IRF IRGP4063PBF

PD - 97404
IRGP4063PbF
IRGP4063-EPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
•
C
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
5 μS short circuit SOA
Square RBSOA
100% of the parts tested for ILM 
Positive VCE (ON) Temperature co-efficient
Tight parameter distribution
Lead Free Package
VCES = 600V
IC = 48A, TC = 100°C
tSC ≥ 5μs, TJ(max) = 175°C
G
VCE(on) typ. = 1.65V
E
n-channel
Benefits
C
• High Efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
• Rugged transient Performance for increased reliability
• Excellent Current sharing in parallel operation
• Low EMI
C
GC
E
E
GC
TO-247AD
IRGP4063-EPbF
TO-247AC
IRGP4063PbF
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
Max.
Units
V
VCES
Collector-to-Emitter Voltage
IC @ TC = 25°C
Continuous Collector Current
600
96
IC @ TC = 100°C
ICM
Continuous Collector Current
Pulse Collector Current, VGE = 15V
144
A
ILM
Clamped Inductive Load Current, VGE = 20V
192
A
VGE
Continuous Gate-to-Emitter Voltage
±20
V
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
330
PD @ TC = 100°C
Maximum Power Dissipation
170
TJ
Operating Junction and
TSTG
Storage Temperature Range
h
48
c
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
Min.
Typ.
Max.
Units
–––
–––
0.45
°C/W
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
RθCS
RθJA
1
www.irf.com
06/30/09
IRGP4063PbF/IRGP4063-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
—
0.30
—
—
1.65
2.14
—
2.0
—
—
2.05
—
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
VGE(th)
Gate Threshold Voltage
4.0
—
6.5
ΔVGE(th)/ΔTJ
Threshold Voltage temp. coefficient
—
-21
—
gfe
ICES
Forward Transconductance
—
32
—
Collector-to-Emitter Leakage Current
—
1.0
150
—
450
1000
—
—
±100
IGES
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 150μA
Ref.Fig
f
CT6
V/°C VGE = 0V, IC = 1mA (25°C-175°C)
IC = 48A, VGE = 15V, TJ = 25°C
V
CT6
5,6,7
IC = 48A, VGE = 15V, TJ = 150°C
8,9,10
IC = 48A, VGE = 15V, TJ = 175°C
V VCE = VGE, IC = 1.4mA
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C)
S VCE = 50V, IC = 48A, PW = 80μs
μA
8,9
10,11
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
95
Max. Units
140
Qge
Gate-to-Emitter Charge (turn-on)
—
28
42
Qgc
Gate-to-Collector Charge (turn-on)
—
35
53
Eon
Turn-On Switching Loss
—
625
1141
Eoff
Turn-Off Switching Loss
—
1275
1481
Etotal
Total Switching Loss
—
1900
2622
td(on)
Turn-On delay time
—
60
78
tr
Rise time
—
40
56
td(off)
Turn-Off delay time
—
145
176
tf
Fall time
—
35
46
Eon
—
1625
—
Eoff
Turn-On Switching Loss
Turn-Off Switching Loss
—
1585
—
Etotal
Total Switching Loss
—
3210
—
td(on)
Turn-On delay time
—
55
—
tr
Rise time
—
45
—
td(off)
Turn-Off delay time
—
165
—
tf
Fall time
—
45
—
g
g
Cies
Input Capacitance
—
3025
—
Conditions
Ref.Fig
IC = 48A
nC
18
VGE = 15V
CT1
VCC = 400V
IC = 48A, VCC = 400V, VGE = 15V
μJ
CT4
RG=10Ω, L= 200μH, LS=150nH, TJ= 25°C
Energy losses include tail & diode reverse recovery
IC = 48A, VCC = 400V, VGE = 15V
ns
CT4
RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C
IC = 48A, VCC = 400V, VGE=15V
μJ
RG=10Ω, L=200μH, LS=150nH, TJ = 175°C
f
Energy losses include tail & diode reverse recovery
IC = 48A, VCC = 400V, VGE = 15V
ns
12, 14
CT4
WF1, WF2
13, 15
RG = 10Ω, L = 200μH, LS = 150nH
CT4
TJ = 175°C
WF1
WF2
pF
VGE = 0V
17
Coes
Output Capacitance
—
245
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
90
—
f = 1.0Mhz
TJ = 175°C, IC = 192A
4
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
VCC = 480V, Vp =600V
CT2
SCSOA
Short Circuit Safe Operating Area
5
Rg = 10Ω, VGE = +15V to 0V
—
—
μs
VCC = 400V, Vp =600V
Rg = 10Ω, VGE = +15V to 0V
16, CT3
WF3
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 200μH, RG = 10Ω.
‚ This is only applied to TO-247AC package.
ƒ Pulse width limited by max. junction temperature.
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
… Turn-on energy is measured using the same co-pak diode as IRGP4063DPbF.
† Calculated continuous current based on maximum allowable junction temperature.
Bond wire current limit is 80A. Note that current limitations arising from heating of
the device leads may occur with some lead mounting arrangements.
2
www.irf.com
IRGP4063PbF/IRGP4063-EPbF
100
350
90
300
80
250
70
200
Ptot (W)
IC (A)
60
50
40
150
30
100
20
50
10
0
0
0
25
50
75
100 125 150 175 200
0
25
50
75
100 125 150 175 200
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
10μsec
100
IC (A)
IC (A)
100μsec
1msec
10
10
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
1
10
100
1000
10
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
200
180
180
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
160
100
80
120
100
80
60
60
40
40
20
20
0
0
0
2
4
6
VCE (V)
8
10
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
www.irf.com
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
140
ICE (A)
140
ICE (A)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
200
160
1000
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
3
IRGP4063PbF/IRGP4063-EPbF
200
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
180
160
16
14
120
VCE (V)
ICE (A)
140
18
100
80
12
6
40
4
20
2
0
0
2
4
6
8
10
5
20
20
18
18
16
16
14
14
VCE (V)
ICE = 24A
ICE = 48A
10
ICE = 96A
8
12
20
ICE = 24A
ICE = 48A
10
ICE = 96A
8
6
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
6000
200
180
T J = 25°C
T J = 175°C
160
5000
EOFF
140
4000
Energy (μJ)
ICE (A)
15
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
12
10
VGE (V)
VCE (V)
VCE (V)
ICE = 96A
8
60
0
ICE = 24A
ICE = 48A
10
120
100
80
EON
3000
2000
60
40
1000
20
0
0
0
5
10
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
4
15
0
50
100
150
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
www.irf.com
IRGP4063PbF/IRGP4063-EPbF
5000
1000
4500
EOFF
tdOFF
100
tdON
EON
3500
Energy (μJ)
Swiching Time (ns)
4000
3000
2500
tF
2000
tR
1500
1000
10
0
20
40
60
80
0
100
25
IC (A)
tdOFF
125
tR
Time (μs)
tdON
100
tF
18
400
16
350
14
300
12
250
10
200
8
150
6
100
50
4
10
0
25
50
75
100
8
125
Current (A)
Swiching Time (ns)
100
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V
1000
10
12
14
16
18
VGE (V)
RG (Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V
Fig. 16 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
10000
16
VGE, Gate-to-Emitter Voltage (V)
Cies
Capacitance (pF)
75
Rg (Ω)
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
1000
Coes
100
Cres
10
V CES = 300V
14
V CES = 400V
12
10
8
6
4
2
0
0
20
40
60
80
VCE (V)
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
www.irf.com
50
100
0
25
50
75
100
Q G, Total Gate Charge (nC)
Fig. 18 - Typical Gate Charge vs. VGE
ICE = 48A; L = 600μH
5
IRGP4063PbF/IRGP4063-EPbF
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.001
0.02
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
Ci= τi/Ri
Ci i/Ri
τC
τ
τ3
Ri (°C/W) τi (sec)
0.0872 0.000114
0.1599
0.001520
0.2020
0.020330
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
6
www.irf.com
IRGP4063PbF/IRGP4063-EPbF
L
L
DUT
0
VCC
80 V +
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
4X
DC
-5V
VCC
DUT /
DRIVER
DUT
VCC
Rg
SCSOA
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
R=
VCC
ICM
100K
D1
DUT
Rg
22K
C sense
VCC
G force
DUT
0.0075μF
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
www.irf.com
Fig.C.T.6 - BVCES Filter Circuit
7
IRGP4063PbF/IRGP4063-EPbF
700
140
600
120
600
120
500
100
500
100
80
tf
300
VCE (V)
VCE (V)
400
tr
400
60
90% ICE
200
-100
-0.40
60
90% test
200
40
100
5% VCE
0
0
EOFF Loss
0.10
300
10% test
20
5% ICE
0
TEST
CURRE
40
5% VCE
100
80
20
0
EON
-20
1.10
0.60
-100
6.20
6.40
Time(µs)
6.60
6.80
-20
7.00
Time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
600
600
500
500
ICE
VCE
400
300
300
200
200
100
100
0
0
-100
-5.00
-100
10.00
0.00
5.00
I CE (A)
400
VCE (V)
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
time (µS)
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
8
www.irf.com
IRGP4063PbF/IRGP4063-EPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRGP4063PbF/IRGP4063-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/09
10
www.irf.com