PD- 95913 IRGPS60B120KDP INSULATED GATE BIPOLAR TRANSISTOR WITH Motor Control Co-Pack IGBT ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Super-247 Package. • Lead-Free VCES = 1200V VCE(on) typ. = 2.50V G @ VGE = 15V, E ICE = 60A, Tj=25°C N-channel Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Significantly Less Snubber Required • Excellent Current Sharing in Parallel Operation. Super-247™ Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 1200 105 60 240 240 120 60 240 ± 20 595 238 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt Le www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight Internal Emitter Inductance (5mm from package) Min. Typ. Max. ––– ––– ––– ––– 20 (2) ––– ––– ––– ––– 0.24 ––– ––– 6.0 (0.21) 13 0.20 0.41 ––– 40 ––– ––– ––– Units °C/W N(kgf) g (oz) nH 1 9/22/04 IRGPS60B120KDP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 ––– Temperature Coeff. of Breakdown Voltage ––– 0.40 Collector-to-Emitter Saturation Voltage ––– 2.33 ––– 2.50 ––– 2.79 ––– 3.04 Gate Threshold Voltage 4.0 5.0 Temperature Coeff. of Threshold Voltage ––– -12 Forward Transconductance ––– 34.4 Zero Gate Voltage Collector Current ––– ––– ––– 650 Diode Forward Voltage Drop ––– 1.82 ––– 1.93 ––– 1.96 ––– 2.13 Gate-to-Emitter Leakage Current ––– ––– Ref.Fig. Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, I C = 1.0mA, (25°C-125°C) 5, 6 2.50 IC = 50A VGE = 15V 7, 9 2.75 V IC = 60A 10 3.1 IC = 50A, TJ = 125°C 3.5 IC = 60A, TJ = 125°C 11 9,10 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, I C = 1.0mA, (25°C-125°C) 11 ,12 ––– S VCE = 50V, IC = 60A, PW=80µs 500 µA VGE = 0V, VCE = 1200V 1350 VGE = 0V, VCE = 1200V, TJ = 125°C 2.10 IC = 50A 8 2.20 V IC = 60A 2.20 IC = 50A, TJ = 125°C 2.40 IC = 60A, TJ = 125°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Erec trr Irr Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current 2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. Max. Units Conditions 340 510 IC = 60A 40 60 nC VCC = 600V 165 248 VGE = 15V 3214 4870 µJ IC = 60A, VCC = 600V 4783 5450 VGE = 15V,RG = 4.7Ω, L =200µH 8000 10320 Ls = 150nH T J = 25°C 5032 6890 TJ = 125°C 7457 8385 µJ Energy losses include "tail" and 12500 15275 diode reverse recovery. 72 94 IC = 15A, VCC = 600V 32 45 VGE = 15V, RG = 4.7Ω L =200µH 366 400 ns Ls = 150nH, TJ = 125°C 45 58 4300 ––– VGE = 0V 395 ––– pF VCC = 30V 160 ––– f = 1.0MHz TJ = 150°C, IC = 240A, Vp =1200V FULL SQUARE VCC = 1000V, VGE = +15V to 0V RG = 4.7Ω TJ = 150°C, Vp =1200V 10 ––– ––– µs VCC = 900V, VGE = +15V to 0V, RG = 4.7Ω ––– 3346 ––– µJ TJ = 125°C ––– 180 ––– ns VCC = 600V, IF = 60A, L =200µH ––– 50 ––– A VGE = 15V,RG = 4.7Ω, Ls = 150nH www.irf.com Ref.Fig. 23 CT1 CT4 WF1 WF2 13,15 14, 16 CT4 WF1 WF2 22 4 CT2 CT3 WF4 17,18,19 20, 21 CT4,WF3 IRGPS60B120KDP 140 700 120 600 100 500 80 P tot (W) IC (A) LIMITED BY PACKAGE 60 40 400 300 200 20 100 0 0 20 40 60 80 0 100 120 140 160 0 50 100 T C (°C) 200 TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 2 µs 100 10 µs 10 100 µs DC 100 IC A) IC (A) 150 1ms 10 1 10ms 0.1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJS ≤ 150°C www.irf.com 10000 1 10 100 1000 10000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGPS60B120KDP 120 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 80 ICE (A) ICE (A) 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 60 60 40 40 20 20 0 0 0 1 2 3 4 5 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 5 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs -40°C 25°C 125°C 100 80 IF (A) 80 ICE (A) 4 120 120 60 60 40 40 20 20 0 0 0 1 2 3 4 5 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 4 3 VCE (V) 0 1 2 3 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com 20 20 18 18 16 16 14 14 12 10 ICE = 30A ICE = 60A 8 ICE = 120A VCE (V) VCE (V) IRGPS60B120KDP 12 ICE = 30A 10 ICE = 60A 8 ICE = 120A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 500 18 450 T J = 25°C 16 400 T J = 125°C 350 14 ICE = 30A 12 ICE (A) VCE (V) 15 ICE = 60A 10 ICE = 120A 8 300 250 200 150 6 100 4 50 T J = 125°C T J = 25°C 0 2 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 125°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGPS60B120KDP 12000 1000 tdOFF Swiching Time (ns) 10000 Energy (µJ) 8000 EOFF 6000 4000 EON tdON 100 tF tR 2000 0 0 20 40 60 80 10 100 20 40 60 IC (A) 80 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V 25000 10000 tdOFF 20000 Swiching Time (ns) EON Energy (µJ) 100 15000 EOFF 10000 1000 tdON tR 100 tF 5000 0 10 0 50 100 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 60A; VGE= 15V 6 150 0 50 100 150 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 60A; VGE= 15V www.irf.com IRGPS60B120KDP 70 60 RG = 4.7Ω 60 50 50 40 30 RG = 47 Ω 20 RG = 100 Ω IRR (A) IRR (A) 40 RG = 22 Ω 30 20 10 10 0 0 0 20 40 60 80 100 0 50 100 IF (A) RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 60A Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C 12 60 RG = 4.7Ω 4.7Ω 11 50 40 Q RR (µC) RG = 22 Ω 30 RG = 47 Ω 20 90A 22Ω 10 60A 47 Ω 9 IRR (A) 150 8 7 100Ω 6 30A 5 RG = 100 Ω 4 10 3 2 0 0 500 1000 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 60A; TJ = 125°C www.irf.com 1500 0 500 1000 1500 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C 7 IRGPS60B120KDP 4000 3500 Energy (µJ) 3000 4.7Ω 2500 22Ω 47Ω 2000 1500 100Ω 1000 500 0 0 20 40 60 80 100 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 125°C 16 10000 Cies 14 600V 1000 800V 10 VGE (V) Capacitance (pF) 12 Coes Cres 8 6 100 4 2 0 10 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 50 100 150 200 250 300 350 400 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 60A; L = 600µH www.irf.com IRGPS60B120KDP Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.01 0.02 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.01 0.02 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Normalized Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGPS60B120KDP L L VCC DUT 80 V DUT 0 1000V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-on) diode clamp / DUT Driver D C L - 5V 900V DUT / DRIVER DUT VCC Rg Fig.C.T.3 - RBSOA Circuit Fig.C.T.4 - RBSOA Circuit R= VCC ICM DUT VCC Rg Fig.C.T.5 - RBSOA Circuit 10 www.irf.com IRGPS60B120KDP Fig. WF1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4 Fig. WF2 - Typ. Turn-On Loss Waveform @ Tj=125°C using Fig. CT.4 900 90 800 120 800 80 700 105 700 70 90% ICE 600 500 400 40 300 30 200 20 200 10 100 VCE (V) 50 ICE (A) 500 75 400 60 90% test current 300 45 10% test current tr 5% ICE 0 0 Eof f Loss -100 -0.50 0.50 15 0 0 Eon Loss -10 2.50 1.50 -100 4.10 4.30 Time (µs) 4.50 Time (µs) Fig. WF.3 - Typ. Diode Recovery Waveform @ Tj=125°C using Fig. CT.4 400 Fig. WF.4 - Typ. S.C. Waveform @ TC=150°C using Fig. CT.3 500 1000 80 450 900 200 V CE 60 800 40 700 QRR 0 -400 0 10% Peak IRR -1000 -0.25 -40 -60 0.25 time (µS) www.irf.com -20 0.75 VCE (V) 20 -800 400 350 ICE 600 -200 IF (A) VF (V) tRR Peak IRR -15 4.70 300 500 250 400 200 300 150 200 100 100 50 0 -5.00 0.00 ICE (A) 100 30 5% V CE 5% V CE -600 90 ICE (A) tr VCE (V) TEST CURRENT 60 600 0 5.00 10.00 15.00 time (µS) 11 IRGPS60B120KDP Super-247™ Package Outline 0.13 [.005] 16.10 [.632] 15.10 [.595] 2X R 3.00 [.118] 2.00 [.079] 0.25 [.010] 5.50 [.216] 4.50 [.178] A B A 13.90 [.547] 13.30 [.524] 2.15 [.084] 1.45 [.058] 1.30 [.051] 0.70 [.028] 4 20.80 [.818] 19.80 [.780] 16.10 [.633] 15.50 [.611] 4 C 1 2 3 B 14.80 [.582] 13.80 [.544] 5.45 [.215] 2X Ø 1.60 [.063] MAX. 4.25 [.167] 3.85 [.152] 3X 1.60 [.062] 1.45 [.058] 0.25 [.010] B A 3X 1.30 [.051] 1.10 [.044] 2.35 [.092] 1.65 [.065] SECTION E-E NOT ES : 1. DIMENS IONING AND TOLERANCING PER AS ME Y14.5M-1994. 2. DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ] 3. CONTROLLING DIMENSION: MILLIMETER 4. OUT LINE CONFORMS TO JEDEC OUTLINE TO-274AA E E LEAD AS S IGNMENTS MOS FET 1 - GAT E 2 - DRAIN 3 - S OURCE 4 - DRAIN IGBT 1 - GATE 2 - COLLECTOR 3 - EMIT TER 4 - COLLECTOR Super-247 (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPS37N50A 719C 17 89 ASSEMBLY LOT CODE Notes: Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C TOP VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 4.7Ω. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 105A. Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 12 www.irf.com