PD - 97114 IRGI4061DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses 5µs SCSOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package IC = 11A, TC = 100°C G tsc > 5µs, Tjmax = 150°C E VCE(on) typ. = 1.35V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI E C G TO-220AB Full-Pak G Gate C Collector E Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25°C PD @ TC =100°C TJ TSTG Max. Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Units V 600 20 11 40 40 20 11 40 ± 20 ± 30 43 17 A V W °C -55 to + 150 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt 1 Min. Typ. Max. Junction-to-Case - IGBT e Junction-to-Case - Diode e — — — — 2.90 4.60 Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount e — 0.5 — — — 65 Weight — 2.0 — Units °C/W g www.irf.com 2/14/07 IRGI4061DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — V ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.75 — V/°C — 1.35 1.59 — 1.53 — — 1.58 — VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage 4.0 6.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -15 gfe Forward Transconductance — 11 — ICES VFM IGES Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current — Conditions VGE = 0V,Ic =100 µA f VGE = 0V, Ic = 250 µA ( -55 -150 oC ) IC = 11A, VGE = 15V, TJ = 25°C V f IC = 11A, VGE = 15V, TJ = 125°C IC = 11A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 500 µA o mV/°C VCE = VGE, IC = 1.0mA ( 25 -150 C ) VCE = 50V, IC = 11A, PW =80µs S — 2.0 25 µA VGE = 0V,VCE = 600V — 550 — µA VGE = 0v, VCE = 600V, TJ =150°C — 1.84 2.05 V IF = 11A — 1.33 — — — ±100 IF = 11A, TJ = 150°C nA VGE = ± 20 V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Qg Total Gate Charge (turn-on) Parameter — 35 53 Qge Gate-to-Emitter Charge (turn-on) — 8.0 12 Qgc Gate-to-Collector Charge (turn-on) — 13 23 Eon Turn-On Switching Loss — 52 95 Eoff Turn-Off Switching Loss — 231 340 Etotal Total Switching Loss — 283 435 td(on) Turn-On delay time — 37 46 26 tr Rise time — 18 td(off) Turn-Off delay time — 111 129 tf Fall time — 30 41 Eon Turn-On Switching Loss — 143 — Eoff Turn-Off Switching Loss — 316 — Etotal Total Switching Loss — 459 — td(on) Turn-On delay time — 35 — tr Rise time — 19 — td(off) Turn-Off delay time — 134 — tf Fall time — 45 — Cies Input Capacitance — 1050 — Coes Output Capacitance — 89 — Cres Reverse Transfer Capacitance — 30 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE Units Conditions IC = 11A nC VCC = 400V VGE = 15V IC = 11A, VCC = 400V, VGE = 15V µJ RG = 22Ω, L=1mH, LS= 150nH, TJ = 25°C Energy losses include tail and diode reverse recovery IC = 11A, VCC = 400V ns RG = 22Ω, L=1mH, LS= 150nH TJ = 25°C IC = 11A, VCC = 400V, VGE = 15V µJ RG = 22Ω, L=1mH, LS= 150nH, TJ = 150°C Energy losses include tail and diode reverse recovery IC = 11A, VCC = 400V ns RG = 22Ω, L=1mH, LS= 150nH TJ = 150°C VGE = 0V pF VCC = 30V f = 1Mhz TJ = 150°C, IC = 40A VCC = 480V, Vp =600V Rg = 22Ω, VGE = +15V to 0V VCC = 400V, Vp =600V SCSOA Short Circuit Safe Operating Area 5 — — µs Erec Reverse recovery energy of the diode — 211 — µJ trr Diode Reverse recovery time — 60 — ns VCC = 400V, IF = 11A Irr Peak Reverse Recovery Current — 18 — A VGE = 15V, Rg = 22Ω, L=1mH, LS=150nH RG = 22Ω, VGE = +15V to 0V TJ = 150oC Notes: VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω. Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guidelines for measuring V(BR)CES safely 2 www.irf.com IRGI4061DPbF 50 24 20 40 Ptot (W) IC (A) 16 12 30 20 8 10 4 0 0 0 20 40 60 80 100 120 140 160 0 20 40 TC (°C) 60 80 100 120 140 160 TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 µs 100 µs 10 IC A) IC (A) 10 1ms 1 DC 1 0.1 0.01 1 10 100 0 1000 10 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VCE = 15V Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 150°C 40 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 10 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 10 0 0 0 2 4 6 8 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp <60µs www.irf.com VGE = 18V 30 ICE (A) ICE (A) 30 20 1000 0 2 4 6 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp < 60µs 3 IRGI4061DPbF 60 40 -40°C 25°C 150°C 50 VGE = 18V 40 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 IF (A) ICE (A) 30 30 20 10 10 0 0 0 2 4 6 0.0 8 1.0 2.0 14 14 12 12 10 10 ICE = 5.5A ICE = 11A ICE = 22A 6 4.0 Fig. 8 - Typ. Diode Forward Characteristics tp < 60µs VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp < 60µs 8 3.0 VF (V) VCE (V) ICE = 5.5A 8 ICE = 11A ICE = 22A 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 40 14 12 30 8 ICE = 5.5A 6 ICE = 22A ICE (A) VCE (V) 10 ICE = 11A 4 20 TJ = -40°C TJ = 25°C TJ = 150°C 10 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C 4 20 2 4 6 8 10 12 14 16 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp < 60µs www.irf.com IRGI4061DPbF 1000 700 600 Energy (µJ) Swiching Time (ns) tdOFF 500 EOFF 400 300 EON 200 100 tF tdON tR 10 100 0 0 4 8 12 16 20 1 24 0 4 8 12 I C (A) 16 20 24 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1mH; VCE= 400V RG= 22Ω; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 1mH; VCE = 400V, RG = 22Ω; VGE = 15V. 500 1000 EOFF 400 tdOFF Swiching Time (ns) Energy (µJ) EON 300 200 100 tdON tR tF 100 0 10 0 25 50 75 100 125 0 25 50 RG (Ω) 125 Fig. 16- Typ. Switching Time vs. RG TJ = 150°C; L=1mH; VCE= 400V ICE= 11A; VGE= 15V 24 24 RG =10 Ω 20 20 12 IRR (A) RG =22 Ω 16 IRR (A) 100 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 1mH; VCE = 400V, ICE = 11A; VGE = 15V RG =47 Ω 8 16 12 RG = 100 Ω 8 4 0 4 0 4 8 12 16 20 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C www.irf.com 75 24 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 11A 5 IRGI4061DPbF 1100 24 22Ω 1000 900 QRR (nC) IRR (A) 20 16 47 Ω 800 11A 100Ω 700 600 5.5A 500 12 10Ω 22A 400 300 8 0 500 0 1000 600 1200 diF /dt (A/µs) diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 150°C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 11A; TJ = 150°C 400 18 160 16 140 300 10 Ω 22 Ω 100 10 47 Ω 100 120 12 80 8 100 Ω 60 6 0 40 4 0 4 8 12 16 20 24 8 10 12 14 VGE (V) IF (A) 16 18 Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 10000 16 300V 14 Cies 100 10 400V 12 VGE (V) 1000 Capacitance (pF) Current (A) 200 Time (µs) Energy (µJ) 14 10 8 Coes 6 Cres 4 2 0 1 0 100 200 300 400 VCE (V) Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 500 0 10 20 30 40 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 11A, L=600µH www.irf.com IRGI4061DPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 R1 R1 0.05 0.1 τJ 0.02 0.01 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ2 τ1 τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τ Ri (°C/W) τι (sec) 0.203729 0.000093 0.311882 0.000764 1.09536 0.051077 1.289029 0.996 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.1 0.01 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) R4 R4 τC τ τ3 τ4 τ4 Ri (°C/W) τι (sec) 0.265329 0.000056 1.150721 0.001322 1.326646 0.031959 1.857304 1.6697 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGI4061DPbF L L DUT 0 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.5 - Resistive Load Circuit 8 VCC 80 V + - DUT Rg 480V Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com IRGI4061DPbF tf 400 500 50 25 400 40 20 200 10 5% VCE 100 VCE (V) 15 ICE (A) VCE (V) 90% ICE 300 0 Eoff Loss 0.05 0.25 -5 0.45 10% test current 0 Eon Loss -100 -0.1 -0.05 0 5 0.1 -5 Peak IRR -10 10% Peak IRR -15 -20 -800 Vce (V) 0 -400 VCE 200 IC 300 IF (A) VF (V) -300 150 200 100 100 50 0 0 -25 0.00 0.10 -30 0.20 time (µS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 150°C using CT.4 www.irf.com 0.05 250 400 10 tRR -900 -0.10 0 500 15 QRR -700 -10 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 20 -600 10 time (µs) 100 -500 20 0 Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 -200 30 90% test current time(µs) -100 TEST 5% VCE 0 -100 -0.15 200 100 5 10% ICE tr 300 Ice (A) 500 30 ICE (A) 600 -100 -50 -4 -2 0 2 4 6 8 10 Time (uS) WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 9 IRGI4061DPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information EXAMPLE: T HIS IS AN IRFI840G WIT H AS S EMBLY LOT CODE 3432 AS S EMBLED ON WW 24, 2001 IN T HE AS S EMBLY LINE "K" Note: "P" in as sembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFI840G 124K 34 32 DATE CODE YEAR 1 = 2001 WEEK 24 LINE K TO-220 Full-Pak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/07 10 www.irf.com