IRF IRGR3B60KD2PBF

PD - 95036
IRGR3B60KD2PbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Lead-Free
IC = 4.2A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
Benefits
VCES = 600V
VCE(on) typ. = 1.9V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
D-Pak
Absolute Maximum Ratings
Parameter
Max.
Units
VCES
Collector-to-Emitter Voltage
600
V
IC @ TC = 25°C
Continuous Collector Current
7.8
A
IC @ TC = 100°C
Continuous Collector Current
4.2
ICM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
15.6
ILM
IF @ Tc = 25°C
Diode Continous Forward Current
6.0
IF @ Tc = 100°C
Diode Continuous Forward Current
3.2
IFM
Diode Maximum Forward Current
15.6
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
52
W
c
15.6
PD @ TC = 100°C Maximum Power Dissipation
Operating Junction and
TJ
TSTG
21
-55 to +150
Storage Temperature Range
°C
Soldering Temperature Range, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Min.
Typ.
Max.
Units
RθJC
Junction-to-Case- IGBT
Parameter
–––
–––
2.4
°C/W
RθJC
–––
–––
8.8
RθJA
Junction-to-Case- Diode
Junction-to-Ambient, (PCB Mount)
–––
–––
50
Wt
Weight
–––
0.3
–––
www.irf.com
d
g
1
2/23/04
IRGR3B60KD2PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
VCE(on)
Collector-to-Emitter Voltage
—
—
VGE(th)
Gate Threshold Voltage
3.5
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
—
0.32
—
—
1.9
2.2
2.4
2.6
4.5
-8.5
5.5
—
gfe
ICES
VFM
IGES
Conditions
Ref.Fig.
V VGE = 0V, IC = 500µA
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 3.0A, VGE = 15V
V
IC = 3.0A, VGE = 15V, TJ = 150°C
VCE = VGE, IC = 250µA
mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
S VCE = 50V, IC = 3.0A, PW = 80µs
Forward Transconductance
Zero Gate Voltage Collector Current
—
—
1.9
1.0
—
150
µA
200
1.5
500
1.8
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
Diode Forward Voltage Drop
—
—
V
1.5
—
1.8
±100
IF = 3.0A, VGE = 0V
IF = 3.0A, VGE = 0V, TJ = 150°C
Gate-to-Emitter Leakage Current
—
—
nA
VGE = ±20V, VCE = 0V
5,6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Min. Typ. Max. Units
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
—
—
13
1.5
20
2.3
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
—
—
6.6
62
9.9
75
Turn-Off Switching Loss
Total Switching Loss
—
—
39
100
50
120
Turn-On delay time
Rise time
—
—
18
15
22
21
Turn-Off delay time
Fall time
—
—
110
68
120
80
Turn-On Switching Loss
Turn-Off Switching Loss
—
—
91
98
100
140
Total Switching Loss
Turn-On delay time
—
—
190
18
230
22
Rise time
Turn-Off delay time
—
—
17
120
22
140
Fall time
Input Capacitance
—
—
91
190
105
—
Cres
Output Capacitance
Reverse Transfer Capacitance
—
—
23
6.6
—
—
RBSOA
Reverse Bias Safe Operating Area
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
SCSOA
Short Circuit Safe Operating Area
Erec
trr
Reverse Recovery Energy of the Diode
nC
µJ
—
—
Ref.Fig.
23
VCC = 400V
VGE = 15V
CT1
IC = 3.0A, VCC = 400V
VGE = 15V, RG = 100Ω, L = 2.5mH
CT4
e
TJ = 25°C
IC = 3.0A, VCC = 400V
ns
VGE = 15V, RG = 100Ω, L = 2.5mH
TJ = 25°C
IC = 3.0A, VCC = 400V
µJ
ns
CT4
CT4
VGE = 15V, RG = 100Ω, L = 2.5mH
TJ = 150°C
e
13,15
WF1,WF2
IC = 3.0A, VCC = 400V
VGE = 15V, RG = 100Ω, L = 2.5mH
14,16
TJ = 150°C
WF1
CT4
WF2
pF
VGE = 0V
VCC = 30V
22
f = 1.0MHz
TJ = 150°C, IC = 15.6A, Vp = 600V
FULL SQUARE
10
Conditions
IC = 3.0A
µs
4
VCC=500V,VGE=+15V to 0V,RG = 100Ω
TJ = 150°C, Vp = 600V, RG = 100Ω
CT2
VCC=360V,VGE = +15V to 0V
TJ = 150°C
WF4
CT3
17,18,19
—
38
44
µJ
20,21
Diode Reverse Recovery Time
—
77
84
ns VCC = 400V, IF = 3.0A, L = 2.5mH
Irr
Diode Peak Reverse Recovery Current
—
4.8
5.3
A VGE = 15V, RG = 100Ω
CT4,WF3
ƒ Energy losses include "tail" and diode reverse recovery.
 VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 100Ω.
‚ When mounted on 1" square PCB (FR-4 or G-10 Material ) . For recommended
footprint and soldering techniques refer to application note #AN-994.
2
www.irf.com
IRGR3B60KD2PbF
10
60
50
8
40
IC (A)
Ptot (W)
6
4
30
20
2
10
0
0
0
20
40
60
80
100 120 140 160
0
T C (°C)
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
10
100 µs
1
IC A)
IC (A)
10 µs
1ms
1
10ms
0.1
DC
0.01
0
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGR3B60KD2PbF
25
25
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
20
ICE (A)
15
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
10
5
15
10
5
0
0
0
2
4
6
8
10
12
0
2
4
VCE (V)
10
12
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
25
25
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
15
-40°C
25°C
150°C
20
15
IF (A)
ICE (A)
8
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
10
10
5
5
0
0
0
2
4
6
8
10
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
6
12
0.0
1.0
2.0
3.0
4.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 1.5A
10
ICE = 3.0A
8
ICE = 6.0A
VCE (V)
VCE (V)
IRGR3B60KD2PbF
12
10
ICE = 1.5A
ICE = 3.0A
8
ICE = 6.0A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
25
ID, Drain-to-Source Current (Α)
18
16
VCE (V)
14
12
10
ICE = 1.5A
ICE = 3.0A
8
ICE = 6.0A
6
4
20
T J = 25°C
15
T J = 150°C
10
5
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGS , Gate-to-Source Voltage (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGR3B60KD2PbF
250
1000
200
Swiching Time (ns)
EON
Energy (µJ)
150
EOFF
100
tdOFF
100
tF
tR
tdON
50
0
0
1
2
3
4
5
6
10
7
0
1
2
IC (A)
4
5
6
7
8
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=2.5mH; VCE= 400V
RG= 100Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=2.5mH; VCE= 400V
RG= 100Ω; VGE= 15V
250
1000
150
Swiching Time (ns)
EON
200
Energy (µJ)
3
EOFF
100
tdOFF
tF
100
tR
50
tdON
0
10
0
100
200
300
400
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=2.5mH; VCE= 400V
ICE= 3.0A; VGE= 15V
6
500
0
100
200
300
400
500
RG ( Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=2.5mH; VCE= 400V
ICE= 3.0A; VGE= 15V
www.irf.com
IRGR3B60KD2PbF
6
6
RG = 100Ω
5
4
4
IRR (A)
IRR (A)
5
RG = 200Ω
3
RG = 330Ω
3
2
RG = 470Ω
2
1
0
1
0
1
2
3
4
5
6
7
0
8
100
200
300
IF (A)
500
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 3.0A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
400
6
350
5
300
Q RR (µC)
4
IRR (A)
400
RG (Ω)
3
250
470 Ω
200Ω
330Ω
100Ω
6.0A
3.0A
200
150
1.5A
2
100
1
50
0
0
50
100
150
200
250
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
IF = 3.0A; TJ = 150°C
www.irf.com
300
0
50
100
150
200
250
300
350
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGR3B60KD2PbF
70
100Ω
60
200Ω
Energy (µJ)
330Ω
470Ω
50
40
30
20
0
1
2
3
4
5
6
7
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
1000
14
300V
12
100
400V
10
VGE (V)
Capacitance (pF)
Cies
Coes
8
6
10
Cres
4
2
0
1
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
2
4
6
8
10
12
14
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 3.0A; L = 600µH
www.irf.com
IRGR3B60KD2PbF
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
τJ
0.10
R1
R1
τJ
τ1
0.05
0.1
R2
R2
τC
τ2
τ1
τ
τ2
Ri (°C/W) τi (sec)
0.000087
0.990
1.412
0.000426
Ci= τi/Ri
Ci i/Ri
0.02
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
100
10
D = 0.50
0.20
0.10
1
τJ
0.05
0.02
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
Ci= τi/Ri
Ci i/Ri
0.01
0.1
R1
R1
τC
τ
τ3
Ri (°C/W) τi (sec)
2.301
0.000156
4.212
0.001440
2.278
0.028166
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGR3B60KD2PbF
L
L
VCC
DUT
0
+
-
80 V
DUT
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
480V
Rg
1K
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGR3B60KD2PbF
600
12
600
9
tf
tr
Vce
7.5
500
10
Vce
9
Ice
8
90% Ice
4.5
5% Ice
200
3
Vce (V)
7
5% Vce
300
400
6
90% Ice
Ice (A)
10% Ice
300
6
5
4
200
3
Ice
100
100
1.5
0
0
0
Eof f Loss
-100
0.5
0.7
1
0
Eon
Loss
-1
-100
-1.5
0.3
2
5% Vce
-2
0.8
0.9
1
1.2
1.4
Time (uS)
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
100
15
500
0
12
50
450
45
Vce
400
9
QR R
6
10% Peak
IR R
tR R
-300
-400
-500
-600
0.00
If (A)
Vf (V)
-200
3
0
Peak
IR R
0.10
-3
0.20
0.30
0.40
-6
0.50
Time (uS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
VCE (V)
-100
40
350
35
300
30
250
25
Ice
200
ICE (A)
Vce (V)
400
Ice (A)
500
11
20
150
15
100
10
50
5
0
0
30
40
50
60
70
Time (uS)
Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
11
IRGR3B60KD2PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
2.38 (.094)
2.19 (.086)
6.73 (.265)
6.35 (.250)
1.14 (.045)
0.89 (.035)
-A1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
0.58 (.023)
0.46 (.018)
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
1.02 (.040)
1.64 (.025)
1
2
10.42 (.410)
9.40 (.370)
3
LEAD ASSIGNMENTS
1 - GATE
0.51 (.020)
MIN.
-B1.52 (.060)
1.15 (.045)
3X
2X
1.14 (.045)
0.76 (.030)
0.89 (.035)
0.64 (.025)
0.25 (.010)
2 - DRAIN
3 - SOURCE
4 - DRAIN
0.58 (.023)
0.46 (.018)
M A M B
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2.28 (.090)
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4.57 (.180)
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
D-Pak (TO-252AA) Part Marking Information (Lead-Free)
EXAMPLE: THIS IS AN IRFR120
WITH AS S EMBLY
LOT CODE 1234
AS S EMBLED ON WW 16, 1999
IN T HE AS SEMBLY LINE "A"
INT ERNAT IONAL
RECTIFIER
LOGO
PART NUMBER
IRFR120
12
Note: "P" in assembly line
pos ition indicates "Lead-Free"
AS S EMBLY
LOT CODE
916A
34
DAT E CODE
YEAR 9 = 1999
WEEK 16
LINE A
OR
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFR120
P916A
12
AS S EMBLY
LOT CODE
12
34
DATE CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 16
A = ASS EMBLY S ITE CODE
www.irf.com
IRGR3B60KD2PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/04
www.irf.com
13
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/