IRF IRGI4061DPBF

PD - 97114
IRGI4061DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
VCES = 600V
Features
•
•
•
•
•
•
•
•
•
Low VCE (on) Trench IGBT Technology
Low Switching Losses
5µs SCSOA
Square RBSOA
100% of The Parts Tested for ILM
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free Package
IC = 11A, TC = 100°C
G
tsc > 5µs, Tjmax = 150°C
E
VCE(on) typ. = 1.35V
n-channel
C
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
• Low EMI
E
C
G
TO-220AB
Full-Pak
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
VCES
IC@ TC = 25°C
IC@ TC = 100°C
ICM
ILM
IF@TC=25°C
IF@TC=100°C
IFM
VGE
PD @ TC =25°C
PD @ TC =100°C
TJ
TSTG
Max.
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current c
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current d
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Units
V
600
20
11
40
40
20
11
40
± 20
± 30
43
17
A
V
W
°C
-55 to + 150
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
1
Min.
Typ.
Max.
Junction-to-Case - IGBT e
Junction-to-Case - Diode e
—
—
—
—
2.90
4.60
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount e
—
0.5
—
—
—
65
Weight
—
2.0
—
Units
°C/W
g
www.irf.com
2/14/07
IRGI4061DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
V
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.75
—
V/°C
—
1.35
1.59
—
1.53
—
—
1.58
—
VCE(on)
VGE(th)
Collector-to-Emitter Saturation Voltage
Gate Threshold Voltage
4.0
6.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-15
gfe
Forward Transconductance
—
11
—
ICES
VFM
IGES
Collector-to-Emitter Leakage Current
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
—
Conditions
VGE = 0V,Ic =100 µA
f
VGE = 0V, Ic = 250 µA ( -55 -150 oC )
IC = 11A, VGE = 15V, TJ = 25°C
V
f
IC = 11A, VGE = 15V, TJ = 125°C
IC = 11A, VGE = 15V, TJ = 150°C
V
VCE = VGE, IC = 500 µA
o
mV/°C VCE = VGE, IC = 1.0mA ( 25 -150 C )
VCE = 50V, IC = 11A, PW =80µs
S
—
2.0
25
µA
VGE = 0V,VCE = 600V
—
550
—
µA
VGE = 0v, VCE = 600V, TJ =150°C
—
1.84
2.05
V
IF = 11A
—
1.33
—
—
—
±100
IF = 11A, TJ = 150°C
nA
VGE = ± 20 V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Qg
Total Gate Charge (turn-on)
Parameter
—
35
53
Qge
Gate-to-Emitter Charge (turn-on)
—
8.0
12
Qgc
Gate-to-Collector Charge (turn-on)
—
13
23
Eon
Turn-On Switching Loss
—
52
95
Eoff
Turn-Off Switching Loss
—
231
340
Etotal
Total Switching Loss
—
283
435
td(on)
Turn-On delay time
—
37
46
26
tr
Rise time
—
18
td(off)
Turn-Off delay time
—
111
129
tf
Fall time
—
30
41
Eon
Turn-On Switching Loss
—
143
—
Eoff
Turn-Off Switching Loss
—
316
—
Etotal
Total Switching Loss
—
459
—
td(on)
Turn-On delay time
—
35
—
tr
Rise time
—
19
—
td(off)
Turn-Off delay time
—
134
—
tf
Fall time
—
45
—
Cies
Input Capacitance
—
1050
—
Coes
Output Capacitance
—
89
—
Cres
Reverse Transfer Capacitance
—
30
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
Units
Conditions
IC = 11A
nC
VCC = 400V
VGE = 15V
IC = 11A, VCC = 400V, VGE = 15V
µJ
RG = 22Ω, L=1mH, LS= 150nH, TJ = 25°C
Energy losses include tail and diode reverse recovery
IC = 11A, VCC = 400V
ns
RG = 22Ω, L=1mH, LS= 150nH
TJ = 25°C
IC = 11A, VCC = 400V, VGE = 15V
µJ
RG = 22Ω, L=1mH, LS= 150nH, TJ = 150°C
Energy losses include tail and diode reverse recovery
IC = 11A, VCC = 400V
ns
RG = 22Ω, L=1mH, LS= 150nH
TJ = 150°C
VGE = 0V
pF
VCC = 30V
f = 1Mhz
TJ = 150°C, IC = 40A
VCC = 480V, Vp =600V
Rg = 22Ω, VGE = +15V to 0V
VCC = 400V, Vp =600V
SCSOA
Short Circuit Safe Operating Area
5
—
—
µs
Erec
Reverse recovery energy of the diode
—
211
—
µJ
trr
Diode Reverse recovery time
—
60
—
ns
VCC = 400V, IF = 11A
Irr
Peak Reverse Recovery Current
—
18
—
A
VGE = 15V, Rg = 22Ω, L=1mH, LS=150nH
RG = 22Ω, VGE = +15V to 0V
TJ = 150oC
Notes:
VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω.
‚ Pulse width limited by max. junction temperature.
ƒRθ is measured at TJ approximately 90°C
„Refer to AN-1086 for guidelines for measuring V(BR)CES safely
2
www.irf.com
IRGI4061DPbF
50
24
20
40
Ptot (W)
IC (A)
16
12
30
20
8
10
4
0
0
0
20
40
60
80
100 120 140 160
0
20
40
TC (°C)
60
80
100 120 140 160
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10 µs
100 µs
10
IC A)
IC (A)
10
1ms
1
DC
1
0.1
0.01
1
10
100
0
1000
10
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VCE = 15V
Fig. 3 - Forward SOA,
TC = 25°C; TJ ≤ 150°C
40
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
10
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
10
0
0
0
2
4
6
8
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp <60µs
www.irf.com
VGE = 18V
30
ICE (A)
ICE (A)
30
20
1000
0
2
4
6
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp < 60µs
3
IRGI4061DPbF
60
40
-40°C
25°C
150°C
50
VGE = 18V
40
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
IF (A)
ICE (A)
30
30
20
10
10
0
0
0
2
4
6
0.0
8
1.0
2.0
14
14
12
12
10
10
ICE = 5.5A
ICE = 11A
ICE = 22A
6
4.0
Fig. 8 - Typ. Diode Forward Characteristics
tp < 60µs
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp < 60µs
8
3.0
VF (V)
VCE (V)
ICE = 5.5A
8
ICE = 11A
ICE = 22A
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
40
14
12
30
8
ICE = 5.5A
6
ICE = 22A
ICE (A)
VCE (V)
10
ICE = 11A
4
20
TJ = -40°C
TJ = 25°C
TJ = 150°C
10
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
4
20
2
4
6
8
10
12
14
16
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp < 60µs
www.irf.com
IRGI4061DPbF
1000
700
600
Energy (µJ)
Swiching Time (ns)
tdOFF
500
EOFF
400
300
EON
200
100
tF
tdON
tR
10
100
0
0
4
8
12
16
20
1
24
0
4
8
12
I C (A)
16
20
24
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1mH; VCE= 400V
RG= 22Ω; VGE= 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 1mH; VCE = 400V, RG = 22Ω; VGE = 15V.
500
1000
EOFF
400
tdOFF
Swiching Time (ns)
Energy (µJ)
EON
300
200
100
tdON
tR
tF
100
0
10
0
25
50
75
100
125
0
25
50
RG (Ω)
125
Fig. 16- Typ. Switching Time vs. RG
TJ = 150°C; L=1mH; VCE= 400V
ICE= 11A; VGE= 15V
24
24
RG =10 Ω
20
20
12
IRR (A)
RG =22 Ω
16
IRR (A)
100
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 1mH; VCE = 400V, ICE = 11A; VGE = 15V
RG =47 Ω
8
16
12
RG = 100 Ω
8
4
0
4
0
4
8
12
16
20
IF (A)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
www.irf.com
75
24
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 11A
5
IRGI4061DPbF
1100
24
22Ω
1000
900
QRR (nC)
IRR (A)
20
16
47 Ω
800
11A
100Ω
700
600
5.5A
500
12
10Ω
22A
400
300
8
0
500
0
1000
600
1200
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 150°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 11A; TJ = 150°C
400
18
160
16
140
300
10 Ω
22 Ω
100
10
47 Ω
100
120
12
80
8
100 Ω
60
6
0
40
4
0
4
8
12
16
20
24
8
10
12
14
VGE (V)
IF (A)
16
18
Fig. 22- Typ. VGE vs Short Circuit Time
VCC=400V, TC =25°C
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
10000
16
300V
14
Cies
100
10
400V
12
VGE (V)
1000
Capacitance (pF)
Current (A)
200
Time (µs)
Energy (µJ)
14
10
8
Coes
6
Cres
4
2
0
1
0
100
200
300
400
VCE (V)
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
500
0
10
20
30
40
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 11A, L=600µH
www.irf.com
IRGI4061DPbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
R1
R1
0.05
0.1
τJ
0.02
0.01
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ2
τ1
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
Ri (°C/W) τι (sec)
0.203729 0.000093
0.311882 0.000764
1.09536 0.051077
1.289029
0.996
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.1
0.01
0.05
0.02
0.01
τJ
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R4
R4
τC
τ
τ3
τ4
τ4
Ri (°C/W) τι (sec)
0.265329 0.000056
1.150721 0.001322
1.326646 0.031959
1.857304 1.6697
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGI4061DPbF
L
L
DUT
0
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.5 - Resistive Load Circuit
8
VCC
80 V
+
-
DUT
Rg
480V
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
www.irf.com
IRGI4061DPbF
tf
400
500
50
25
400
40
20
200
10
5% VCE
100
VCE (V)
15
ICE (A)
VCE (V)
90% ICE
300
0
Eoff Loss
0.05
0.25
-5
0.45
10% test current
0
Eon Loss
-100
-0.1
-0.05
0
5
0.1
-5
Peak
IRR
-10
10%
Peak
IRR
-15
-20
-800
Vce (V)
0
-400
VCE
200
IC
300
IF (A)
VF (V)
-300
150
200
100
100
50
0
0
-25
0.00
0.10
-30
0.20
time (µS)
WF.3- Typ. Reverse Recovery Waveform
@ TJ = 150°C using CT.4
www.irf.com
0.05
250
400
10
tRR
-900
-0.10
0
500
15
QRR
-700
-10
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
20
-600
10
time (µs)
100
-500
20
0
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
-200
30
90% test current
time(µs)
-100
TEST
5% VCE
0
-100
-0.15
200
100
5
10% ICE
tr
300
Ice (A)
500
30
ICE (A)
600
-100
-50
-4
-2
0
2
4
6
8
10
Time (uS)
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
9
IRGI4061DPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
EXAMPLE: T HIS IS AN IRFI840G
WIT H AS S EMBLY
LOT CODE 3432
AS S EMBLED ON WW 24, 2001
IN T HE AS S EMBLY LINE "K"
Note: "P" in as sembly line pos ition
indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
IRFI840G
124K
34
32
DATE CODE
YEAR 1 = 2001
WEEK 24
LINE K
TO-220 Full-Pak package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/07
10
www.irf.com