IRF IRG7PH30K10PBF

PD - 96156A
IRG7PH30K10PbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
•
C
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction Temperature 175 °C
10 µS short Circuit SOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) Temperature Co-Efficient
Tight Parameter Distribution
Lead Free Package
VCES = 1200V
IC = 23A, TC = 100°C
G
tSC ≥ 10µs, TJ(max) =175°C
E
VCE(on) typ. = 2.05V
n-channel
C
E
C
G
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
TO-247AC
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
1200
V
IC @ TC = 25°C
Continuous Collector Current
33
IC @ TC = 100°C
Continuous Collector Current
23
INOMINAL
Nominal Current
9.0
ICM
ILM
Pulse Collector Current Vge = 15V
Clamped Inductive Load Current Vge = 20V
VGE
Continuous Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
210
PD @ TC = 100°C
Maximum Power Dissipation
110
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
27
c
36
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
f
Min.
Typ.
Max.
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
–––
–––
0.70
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
40
–––
1
Units
°C/W
www.irf.com
06/23/09
IRG7PH30K10PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
1200
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
1.27
—
—
2.05
2.35
—
2.56
—
—
2.65
—
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
VGE(th)
Gate Threshold Voltage
5.0
—
7.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-16
—
gfe
ICES
Forward Transconductance
—
6.2
—
Collector-to-Emitter Leakage Current
—
1.0
25
IGES
Gate-to-Emitter Leakage Current
—
400
—
—
—
±100
V
Conditions
VGE = 0V, IC = 250µA
e
Ref.Fig
CT6
e
d
= 150°C d
= 175°C d
V/°C VGE = 0V, IC = 1mA (25°C-175°C)
IC = 9.0A, VGE = 15V, TJ = 25°C
V
IC = 9.0A, VGE = 15V, TJ
IC = 9.0A, VGE = 15V, TJ
CT6
5,6,7
8,9,10
V VCE = VGE, IC = 400µA
mV/°C VCE = VGE, IC = 400µA (25°C - 175°C)
S VCE = 50V, IC = 9.0A, PW = 80µs
µA
nA
8,9
10,11
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 175°C
VGE = ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Total Gate Charge (turn-on)
Qge
Qgc
Eon
Turn-On Switching Loss
Eoff
Turn-Off Switching Loss
Etotal
Total Switching Loss
td(on)
Turn-On delay time
tr
Rise time
td(off)
tf
Min.
Typ.
Max. Units
IC = 9.0A
68
d
Conditions
Ref.Fig
—
45
Gate-to-Emitter Charge (turn-on)
—
8.7
13
Gate-to-Collector Charge (turn-on)
—
20
30
—
530
760
—
380
600
—
910
1360
—
14
31
—
24
41
Turn-Off delay time
—
110
130
Fall time
—
38
56
Eon
Turn-On Switching Loss
—
850
—
Eoff
Turn-Off Switching Loss
—
750
—
Etotal
Total Switching Loss
—
1600
td(on)
Turn-On delay time
—
12
tr
Rise time
—
23
—
td(off)
Turn-Off delay time
—
130
—
tf
Fall time
—
270
—
Cies
Input Capacitance
—
1070
—
Coes
Output Capacitance
—
63
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
26
—
f = 1.0Mhz
TJ = 175°C, IC = 36A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
VCC = 960V, Vp =1200V
10
VCC = 600V, Vp =1200V ,TJ = 150°C,
nC
18
VGE = 15V
CT1
VCC = 600V
IC = 9.0A, VCC = 600V, VGE = 15V
µJ
d
CT4
RG = 22Ω, L = 1000µH, LS = 150nH,TJ = 25°C
Energy losses include tail & diode reverse recovery
IC = 9.0A, VCC = 600V, VGE = 15V
ns
d
CT4
RG = 22Ω, L = 1000µH, LS = 150nH,TJ = 25°C
IC = 9.0A, VCC = 600V, VGE=15V
d
12,14
RG=22Ω, L=1000µH, LS=150nH, TJ = 175°C
CT4
—
Energy losses include tail & diode reverse recovery
WF1, WF2
—
IC = 9.0A, VCC = 600V, VGE=15V
µJ
ns
d
13,15
RG = 22Ω, L = 1000µH, LS = 150nH
CT4
TJ = 175°C
WF1
WF2
pF
VGE = 0V
17
4
CT2
Rg = 10Ω, VGE = +20V to 0V, TJ =175°C
SCSOA
Short Circuit Safe Operating Area
—
—
µs
Rg = 22Ω, VGE = +15V to 0V
16, CT3
WF4
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 51Ω.
‚ Pulse width ≤ 400µs; duty cycle ≤ 2%.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRG7PH30K10PbF
35
225
30
200
175
25
Ptot (W)
IC (A)
150
20
15
125
100
75
10
50
5
25
0
25
50
75
100
125
150
0
175
0
25
50
T C (°C)
75
100
125
150
175
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10µsec
10
IC (A)
IC (A)
100µsec
1msec
10
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
1
0.1
1
10
100
1000
10
10000
100
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
40
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
30
25
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
25
ICE (A)
35
ICE (A)
10000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
20
20
15
15
10
10
5
5
0
0
0
2
4
6
8
10
VCE (V)
12
14
16
18
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
www.irf.com
1000
0
2
4
6
8
10
12
14
16
18
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
3
IRG7PH30K10PbF
40
18
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
14
12
VCE (V)
ICE (A)
25
16
20
15
10
ICE = 4.5A
8
ICE = 18A
ICE = 9.0A
6
10
4
5
2
0
0
0
2
4
6
8
10
12
14
16
18
5
10
20
VGE (V)
VCE (V)
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
14
18
16
12
14
10
12
ICE = 4.5A
ICE = 9.0A
10
8
VCE (V)
VCE (V)
15
ICE = 18A
6
ICE = 4.5A
ICE = 9.0A
8
ICE = 18A
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
2000
40
35
1600
30
EON
20
Energy (µJ)
ICE (A)
25
T J = 25°C
T J = 175°C
15
10
1200
EOFF
800
400
5
0
0
0
5
10
VGE (V)
Fig. 11- Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
4
15
5
10
15
20
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V
www.irf.com
IRG7PH30K10PbF
1000
1000
tdOFF
100
EON
900
Energy (µJ)
Swiching Time (ns)
tF
800
tR
700
EOFF
tdON
600
10
0
5
10
15
0
20
10
20
40
50
RG (Ω)
IC (A)
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V
30
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V
60
48
1000
tF
50
40
100
Time (µs)
tdOFF
tR
40
32
Isc
24
30
16
20
Current (A)
Swiching Time (ns)
Tsc
10
tdON
10
8
1
0
10
20
30
40
8
50
10
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V
16
Fig. 16 - VGE vs. Short Circuit Time
VCC = 600V; TC = 150°C
16
VGE, Gate-to-Emitter Voltage (V)
10000
Cies
1000
Capacitance (pF)
14
VGE (V)
RG (Ω)
100
Coes
10
Cres
VCES = 600V
VCES = 400V
14
12
10
8
6
4
2
0
1
0
100
200
300
400
VCE (V)
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
www.irf.com
12
500
0
10
20
30
40
50
Q G, Total Gate Charge (nC)
Fig. 18- Typical Gate Charge vs. VGE
ICE = 9.0A; L = 1.0mH
5
IRG7PH30K10PbF
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.001
1E-006
0.01
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
Ri (°C/W)
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
τ4
τ4
τi (sec)
0.01068
0.000005
0.18156
0.000099
0.31802
0.001305
0.19105
0.009113
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
IRG7PH30K10PbF
L
L
DUT
0
80 V +
VCC
DUT
-
Vclamped
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
DIODE CLAMP
L
VCC
DUT /
DRIVER
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R = VCC
ICM
C fo rce
100K
D1
DUT
Rg
22K
C sense
VCC
0.0075µ
G force
DUT
E sense
E fo rce
Fig.C.T.5 - Resistive Load Circuit
www.irf.com
Fig.C.T.6 - BVCES Filter Circuit
7
IRG7PH30K10PbF
18
16
tf
700
14
600
12
400
8
300
6
5% ICE
5% V CE
200
600
30
400
10
90% ICE
V CE (V)
VCE (V)
500
35
tr
500
ICE (A)
800
700
90% test
current
200
4
100
0
0
-2
-100
-1.8
0
5
10
10% test
current
0
-5
5% V CE
5
0
Eon Loss
10
-5
-0.8
0.2
time(µs)
1.2
2.2
3.2
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
80
800
700
VCE
70
60
600
400
40
300
30
200
20
100
10
Ice (A)
50
ICE
500
Vce (V)
20
15
2
Eoff Loss
TEST CURRENT
300
100
-100
25
ICE (A)
900
0
0
-10
-100
-5
0
5
10
Time (uS)
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 150°C using Fig. CT.3
8
www.irf.com
IRG7PH30K10PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/2009
www.irf.com
9