PD - 97153 IRGI4060DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features • • • • • • • • • IC = 7.5A, TC = 100°C Low VCE (on) Trench IGBT Technology Low Switching Losses 5μs SCSOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package G tsc > 5µs, Tjmax = 150°C E VCE(on) typ. = 1.50V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI E C G TO-220AB Full-Pak G Gate C Collector E Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25°C PD @ TC =100°C TJ TSTG Units Max. Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current, VGE=15V Clamped Inductive Load Current, VGE=20V Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current 600 14 7.5 23 30 14 7.5 30 ± 20 ± 30 37 15 c d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds V A V W °C -55 to + 150 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt 1 Junction-to-Case - IGBT Junction-to-Case - Diode e e Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight e Min. Typ. Max. — — — — 3.40 6.10 — 0.5 — — — 65 — 2.0 — Units °C/W g www.irf.com 4/17/09 IRGI4060DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — V ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage — 0.66 — V/°C — 1.50 1.72 — VCE(on) Collector-to-Emitter Saturation Voltage — 1.75 — 1.81 VGE(th) Gate Threshold Voltage 4.0 -12 f o VGE = 0V, Ic = 250 μA ( -55 -150 C ) V IC = 7.5A, VGE = 15V, TJ = 125°C IC = 7.5A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 250 μA o mV/°C VCE = VGE, IC = 1.0mA ( -55 -150 C ) ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient — gfe Forward Transconductance — 5 — S — 1.0 25 μA VGE = 0V,VCE = 600V — 400 — μA VGE = 0v, VCE = 600V, TJ =150°C — 2.18 3.00 V — 1.60 — — — ±100 ICES VFM IGES Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current — f IC = 7.5A, VGE = 15V, TJ = 25°C — 6.5 Conditions VGE = 0V,Ic =100 μA VCE = 50V, IC = 7.5A, PW =80μs IF = 7.5A IF = 7.5A, TJ = 150°C nA VGE = ± 20 V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Qg Total Gate Charge (turn-on) Parameter — 19 29 Qge Gate-to-Emitter Charge (turn-on) — 4.3 6 Qgc Gate-to-Collector Charge (turn-on) — 8.3 12 Units Conditions IC = 7.5A nC VCC = 400V VGE = 15V Eon Turn-On Switching Loss — 47 89 Eoff Turn-Off Switching Loss — 141 248 Etotal Total Switching Loss — 188 337 td(on) Turn-On delay time — 29 38 tr Rise time — 16 25 td(off) Turn-Off delay time — 101 112 tf Fall time — 28 37 Eon Turn-On Switching Loss — 107 — Eoff Turn-Off Switching Loss — 196 — Etotal Total Switching Loss — 304 — Energy losses include tail and diode reverse recovery td(on) Turn-On delay time — 28 — IC = 7.5A, VCC = 400V tr Rise time — 17 — td(off) Turn-Off delay time — 118 — tf Fall time — 53 — Cies Input Capacitance — 537 — Coes Output Capacitance — 47 — Cres Reverse Transfer Capacitance — 16 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE IC = 7.5A, VCC = 400V, VGE = 15V μJ RG = 47Ω, L=1mH, LS= 150nH, TJ = 25°C Energy losses include tail and diode reverse recovery IC = 7.5A, VCC = 400V ns RG = 47Ω, L=1mH, LS= 150nH TJ = 25°C IC = 7.5A, VCC = 400V, VGE = 15V μJ ns RG = 47Ω, L=1mH, LS= 150nH, TJ = 150°C RG = 47Ω, L=1mH, LS= 150nH TJ = 150°C VGE = 0V pF VCC = 30V f = 1Mhz TJ = 150°C, IC = 30A VCC = 480V, Vp =600V Rg = 47Ω, VGE = +20V to 0V VCC = 400V, Vp =600V SCSOA Short Circuit Safe Operating Area 5 — — μs Erec Reverse recovery energy of the diode — 102 — μJ TJ = 150 C trr Diode Reverse recovery time — 73 — ns VCC = 400V, IF = 7.5A Irr Peak Reverse Recovery Current — 11 — A VGE = 15V, Rg = 47Ω, L=1mH, LS=150nH RG = 47Ω, VGE = +15V to 0V o Notes: VCC = 80% (VCES), VGE = 20V, L = 28 μH, RG = 47 Ω Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guidelines for measuring V(BR)CES safely 2 www.irf.com IRGI4060DPbF 40 16 14 30 12 Ptot (W) IC (A) 10 8 20 6 10 4 2 0 0 0 20 40 60 80 100 120 140 160 0 20 40 60 TC (°C) 80 100 120 140 160 TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 100 μs 10 μs IC A) IC (A) 10 1ms 1 DC 1 0.1 0.01 1 10 100 0 1000 10 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VCE = 15V 28 28 24 24 20 20 ICE (A) ICE (A) Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 150°C 16 VGE = 18V 12 VGE = 15V 8 VGE = 10V VGE = 12V 16 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 12 8 VGE = 8.0V 4 4 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp <60μs www.irf.com 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp < 60μs 3 IRGI4060DPbF 28 60 24 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 12 8 40 IF (A) ICE (A) 20 30 -40°C 25°C 150°C 20 10 4 0 0 0 2 4 6 8 10 0.0 1.0 2.0 VCE (V) 14 14 12 12 10 10 8 ICE = 3.8A 6 ICE = 15A ICE = 7.5A 8 ICE = 3.8A 6 ICE = 15A 4 4 2 2 0 5.0 ICE = 7.5A 0 5 10 15 20 5 10 V GE (V) 28 12 24 10 20 ICE (A) ICE = 3.8A ICE = 7.5A ICE = 15A 6 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C 14 8 15 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C VCE (V) 4.0 Fig. 8 - Typ. Diode Forward Characteristics tp < 60μs VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp < 60μs TJ = -40°C TJ = 25°C TJ = 150°C 16 12 4 8 2 4 0 0 5 10 15 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C 4 3.0 VF (V) 20 2 4 6 8 10 12 14 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp < 60μs www.irf.com IRGI4060DPbF 1000 400 Energy (μJ) Swiching Time (ns) EOFF 300 EON 200 tdOFF 100 tF tdON tR 10 100 0 0 4 8 12 1 16 0 4 8 I C (A) 16 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1mH; VCE= 400V RG= 47Ω; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 1mH; VCE = 400V, RG = 47Ω; VGE = 15V. 240 1000 EOFF 200 Swiching Time (ns) EON 160 Energy (μJ) 12 120 80 tdOFF 100 tF tdON tR 40 0 10 0 25 50 75 100 125 0 25 RG (Ω) 50 75 100 125 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 1mH; VCE = 400V, ICE = 7.5A; VGE = 15V Fig. 16- Typ. Switching Time vs. RG TJ = 150°C; L=1mH; VCE= 400V ICE= 7.5A; VGE= 15V 20 16 RG =10 Ω RG =22 Ω 12 12 IRR (A) IRR (A) 16 RG =47 Ω 8 8 RG = 100 Ω 4 0 4 0 4 8 12 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C www.irf.com 16 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 7.5A 5 IRGI4060DPbF 16 700 10Ω 22Ω 600 100Ω 12 500 QRR (nC) IRR (A) 15A 47 Ω 7.5A 400 8 300 3.8A 200 4 0 500 0 1000 500 1000 diF /dt (A/μs) diF /dt (A/μs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 150°C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 7.5A; TJ = 150°C 300 80 20 Isc 15 Tsc 10 Ω 100 60 Current (A) Time (μs) Energy (μJ) 200 10 22 Ω 40 47 Ω 5 100 Ω 0 20 0 0 4 8 12 16 8 9 10 11 12 13 14 15 VGE (V) IF (A) Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 16 Cies 300V 14 400V 12 100 VGE (V) Capacitance (pF) 16 Coes 10 8 6 10 Cres 4 2 0 1 0 100 200 300 400 VCE (V) Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 500 0 4 8 12 16 20 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 7.5A, L=600μH www.irf.com IRGI4060DPbF Thermal Response ( ZthJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) τC τ2 τ1 τ3 τ2 τ τ3 Ci= τi/Ri Ci= τi/Ri τι (sec) 0.813883 0.000438 0.907622 0.044572 1.679598 2.1542 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( ZthJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.02 τJ 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ1 τ2 τ3 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) R4 R4 τ3 τ4 τ4 τ Ri (°C/W) τι (sec) 0.433397 0.000095 1.635087 0.001553 1.4856 0.05426 2.547074 2.646 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGI4060DPbF L L VCC DUT 0 1K 80 V + - DUT 480V VCC Rg Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) VCC Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force 100K D1 22K C sense 0.0075μ G force DUT E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com 550 10 400 16 500 9 350 14 450 8 400 7 350 6 250 200 4 3 90% ICE 150 100 2 50 250 10 200 8 150 0 Eoff Loss 0 0.2 -2 0.4 0.6 0 Eon Loss -50 -0.1 50 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 10 500 0 5 QRR 10% Peak IRR Vce IF (A) VF (V) 80 300 -5 Peak IRR -350 ICE 60 250 40 200 150 -10 20 100 0 -400 50 -450 -15 0.00 0.10 0.20 0.30 time (μS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 150°C using CT.4 www.irf.com 100 350 0 -0.10 VCE 400 tRR -200 -300 120 450 -150 -250 0.1 time (μ s) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 -100 -2 0 time(μs) -50 2 0 -1 -50 -0.2 4 10% test current 5% VCE 50 0 6 90% test current 100 1 90% VCE 5% ICE 12 tr ICE (A) 5 tf VCE (V) 300 TEST CURRENT 300 ICE (A) VCE (V) IRGI4060DPbF 0 -10 -20 -5 Time (µs) 0 5 WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 9 IRGI4060DPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information EXAMPLE: T HIS IS AN IRFI840G WITH ASS EMBLY LOT CODE 3432 AS SEMBLED ON WW 24, 2001 IN T HE ASS EMBLY LINE "K" Note: "P" in ass embly line position indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFI840G 124K 34 32 ASS EMBLY LOT CODE DAT E CODE YEAR 1 = 2001 WEEK 24 LINE K TO-220 Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 4/09 10 www.irf.com