IRF IRGSL6B60K

PD - 94575A
IRGB6B60K
IRGS6B60K
IRGSL6B60K
INSULATED GATE BIPOLAR TRANSISTOR
VCES = 600V
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Positive VCE (on) Temperature Coefficient.
IC = 7.0A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
Benefits
VCE(on) typ. = 1.8V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
IRGB6B60K
D2Pak
IRGS6B60K
TO-262
IRGSL6B60K
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current 
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
Units
600
13
7.0
26
26
± 20
90
36
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount‚
Junction-to-Ambient (PCB Mount, steady state)ƒ
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
0.50
–––
–––
1.44
1.4
–––
62
40
–––
Units
°C/W
g
1
8/18/04
IRG/B/S/SL6B60K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 600 –––
Temperature Coeff. of Breakdown Voltage ––– 0.3
Collector-to-Emitter Saturation Voltage
1.5 1.80
––– 2.20
Gate Threshold Voltage
3.5 4.5
Temperature Coeff. of Threshold Voltage ––– -10
Forward Transconductance
––– 3.0
Zero Gate Voltage Collector Current
––– 1.0
––– 200
Gate-to-Emitter Leakage Current
––– –––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C)
2.20
V
IC = 5.0A, VGE = 15V
2.50
IC = 5.0A,VGE = 15V,
TJ = 150°C
5.5
V
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C)
–––
S
VCE = 50V, IC = 5.0A, PW=80µs
150
µA
VGE = 0V, VCE = 600V
500
VGE = 0V, VCE = 600V, TJ = 150°C
±100 nA
VGE = ±20V
Ref.Fig.
5, 6,7
8,9,10
8,9,10
11
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operting Area
SCSOA
Short Circuit Safe Operting Area
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
18.2
1.9
9.2
110
135
245
25
17
215
13.2
150
190
340
28
17
240
18
290
34
10
Max. Units
Conditions
–––
IC = 5.0A
–––
nC
VCC = 400V
–––
VGE = 15V
210
µJ
IC = 5.0A, VCC = 400V
245
VGE = 15V,R G = 100Ω, L =1.4mH
455
Ls = 150nH
TJ = 25°C „
34
IC = 5.0A, VCC = 400V
26
VGE = 15V, RG = 100Ω L =1.4mH
230
ns
Ls = 150nH, TJ = 25°C
22
260
IC = 5.0A, VCC = 400V
300
µJ
VGE = 15V,R G = 100Ω, L =1.4mH
560
Ls = 150nH
TJ = 150°C „
37
IC = 5.0A, VCC = 400V
26
VGE = 15V, RG = 100Ω L =1.4mH
255
ns
Ls = 150nH, TJ = 150°C
27
–––
VGE = 0V
–––
pF
VCC = 30V
–––
f = 1.0MHz
TJ = 150°C, IC = 26A, Vp =600V
FULL SQUARE
VCC = 500V, VGE =+15V to 0V,RG = 100Ω
µs
TJ = 150°C, Vp =600V, RG = 100Ω
10 ––– –––
VCC = 360V, VGE = +15V to 0V
Note  to „ are on page 13
2
www.irf.com
Ref.Fig.
17
CT1
CT4
CT4
CT4
12,14
WF1WF2
13, 15
CT4
WF1
WF2
16
4
CT2
CT3
WF3
IRG/B/S/SL6B60K
15
100
90
80
70
IC (A)
Ptot (W)
10
5
60
50
40
30
20
10
0
0
0
20
40
60
80
100 120 140 160
0
T C (°C)
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
10
IC A)
IC (A)
10 µs
1
1
100 µs
DC
1ms
0.1
0
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRG/B/S/SL6B60K
20
20
18
VGE
VGE
VGE
VGE
VGE
16
12
18
VGE
VGE
VGE
VGE
VGE
16
14
ICE (A)
ICE (A)
14
= 18V
= 15V
= 12V
= 10V
= 8.0V
10
8
12
10
8
6
6
4
4
2
2
0
= 18V
= 15V
= 12V
= 10V
= 8.0V
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
3
4
5
6
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
20
18
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
16
ICE (A)
14
12
10
8
6
4
2
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 3.0A
10
ICE = 5.0A
8
ICE = 10A
VCE (V)
VCE (V)
IRG/B/S/SL6B60K
12
ICE = 3.0A
10
ICE = 5.0A
8
ICE = 10A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
20
40
18
35
16
T J = 25°C
T J = 150°C
30
12
10
ICE = 3.0A
ICE = 5.0A
8
ICE = 10A
25
ICE (A)
VCE (V)
14
20
15
6
10
4
T J = 150°C
5
2
0
5
10
15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
T J = 25°C
0
0
5
10
15
20
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRG/B/S/SL6B60K
700
1000
600
tdOFF
EON
Swiching Time (ns)
Energy (µJ)
500
400
EOFF
300
200
100
tF
tdON
tR
10
100
0
0
5
10
15
1
20
0
5
IC (A)
15
20
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 100Ω; VGE= 15V
Fig. 13 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 100Ω; VGE= 15V
250
1000
tdOFF
Swiching Time (ns)
EOFF
200
Energy (µJ)
10
150
EON
100
100
tdON
tR
tF
10
50
1
0
0
50
100
150
R G (Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
6
200
0
50
100
150
200
RG (Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
www.irf.com
IRG/B/S/SL6B60K
16
1000
14
Cies
300V
100
400V
10
VGE (V)
Capacitance (pF)
12
Coes
Cres
8
6
10
4
2
0
1
0
1
10
5
100
10
15
20
Q G , Total Gate Charge (nC)
VCE (V)
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 5.0A; L = 600µH
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.01
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
Ci= τi/Ri
Ci= i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.708
0.00022
0.447
0.00089
0.219
0.01037
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRG/B/S/SL6B60K
L
L
VCC
DUT
80 V
+
-
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRG/B/S/SL6B60K
9
400
8
350
7
90% ICE
300
6
400
20
300
15
TEST CURRENT
4
3
5% V CE
100
VCE (V)
tf
200
150
25
5
I CE (A)
VCE (V)
250
500
200
100
2
5% ICE
90% test current
10% test current
tr
50
1
0
0
-50
-0.20
0
Eon Loss
-1
0.30
5
5% V CE
0
Eof f Loss
10
ICE (A)
450
-100
16.00
0.80
16.10
time(µs)
16.20
16.30
-5
16.40
time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
500
50
400
40
VCE
ICE
30
ICE (A)
VCE (V)
300
200
20
100
10
0
-5.00
0.00
5.00
10.00
0
15.00
time (µS)
Fig. WF3- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
www.irf.com
9
IRG/B/S/SL6B60K
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
3
14.09 (.555)
13.47 (.530)
IGBTs, CoPACK
2 - DRAIN
1- GATE
3 - SOURCE
2- DRAIN
3- SOURCE
4 - DRAIN
4- DRAIN
1234-
GATE
COLLECTOR
EMITTER
COLLECTOR
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
HEXFET
1 - GATE
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP L E : T H IS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
10
P AR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
www.irf.com
IRG/B/S/SL6B60K
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMB LED ON WW 02, 2000
IN T HE AS S EMB LY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "P" in as sembly line
pos ition indicates "L ead-F ree"
PART NUMB ER
F 530S
AS S EMB LY
LOT CODE
DAT E CODE
YEAR 0 = 2000
WEEK 02
L INE L
OR
INT E RNAT IONAL
RE CT IF IER
LOGO
ASS E MB LY
LOT CODE
www.irf.com
PART NUMBER
F530S
DAT E CODE
P = DE SIGNAT E S LE AD-F RE E
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEE K 02
A = AS SE MBLY SIT E CODE
11
IRG/B/S/SL6B60K
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking InformaEXAMPLE: THIS IS AN IRL 3103L
LOT CODE 1789
AS S EMB LED ON WW 19, 1997
IN T HE AS S EMB LY LINE "C"
Note: "P" in ass embly line
position indicates "L ead-F ree"
INTERNATIONAL
RECT IF IER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEE K 19
LINE C
OR
INTE RNATIONAL
RECT IFIER
L OGO
AS S EMBL Y
LOT CODE
12
PART NUMBER
DATE CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBL Y S IT E CODE
www.irf.com
IRG/B/S/SL6B60K
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 VCC= 80% (VCES), VGE =20V, L = 100µH, RG = 100Ω
‚ This is only applied to TO-220AB package
ƒ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
„ Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE.
TO-220 package is not recommended for Surface Mount Application
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/04
www.irf.com
13