PD - 94575A IRGB6B60K IRGS6B60K IRGSL6B60K INSULATED GATE BIPOLAR TRANSISTOR VCES = 600V C Features • Low VCE (on) Non Punch Through IGBT Technology. • 10µs Short Circuit Capability. • Square RBSOA. • Positive VCE (on) Temperature Coefficient. IC = 7.0A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel Benefits VCE(on) typ. = 1.8V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB IRGB6B60K D2Pak IRGS6B60K TO-262 IRGSL6B60K Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 600 13 7.0 26 26 ± 20 90 36 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθCS RθJA RθJA Wt www.irf.com Junction-to-Case - IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– 0.50 ––– ––– 1.44 1.4 ––– 62 40 ––– Units °C/W g 1 8/18/04 IRG/B/S/SL6B60K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 3.0 Zero Gate Voltage Collector Current ––– 1.0 ––– 200 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 V IC = 5.0A, VGE = 15V 2.50 IC = 5.0A,VGE = 15V, TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 5.0A, PW=80µs 150 µA VGE = 0V, VCE = 600V 500 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 8,9,10 8,9,10 11 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 18.2 1.9 9.2 110 135 245 25 17 215 13.2 150 190 340 28 17 240 18 290 34 10 Max. Units Conditions ––– IC = 5.0A ––– nC VCC = 400V ––– VGE = 15V 210 µJ IC = 5.0A, VCC = 400V 245 VGE = 15V,R G = 100Ω, L =1.4mH 455 Ls = 150nH TJ = 25°C 34 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100Ω L =1.4mH 230 ns Ls = 150nH, TJ = 25°C 22 260 IC = 5.0A, VCC = 400V 300 µJ VGE = 15V,R G = 100Ω, L =1.4mH 560 Ls = 150nH TJ = 150°C 37 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100Ω L =1.4mH 255 ns Ls = 150nH, TJ = 150°C 27 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz TJ = 150°C, IC = 26A, Vp =600V FULL SQUARE VCC = 500V, VGE =+15V to 0V,RG = 100Ω µs TJ = 150°C, Vp =600V, RG = 100Ω 10 ––– ––– VCC = 360V, VGE = +15V to 0V Note to are on page 13 2 www.irf.com Ref.Fig. 17 CT1 CT4 CT4 CT4 12,14 WF1WF2 13, 15 CT4 WF1 WF2 16 4 CT2 CT3 WF3 IRG/B/S/SL6B60K 15 100 90 80 70 IC (A) Ptot (W) 10 5 60 50 40 30 20 10 0 0 0 20 40 60 80 100 120 140 160 0 T C (°C) 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 IC A) IC (A) 10 µs 1 1 100 µs DC 1ms 0.1 0 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRG/B/S/SL6B60K 20 20 18 VGE VGE VGE VGE VGE 16 12 18 VGE VGE VGE VGE VGE 16 14 ICE (A) ICE (A) 14 = 18V = 15V = 12V = 10V = 8.0V 10 8 12 10 8 6 6 4 4 2 2 0 = 18V = 15V = 12V = 10V = 8.0V 0 0 1 2 3 4 5 6 0 1 2 VCE (V) 3 4 5 6 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 20 18 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 ICE (A) 14 12 10 8 6 4 2 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A VCE (V) VCE (V) IRG/B/S/SL6B60K 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 8 - Typical VCE vs. VGE TJ = -40°C 20 40 18 35 16 T J = 25°C T J = 150°C 30 12 10 ICE = 3.0A ICE = 5.0A 8 ICE = 10A 25 ICE (A) VCE (V) 14 20 15 6 10 4 T J = 150°C 5 2 0 5 10 15 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 T J = 25°C 0 0 5 10 15 20 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRG/B/S/SL6B60K 700 1000 600 tdOFF EON Swiching Time (ns) Energy (µJ) 500 400 EOFF 300 200 100 tF tdON tR 10 100 0 0 5 10 15 1 20 0 5 IC (A) 15 20 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V 250 1000 tdOFF Swiching Time (ns) EOFF 200 Energy (µJ) 10 150 EON 100 100 tdON tR tF 10 50 1 0 0 50 100 150 R G (Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V 6 200 0 50 100 150 200 RG (Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V www.irf.com IRG/B/S/SL6B60K 16 1000 14 Cies 300V 100 400V 10 VGE (V) Capacitance (pF) 12 Coes Cres 8 6 10 4 2 0 1 0 1 10 5 100 10 15 20 Q G , Total Gate Charge (nC) VCE (V) Fig. 17 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.01 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.708 0.00022 0.447 0.00089 0.219 0.01037 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRG/B/S/SL6B60K L L VCC DUT 80 V + - 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRG/B/S/SL6B60K 9 400 8 350 7 90% ICE 300 6 400 20 300 15 TEST CURRENT 4 3 5% V CE 100 VCE (V) tf 200 150 25 5 I CE (A) VCE (V) 250 500 200 100 2 5% ICE 90% test current 10% test current tr 50 1 0 0 -50 -0.20 0 Eon Loss -1 0.30 5 5% V CE 0 Eof f Loss 10 ICE (A) 450 -100 16.00 0.80 16.10 time(µs) 16.20 16.30 -5 16.40 time (µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 500 50 400 40 VCE ICE 30 ICE (A) VCE (V) 300 200 20 100 10 0 -5.00 0.00 5.00 10.00 0 15.00 time (µS) Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 9 IRG/B/S/SL6B60K TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 3 14.09 (.555) 13.47 (.530) IGBTs, CoPACK 2 - DRAIN 1- GATE 3 - SOURCE 2- DRAIN 3- SOURCE 4 - DRAIN 4- DRAIN 1234- GATE COLLECTOR EMITTER COLLECTOR 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) HEXFET 1 - GATE 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMP L E : T H IS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE 10 P AR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C www.irf.com IRG/B/S/SL6B60K D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMB LED ON WW 02, 2000 IN T HE AS S EMB LY LINE "L" INT ERNAT IONAL RECT IFIER LOGO Note: "P" in as sembly line pos ition indicates "L ead-F ree" PART NUMB ER F 530S AS S EMB LY LOT CODE DAT E CODE YEAR 0 = 2000 WEEK 02 L INE L OR INT E RNAT IONAL RE CT IF IER LOGO ASS E MB LY LOT CODE www.irf.com PART NUMBER F530S DAT E CODE P = DE SIGNAT E S LE AD-F RE E PRODUCT (OPT IONAL) YEAR 0 = 2000 WEE K 02 A = AS SE MBLY SIT E CODE 11 IRG/B/S/SL6B60K TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking InformaEXAMPLE: THIS IS AN IRL 3103L LOT CODE 1789 AS S EMB LED ON WW 19, 1997 IN T HE AS S EMB LY LINE "C" Note: "P" in ass embly line position indicates "L ead-F ree" INTERNATIONAL RECT IF IER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEE K 19 LINE C OR INTE RNATIONAL RECT IFIER L OGO AS S EMBL Y LOT CODE 12 PART NUMBER DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBL Y S IT E CODE www.irf.com IRG/B/S/SL6B60K D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: VCC= 80% (VCES), VGE =20V, L = 100µH, RG = 100Ω This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 www.irf.com 13