PD - 96156A IRG7PH30K10PbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • • C Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 °C 10 µS short Circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature Co-Efficient Tight Parameter Distribution Lead Free Package VCES = 1200V IC = 23A, TC = 100°C G tSC ≥ 10µs, TJ(max) =175°C E VCE(on) typ. = 2.05V n-channel C E C G Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation TO-247AC G Gate C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 1200 V IC @ TC = 25°C Continuous Collector Current 33 IC @ TC = 100°C Continuous Collector Current 23 INOMINAL Nominal Current 9.0 ICM ILM Pulse Collector Current Vge = 15V Clamped Inductive Load Current Vge = 20V VGE Continuous Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 210 PD @ TC = 100°C Maximum Power Dissipation 110 TJ Operating Junction and TSTG Storage Temperature Range A 27 c 36 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter f Min. Typ. Max. RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) ––– ––– 0.70 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40 ––– 1 Units °C/W www.irf.com 06/23/09 IRG7PH30K10PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 1200 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.27 — — 2.05 2.35 — 2.56 — — 2.65 — VCE(on) Collector-to-Emitter Saturation Voltage Max. Units VGE(th) Gate Threshold Voltage 5.0 — 7.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -16 — gfe ICES Forward Transconductance — 6.2 — Collector-to-Emitter Leakage Current — 1.0 25 IGES Gate-to-Emitter Leakage Current — 400 — — — ±100 V Conditions VGE = 0V, IC = 250µA e Ref.Fig CT6 e d = 150°C d = 175°C d V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 9.0A, VGE = 15V, TJ = 25°C V IC = 9.0A, VGE = 15V, TJ IC = 9.0A, VGE = 15V, TJ CT6 5,6,7 8,9,10 V VCE = VGE, IC = 400µA mV/°C VCE = VGE, IC = 400µA (25°C - 175°C) S VCE = 50V, IC = 9.0A, PW = 80µs µA nA 8,9 10,11 VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 175°C VGE = ±30V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Total Gate Charge (turn-on) Qge Qgc Eon Turn-On Switching Loss Eoff Turn-Off Switching Loss Etotal Total Switching Loss td(on) Turn-On delay time tr Rise time td(off) tf Min. Typ. Max. Units IC = 9.0A 68 d Conditions Ref.Fig — 45 Gate-to-Emitter Charge (turn-on) — 8.7 13 Gate-to-Collector Charge (turn-on) — 20 30 — 530 760 — 380 600 — 910 1360 — 14 31 — 24 41 Turn-Off delay time — 110 130 Fall time — 38 56 Eon Turn-On Switching Loss — 850 — Eoff Turn-Off Switching Loss — 750 — Etotal Total Switching Loss — 1600 td(on) Turn-On delay time — 12 tr Rise time — 23 — td(off) Turn-Off delay time — 130 — tf Fall time — 270 — Cies Input Capacitance — 1070 — Coes Output Capacitance — 63 — VCC = 30V Cres Reverse Transfer Capacitance — 26 — f = 1.0Mhz TJ = 175°C, IC = 36A RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 960V, Vp =1200V 10 VCC = 600V, Vp =1200V ,TJ = 150°C, nC 18 VGE = 15V CT1 VCC = 600V IC = 9.0A, VCC = 600V, VGE = 15V µJ d CT4 RG = 22Ω, L = 1000µH, LS = 150nH,TJ = 25°C Energy losses include tail & diode reverse recovery IC = 9.0A, VCC = 600V, VGE = 15V ns d CT4 RG = 22Ω, L = 1000µH, LS = 150nH,TJ = 25°C IC = 9.0A, VCC = 600V, VGE=15V d 12,14 RG=22Ω, L=1000µH, LS=150nH, TJ = 175°C CT4 — Energy losses include tail & diode reverse recovery WF1, WF2 — IC = 9.0A, VCC = 600V, VGE=15V µJ ns d 13,15 RG = 22Ω, L = 1000µH, LS = 150nH CT4 TJ = 175°C WF1 WF2 pF VGE = 0V 17 4 CT2 Rg = 10Ω, VGE = +20V to 0V, TJ =175°C SCSOA Short Circuit Safe Operating Area — — µs Rg = 22Ω, VGE = +15V to 0V 16, CT3 WF4 Notes: VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 51Ω. Pulse width ≤ 400µs; duty cycle ≤ 2%. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRG7PH30K10PbF 35 225 30 200 175 25 Ptot (W) IC (A) 150 20 15 125 100 75 10 50 5 25 0 25 50 75 100 125 150 0 175 0 25 50 T C (°C) 75 100 125 150 175 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10µsec 10 IC (A) IC (A) 100µsec 1msec 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse 1 0.1 1 10 100 1000 10 10000 100 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =20V 40 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 25 ICE (A) 35 ICE (A) 10000 VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V 20 20 15 15 10 10 5 5 0 0 0 2 4 6 8 10 VCE (V) 12 14 16 18 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com 1000 0 2 4 6 8 10 12 14 16 18 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRG7PH30K10PbF 40 18 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 14 12 VCE (V) ICE (A) 25 16 20 15 10 ICE = 4.5A 8 ICE = 18A ICE = 9.0A 6 10 4 5 2 0 0 0 2 4 6 8 10 12 14 16 18 5 10 20 VGE (V) VCE (V) Fig. 8 - Typical VCE vs. VGE TJ = -40°C Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 14 18 16 12 14 10 12 ICE = 4.5A ICE = 9.0A 10 8 VCE (V) VCE (V) 15 ICE = 18A 6 ICE = 4.5A ICE = 9.0A 8 ICE = 18A 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 10 - Typical VCE vs. VGE TJ = 175°C 2000 40 35 1600 30 EON 20 Energy (µJ) ICE (A) 25 T J = 25°C T J = 175°C 15 10 1200 EOFF 800 400 5 0 0 0 5 10 VGE (V) Fig. 11- Typ. Transfer Characteristics VCE = 50V; tp = 10µs 4 15 5 10 15 20 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V www.irf.com IRG7PH30K10PbF 1000 1000 tdOFF 100 EON 900 Energy (µJ) Swiching Time (ns) tF 800 tR 700 EOFF tdON 600 10 0 5 10 15 0 20 10 20 40 50 RG (Ω) IC (A) Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V 30 Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V 60 48 1000 tF 50 40 100 Time (µs) tdOFF tR 40 32 Isc 24 30 16 20 Current (A) Swiching Time (ns) Tsc 10 tdON 10 8 1 0 10 20 30 40 8 50 10 Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V 16 Fig. 16 - VGE vs. Short Circuit Time VCC = 600V; TC = 150°C 16 VGE, Gate-to-Emitter Voltage (V) 10000 Cies 1000 Capacitance (pF) 14 VGE (V) RG (Ω) 100 Coes 10 Cres VCES = 600V VCES = 400V 14 12 10 8 6 4 2 0 1 0 100 200 300 400 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com 12 500 0 10 20 30 40 50 Q G, Total Gate Charge (nC) Fig. 18- Typical Gate Charge vs. VGE ICE = 9.0A; L = 1.0mH 5 IRG7PH30K10PbF 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 τJ 0.02 0.01 0.001 1E-006 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 Ri (°C/W) τC τ τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri τ4 τ4 τi (sec) 0.01068 0.000005 0.18156 0.000099 0.31802 0.001305 0.19105 0.009113 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case 6 www.irf.com IRG7PH30K10PbF L L DUT 0 80 V + VCC DUT - Vclamped Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit DIODE CLAMP L VCC DUT / DRIVER VCC Rg Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R = VCC ICM C fo rce 100K D1 DUT Rg 22K C sense VCC 0.0075µ G force DUT E sense E fo rce Fig.C.T.5 - Resistive Load Circuit www.irf.com Fig.C.T.6 - BVCES Filter Circuit 7 IRG7PH30K10PbF 18 16 tf 700 14 600 12 400 8 300 6 5% ICE 5% V CE 200 600 30 400 10 90% ICE V CE (V) VCE (V) 500 35 tr 500 ICE (A) 800 700 90% test current 200 4 100 0 0 -2 -100 -1.8 0 5 10 10% test current 0 -5 5% V CE 5 0 Eon Loss 10 -5 -0.8 0.2 time(µs) 1.2 2.2 3.2 time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 80 800 700 VCE 70 60 600 400 40 300 30 200 20 100 10 Ice (A) 50 ICE 500 Vce (V) 20 15 2 Eoff Loss TEST CURRENT 300 100 -100 25 ICE (A) 900 0 0 -10 -100 -5 0 5 10 Time (uS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 8 www.irf.com IRG7PH30K10PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/2009 www.irf.com 9