IRF IRGB30B60KPBF

PD - 95356
IRGB30B60KPbF
IRGS30B60K
IRGSL30B60K
INSULATED GATE BIPOLAR TRANSISTOR
VCES = 600V
C
Features
•
•
•
•
•
•
IC = 50A, TC=100°C
at TJ=175°C
Low VCE (on) Non Punch Through IGBT Technology.
10µs Short Circuit Capability.
Square RBSOA.
Positive VCE (on) Temperature Coefficient.
Maximum Junction Temperature rated at 175°C.
TO-220 is available in PbF as Lead-Free
G
tsc > 10µs, TJ=150°C
E
n-channel
VCE(on) typ. = 1.95V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
D2 Pak
TO-220AB
IRGB30B60KPbF IRGS30B60K
TO-262
IRGSL30B60K
Absolute Maximum Ratings
Parameter
VCES
Collector-to-Emitter Voltage
IC @ TC = 25°C
Continuous Collector Current
Max.
Units
600
78
V
A
g
IC @ TC = 100°C
Continuous Collector Current
50
ICM
120
ILM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
VISOL
RMS Isolation Voltage, Terminal to Case, t=1 min.
2500
VGE
Gate-to-Emitter Voltage
±20
c
120
PD @ TC = 25°C Maximum Power Dissipation
PD @ TC = 100°C Maximum Power Dissipation
Operating Junction and
TJ
TSTG
V
370
W
180
-55 to +175
Storage Temperature Range
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics
Min.
Typ.
Max.
Units
RθJC
Junction-to-Case- IGBT
Parameter
–––
–––
0.41
°C/W
RθCS
–––
0.50
–––
RθJA
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
–––
–––
62
RθJA
Junction-to-Ambient (PCB Mount, Steady State)
–––
–––
40
Wt
Weight
–––
1.44
–––
www.irf.com
d
e
g
1
9/22/04
IRGB30B60KPbF, IRGS/L30B60K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Min. Typ. Max. Units
Collector-to-Emitter Breakdown Voltage
600
Temperature Coeff. of Breakdown Voltage —
—
Collector-to-Emitter Voltage
—
—
Gate Threshold Voltage
3.5
Threshold Voltage temp. coefficient
—
Forward Transconductance
—
—
Zero Gate Voltage Collector Current
—
—
Gate-to-Emitter Leakage Current
—
—
0.40
1.95
2.40
2.6
4.5
-10
18
5.0
1000
1830
—
Conditions
Ref.Fig.
—
V VGE = 0V, IC = 500µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 30A, VGE = 15V, TJ = 25°C
2.35
2.75
V IC = 30A, VGE = 15V, TJ = 150°C
IC = 30A, VGE = 15V, TJ = 175°C
2.95
5.5
V VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 1.0mA (25°C-150°C)
—
S VCE = 50V, IC = 50A, PW = 80µs
VGE = 0V, VCE = 600V
250
2000 µA VGE = 0V, VCE = 600V, TJ = 150°C
VGE = 0V, VCE = 600V, TJ = 175°C
3000
±100 nA VGE = ±20V, VCE = 0V
5,6,7
8,9,10
8,9,10
11
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
LE
Cies
Coes
Cres
RBSOA
SCSOA
ISC (Peak)
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
Short Circuit Safe Operating Area
Peak Short Circuit Collector Current
Min. Typ. Max. Units
—
102
153
—
14
21
—
44
66
—
350
620
—
825
955
—
1175 1575
—
46
60
—
28
39
—
185
200
—
31
40
—
635 1085
—
1150 1350
—
1785 2435
—
46
60
—
28
39
—
205
235
—
32
42
—
7.5
—
—
1750 2500
—
160
255
—
60
90
FULL SQUARE
10
—
—
200
—
—
nC
µJ
ns
µJ
ns
Conditions
IC = 30A
VCC = 400V
VGE = 15V
IC = 30A, VCC = 400V
VGE = 15V, RG = 10Ω, L = 200µH
TJ = 25°C
IC = 30A, VCC = 400V
VGE = 15V, RG = 10Ω, L = 200µH
TJ = 25°C
Ref.Fig.
17
CT1
CT4
f
IC = 30A, VCC = 400V
VGE = 15V, RG = 10Ω, L = 200µH
TJ = 150°C
IC = 30A, VCC = 400V
VGE = 15V, RG = 10Ω, L = 200µH
TJ = 150°C
f
CT4
CT4
12,14
WF1,WF2
13,15
CT4
WF1
WF2
nH
pF
µs
A
Measured 5mm from package
VGE = 0V
VCC = 30V
f = 1.0MHz
TJ = 150°C, IC = 120A, Vp = 600V
VCC=500V,VGE = +15V to 0V,RG =10Ω
TJ = 150°C, Vp = 600V, RG = 10Ω
VCC=360V,VGE = +15V to 0V
16
4
CT2
CT3
WF3
WF3
Note  to … are on page 13
2
www.irf.com
80
400
70
350
60
300
50
250
Ptot (W)
IC (A)
IRGB30B60KPbF, IRGS/L30B60K
40
200
30
150
20
100
10
50
0
0
0
20
40
60
80 100 120 140 160 180
0
T C (°C)
20
40
60
80 100 120 140 160 180
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
1000
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
100
100
IC A)
IC (A)
10 µs
10
100 µs
10
1ms
1
DC
0.1
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
1
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGB30B60KPbF, IRGS/L30B60K
60
50
VGE = 18V
VGE = 15V
50
VGE = 18V
VGE = 15V
40
VGE = 12V
VGE = 10V
40
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
ICE (A)
60
30
VGE = 8.0V
30
20
20
10
10
0
0
0
1
2
3
4
0
5
1
2
3
4
5
VCE (V)
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
ICE (A)
60
50
VGE = 18V
VGE = 15V
40
VGE = 12V
VGE = 10V
VGE = 8.0V
30
20
10
0
0
1
2
3
4
5
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 15A
10
ICE = 30A
8
ICE = 60A
VCE (V)
VCE (V)
IRGB30B60KPbF, IRGS/L30B60K
12
ICE = 15A
10
ICE = 30A
8
ICE = 60A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
250
20
18
T J = 25°C
T J = 150°C
200
16
12
10
ICE = 15A
ICE = 30A
8
ICE = 60A
ICE (A)
VCE (V)
14
150
100
6
T J = 150°C
50
4
T J = 25°C
2
0
0
5
10
15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGB30B60KPbF, IRGS/L30B60K
3000
1000
Swiching Time (ns)
2500
Energy (µJ)
2000
EOFF
1500
EON
1000
tdOFF
100
td ON
tF
500
tR
0
0
20
40
60
10
80
0
IC (A)
20
40
60
80
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 150°C; L=200µH; VCE= 400V,
RG= 10Ω; VGE= 15V
Fig. 13 - Typ. Switching Time vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 10Ω; VGE= 15V
10000
3000
Energy (µJ)
2000
Swiching Time (ns)
2500
EOFF
EON
1500
1000
1000
tdOFF
100
tdON
tF
500
tR
10
0
0
25
50
75
100
RG (Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 30A; VGE= 15V
6
125
0
25
50
75
100
125
RG (Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 30A; VGE= 15V
www.irf.com
IRGB30B60KPbF, IRGS/L30B60K
16
10000
14
200V
12
1000
400V
10
VGE (V)
Capacitance (pF)
Cies
Coes
8
6
100
4
2
Cres
0
10
0
20
40
60
80
0
100
25
50
75
100
125
Q G, Total Gate Charge (nC)
VCE (V)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 30A; L = 600µH
Thermal Response ( Z thJC )
10
1
0.1
0.01
D = 0.50
0.20
0.10
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ1
τ2
τ2
τ
Ri (°C/W) τi (sec)
0.200
0.000428
0.209
0.013031
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGB30B60KPbF, IRGS/L30B60K
L
L
VCC
DUT
0
+
-
80 V
DUT
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
480V
Rg
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGB30B60KPbF, IRGS/L30B60K
700
600
35
700
70
30
600
60
25
500
90% ICE
tf
300
15
5% V CE
5% ICE
100
400
0
40
300
10
200
5
100
0
0
30
90% test current
tr
10% test current
5% V CE
0.20
0.40
0.60
-100
15.90
16.00
Time(µs)
16.10
10
16.20
-10
16.30
Time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
600
300
500
250
ICE
400
200
VCE (V)
VCE
300
150
200
100
100
50
0
-5.00
0.00
5.00
10.00
ICE (A)
0.00
-5
0.80
20
0
Eon Loss
Eoff Loss
-100
-0.20
ICE (A)
20
VCE (V)
400
200
50
TEST CURRENT
ICE (A)
V CE (V)
500
0
15.00
time (µS)
Fig. WF3- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
www.irf.com
9
IRGB30B60KPbF, IRGS/L30B60K
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
1.40 (.055)
1.15 (.045)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
10
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
www.irf.com
IRGB30B60KPbF, IRGS/L30B60K
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T H IS IS AN IR F 5 3 0 S W IT H
L OT CODE 80 2 4
AS S E M B L E D ON W W 0 2, 20 00
IN T H E AS S E M B L Y L IN E "L "
IN T E R N AT IO N AL
R E C T IF IE R
L OGO
N ote: "P " in as s em bly lin e
po s itio n in dicates "L ead-F r ee"
P AR T N U M B E R
F 5 30 S
AS S E M B L Y
L O T CO D E
D AT E C O D E
Y E AR 0 = 2 0 0 0
W E E K 02
L IN E L
OR
IN T E R N AT IO N AL
R E C T IF IE R
L O GO
AS S E M B L Y
L OT COD E
www.irf.com
P AR T N U M B E R
F 530S
D AT E CO D E
P = D E S IG N AT E S L E AD -F R E E
P R O D U C T (O P T IO N AL )
Y E AR 0 = 2 0 0 0
W E E K 02
A = AS S E M B L Y S IT E CO D E
11
IRGB30B60KPbF, IRGS/L30B60K
TO-262 Package Outline
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS SEMBLED ON WW 19, 1997
IN T HE ASS EMBLY LINE "C"
Note: "P" in as s embly line
pos ition indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
12
PART NUMBER
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S ITE CODE
www.irf.com
IRGB30B60KPbF, IRGS/L30B60K
D2Pak Tape & Reel Infomation
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω.
‚ This is only applied to TO-220AB package.
ƒ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
„ Energy losses include "tail" and diode reverse recovery.
… Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/04
www.irf.com
13