PD - 94633A IRGB4B60K IRGS4B60K IRGSL4B60K INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175°C. C VCES = 600V IC = 6.8A, TC=100°C G tsc > 10µs, TJ=150°C E Benefits n-channel VCE(on) typ. = 2.1V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220 IRGB4B60K D2Pak IRGS4B60K TO-262 IRGSL4B60K Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 12 IC @ TC = 100°C Continuous Collector Current 6.8 ICM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current 24 ILM VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 63 W c 24 PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range A 31 -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Thermal / Mechanical Characteristics Min. Typ. Max. Units RθJC Junction-to-Case- IGBT Parameter ––– ––– 2.4 °C/W RθCS Case-to-Sink, flat, greased surface ––– 0.50 ––– RθJA Junction-to-Ambient ––– ––– 62 d RθJA Junction-to-Ambient (PCB Mount, steady state) ––– ––– 40 Wt Weight ––– 1.44 ––– www.irf.com g 1 8/4/03 IRGB/S/SL4B60K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage — — 0.28 — — 2.1 2.5 — 2.5 2.8 — 2.6 2.8 VGE(th) Gate Threshold Voltage 3.5 4.5 5.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -8.1 — gfe Forward Transconductance — 1.7 — — 1.0 150 ICES Zero Gate Voltage Collector Current — 54 300 — 300 800 IGES Gate-to-Emitter Leakage Current — — ±100 V Conditions Ref.Fig. VGE = 0V, IC = 500µA V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 4.0A, VGE = 15V, TJ = 25°C V 5,6,7 IC = 4.0A, VGE = 15V, TJ = 150°C 9,10,11 IC = 4.0A, VGE = 15V, TJ = 175°C V VCE = VGE, IC = 250µA 9,10,11 mV/°C VCE = VGE, IC = 1mA (25°C-150°C) S VCE = 50V, IC = 4.0A, PW = 80µs 12 VGE = 0V, VCE = 600V µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Total Gate Charge (turn-on) — 12 — Qge Gate-to-Emitter Charge (turn-on) — 1.7 — Qgc Gate-to-Collector Charge (turn-on) — 6.5 — Eon Turn-On Switching Loss — 73 80 Eoff Turn-Off Switching Loss — 47 53 Conditions nC 23 VCC = 400V CT1 VGE = 15V IC = 4.0A, VCC = 400V µJ e Etot Total Switching Loss — 120 130 TJ = 25°C Turn-On delay time — 22 28 IC = 4.0A, VCC = 400V tr Rise time — 18 23 Turn-Off delay time — 100 110 ns CT4 VGE = 15V, RG = 100Ω, L = 2.5mH td(on) td(off) Ref.Fig. IC = 4.0A VGE = 15V, RG = 100Ω, L = 2.5mH CT4 TJ = 25°C tf Fall time — 66 80 Eon Turn-On Switching Loss — 130 150 Eoff Turn-Off Switching Loss — 83 140 Etot Total Switching Loss — 220 280 TJ = 150°C td(on) Turn-On delay time — 22 27 IC = 4.0A, VCC = 400V tr Rise time — 18 22 td(off) Turn-Off delay time — 120 130 tf Fall time — 79 89 Cies Input Capacitance — 190 — Coes Output Capacitance — 25 — Cres Reverse Transfer Capacitance — 6.2 — RBSOA Reverse Bias Safe Operating Area IC = 4.0A, VCC = 400V µJ ns CT4 VGE = 15V, RG = 100Ω, L = 2.5mH e 13,15 WF1,WF2 14,16 VGE = 15V, RG = 100Ω, L = 2.5mH CT4 TJ = 150°C WF1 WF2 VGE = 0V pF FULL SQUARE VCC = 30V 22 f = 1.0MHz TJ = 150°C, IC = 24A, Vp = 600V 4 VCC=500V,VGE = +15V to 0V,RG = 100Ω SCSOA Short Circuit Safe Operating Area 10 — — µs CT3 VCC=360V,VGE = +15V to 0V WF3 Note to are on page 16 2 CT2 TJ = 150°C, Vp = 600V, RG = 100Ω www.irf.com IRGB/S/SL4B60K 12 70 10 60 50 Ptot (W) IC (A) 8 6 40 30 4 20 2 10 0 0 0 20 40 60 80 100 120 140 160 180 0 T C (°C) 20 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 IC A) IC (A) 100µs 1 1ms 1 10ms 0.1 DC 0.01 0 0 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGB/S/SL4B60K 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 20 ICE (A) 20 ICE (A) 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 15 15 10 10 5 5 0 0 0 2 4 6 8 10 12 0 2 VCE (V) 4 6 8 10 12 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 20 15 10 5 0 0 2 4 6 8 10 12 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 www.irf.com 20 20 18 18 16 16 14 14 12 10 ICE = 2.0A ICE = 4.0A 8 ICE = 8.0A VCE (V) VCE (V) IRGB/S/SL4B60K 12 10 ICE = 2.0A ICE = 4.0A 8 ICE = 8.0A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 8 - Typical VCE vs. VGE TJ = -40°C Fig. 9 - Typical VCE vs. VGE TJ = 25°C 20 30 ID, Drain-to-Source Current (Α) 18 16 VCE (V) 14 12 10 ICE = 2.0A ICE = 4.0A 8 ICE = 8.0A 6 4 25 T J = 25°C 20 15 TJ = 150°C 10 5 2 0 0 5 10 15 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGS , Gate-to-Source Voltage (V) Fig. 11 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs 5 IRGB/S/SL4B60K 350 1000 300 Swiching Time (ns) Energy (µJ) td OFF EON 250 200 150 EOFF 100 tF 100 tdON 10 tR 50 0 1 1 2 3 4 5 6 7 8 9 10 0 2 Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=2.5mH; VCE= 400V, RG= 100Ω; VGE= 15V 6 8 10 Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=2.5mH; VCE= 400V RG= 100Ω; VGE= 15V 350 1000 300 EON Swiching Time (ns) 250 Energy (µJ) 4 IC (A) IC (A) 200 EOFF 150 100 tdOFF 100 tF tdON 50 tR 0 10 0 100 200 300 400 RG ( Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 4.0A; VGE= 15V 6 500 0 100 200 300 400 500 RG ( Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 4.0A; VGE= 15V www.irf.com IRGB/S/SL4B60K 1000 16 14 Cies 300V 400V 100 10 VGE (V) Capacitance (pF) 12 Coes 6 Cres 10 8 4 2 1 0 0 20 40 60 80 100 0 2 VCE (V) 4 6 8 10 12 14 Q G , Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 4.0A; L = 3150µH Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ3 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R3 R3 τC τ τ3 Ri (°C/W) τi (sec) 0.0429 0.000001 1.3417 0.000178 1.0154 0.000627 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRGB/S/SL4B60K L L VCC DUT 80 V + - 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRGB/S/SL4B60K 700 14 700 12 600 14 tf 600 tr 12 Vce Vce 500 10 Ice 500 90% Ice 8 400 6 5% Ice 200 Vce (V) Ice (A) Vce (V) 5% Vce 10% Ice 5% Vce 300 8 6 4 200 4 100 2 100 2 0 0 0 Ice (A) 400 300 10 90% Ice Ice 0 Eon Loss Eoff Loss -100 -2 0.4 0.6 0.8 1 -100 0.35 1.2 0.45 Time (uS) 0.65 Time (uS) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 400 40 Vce 350 35 300 30 25 250 200 20 I(A) CE (A) Ice 150 15 I VCE (V) -2 0.55 100 10 50 5 0 0 -5 -50 30 40 50 60 70 Time (uS) Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 9 IRGB/S/SL4B60K TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1 - GATE 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1 - GATE 2 -COLLECTOR 3 2 - DRAIN 3 EMITTER 3 - SOURCE 4 - DRAIN 4 - COLLECTOR 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE 10 PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRGB/S/SL4B60K D2Pak Package Outline D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE ASS EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE www.irf.com PART NUMBER F 530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L 11 IRGB/S/SL4B60K TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE 12 PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRGB/S/SL4B60K D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 Notes: VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 50Ω. When mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery, using Diode FD059H06A5. TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 8/03 www.irf.com 13