
3X
1.30 [.051]
1.10 [.044]
2.35 [.092]
1.65 [.065]
SECTION E-E
NOT ES :
1. DIMENS IONING AND TOLERANCING PER AS ME Y14.5M-1994.
2. DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ]
3. CONTROLLING DIMENSION: MILLIMETER
4. OUT LINE CONFORMS TO JEDEC OUTLINE TO-274AA
E
E
LEAD AS S IGNMENTS
MOS FET
1 - GAT E
2 - DRAIN
3 - S OURCE
4 - DRAIN
IGBT
1 - GATE
2 - COLLECTOR
3 - EMIT TER
4 - COLLECTOR
Super-247 (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
PART NUMBER
INTERNATIONAL RECTIFIER
LOGO
IRFPS37N50A
719C
17
89
ASSEMBLY LOT CODE
Notes:
Note: "P" in assembly line position
indicates "Lead-Free"
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TOP
 VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 4.7Ω.
‚
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 105A.
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/04
12
www.irf.com