IRF IRGI4060DPBF

PD - 97153
IRGI4060DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
VCES = 600V
Features
•
•
•
•
•
•
•
•
•
IC = 7.5A, TC = 100°C
Low VCE (on) Trench IGBT Technology
Low Switching Losses
5μs SCSOA
Square RBSOA
100% of The Parts Tested for ILM 
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free Package
G
tsc > 5µs, Tjmax = 150°C
E
VCE(on) typ. = 1.50V
n-channel
C
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
• Low EMI
E
C
G
TO-220AB
Full-Pak
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
VCES
IC@ TC = 25°C
IC@ TC = 100°C
ICM
ILM
IF@TC=25°C
IF@TC=100°C
IFM
VGE
PD @ TC =25°C
PD @ TC =100°C
TJ
TSTG
Units
Max.
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current, VGE=15V
Clamped Inductive Load Current, VGE=20V
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
600
14
7.5
23
30
14
7.5
30
± 20
± 30
37
15
c
d
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
V
A
V
W
°C
-55 to + 150
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
1
Junction-to-Case - IGBT
Junction-to-Case - Diode
e
e
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
e
Min.
Typ.
Max.
—
—
—
—
3.40
6.10
—
0.5
—
—
—
65
—
2.0
—
Units
°C/W
g
www.irf.com
4/17/09
IRGI4060DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
V
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
—
0.66
—
V/°C
—
1.50
1.72
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.75
—
1.81
VGE(th)
Gate Threshold Voltage
4.0
-12
f
o
VGE = 0V, Ic = 250 μA ( -55 -150 C )
V
IC = 7.5A, VGE = 15V, TJ = 125°C
IC = 7.5A, VGE = 15V, TJ = 150°C
V
VCE = VGE, IC = 250 μA
o
mV/°C VCE = VGE, IC = 1.0mA ( -55 -150 C )
ΔVGE(th)/ΔTJ
Threshold Voltage temp. coefficient
—
gfe
Forward Transconductance
—
5
—
S
—
1.0
25
μA
VGE = 0V,VCE = 600V
—
400
—
μA
VGE = 0v, VCE = 600V, TJ =150°C
—
2.18
3.00
V
—
1.60
—
—
—
±100
ICES
VFM
IGES
Collector-to-Emitter Leakage Current
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
—
f
IC = 7.5A, VGE = 15V, TJ = 25°C
—
6.5
Conditions
VGE = 0V,Ic =100 μA
VCE = 50V, IC = 7.5A, PW =80μs
IF = 7.5A
IF = 7.5A, TJ = 150°C
nA
VGE = ± 20 V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Qg
Total Gate Charge (turn-on)
Parameter
—
19
29
Qge
Gate-to-Emitter Charge (turn-on)
—
4.3
6
Qgc
Gate-to-Collector Charge (turn-on)
—
8.3
12
Units
Conditions
IC = 7.5A
nC
VCC = 400V
VGE = 15V
Eon
Turn-On Switching Loss
—
47
89
Eoff
Turn-Off Switching Loss
—
141
248
Etotal
Total Switching Loss
—
188
337
td(on)
Turn-On delay time
—
29
38
tr
Rise time
—
16
25
td(off)
Turn-Off delay time
—
101
112
tf
Fall time
—
28
37
Eon
Turn-On Switching Loss
—
107
—
Eoff
Turn-Off Switching Loss
—
196
—
Etotal
Total Switching Loss
—
304
—
Energy losses include tail and diode reverse recovery
td(on)
Turn-On delay time
—
28
—
IC = 7.5A, VCC = 400V
tr
Rise time
—
17
—
td(off)
Turn-Off delay time
—
118
—
tf
Fall time
—
53
—
Cies
Input Capacitance
—
537
—
Coes
Output Capacitance
—
47
—
Cres
Reverse Transfer Capacitance
—
16
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
IC = 7.5A, VCC = 400V, VGE = 15V
μJ
RG = 47Ω, L=1mH, LS= 150nH, TJ = 25°C
Energy losses include tail and diode reverse recovery
IC = 7.5A, VCC = 400V
ns
RG = 47Ω, L=1mH, LS= 150nH
TJ = 25°C
IC = 7.5A, VCC = 400V, VGE = 15V
μJ
ns
RG = 47Ω, L=1mH, LS= 150nH, TJ = 150°C
RG = 47Ω, L=1mH, LS= 150nH
TJ = 150°C
VGE = 0V
pF
VCC = 30V
f = 1Mhz
TJ = 150°C, IC = 30A
VCC = 480V, Vp =600V
Rg = 47Ω, VGE = +20V to 0V
VCC = 400V, Vp =600V
SCSOA
Short Circuit Safe Operating Area
5
—
—
μs
Erec
Reverse recovery energy of the diode
—
102
—
μJ
TJ = 150 C
trr
Diode Reverse recovery time
—
73
—
ns
VCC = 400V, IF = 7.5A
Irr
Peak Reverse Recovery Current
—
11
—
A
VGE = 15V, Rg = 47Ω, L=1mH, LS=150nH
RG = 47Ω, VGE = +15V to 0V
o
Notes:
VCC = 80% (VCES), VGE = 20V, L = 28 μH, RG = 47 Ω
‚ Pulse width limited by max. junction temperature.
ƒRθ is measured at TJ approximately 90°C
„Refer to AN-1086 for guidelines for measuring V(BR)CES safely
2
www.irf.com
IRGI4060DPbF
40
16
14
30
12
Ptot (W)
IC (A)
10
8
20
6
10
4
2
0
0
0
20
40
60
80
100 120 140 160
0
20
40
60
TC (°C)
80
100 120 140 160
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
100 μs
10 μs
IC A)
IC (A)
10
1ms
1
DC
1
0.1
0.01
1
10
100
0
1000
10
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VCE = 15V
28
28
24
24
20
20
ICE (A)
ICE (A)
Fig. 3 - Forward SOA,
TC = 25°C; TJ ≤ 150°C
16
VGE = 18V
12
VGE = 15V
8
VGE = 10V
VGE = 12V
16
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
12
8
VGE = 8.0V
4
4
0
0
0
2
4
6
8
10
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp <60μs
www.irf.com
1000
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp < 60μs
3
IRGI4060DPbF
28
60
24
50
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
16
12
8
40
IF (A)
ICE (A)
20
30
-40°C
25°C
150°C
20
10
4
0
0
0
2
4
6
8
10
0.0
1.0
2.0
VCE (V)
14
14
12
12
10
10
8
ICE = 3.8A
6
ICE = 15A
ICE = 7.5A
8
ICE = 3.8A
6
ICE = 15A
4
4
2
2
0
5.0
ICE = 7.5A
0
5
10
15
20
5
10
V GE (V)
28
12
24
10
20
ICE (A)
ICE = 3.8A
ICE = 7.5A
ICE = 15A
6
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
14
8
15
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
VCE (V)
4.0
Fig. 8 - Typ. Diode Forward Characteristics
tp < 60μs
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp < 60μs
TJ = -40°C
TJ = 25°C
TJ = 150°C
16
12
4
8
2
4
0
0
5
10
15
V GE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
4
3.0
VF (V)
20
2
4
6
8
10
12
14
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp < 60μs
www.irf.com
IRGI4060DPbF
1000
400
Energy (μJ)
Swiching Time (ns)
EOFF
300
EON
200
tdOFF
100
tF
tdON
tR
10
100
0
0
4
8
12
1
16
0
4
8
I C (A)
16
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1mH; VCE= 400V
RG= 47Ω; VGE= 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 1mH; VCE = 400V, RG = 47Ω; VGE = 15V.
240
1000
EOFF
200
Swiching Time (ns)
EON
160
Energy (μJ)
12
120
80
tdOFF
100
tF
tdON
tR
40
0
10
0
25
50
75
100
125
0
25
RG (Ω)
50
75
100
125
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 1mH; VCE = 400V, ICE = 7.5A; VGE = 15V
Fig. 16- Typ. Switching Time vs. RG
TJ = 150°C; L=1mH; VCE= 400V
ICE= 7.5A; VGE= 15V
20
16
RG =10 Ω
RG =22 Ω
12
12
IRR (A)
IRR (A)
16
RG =47 Ω
8
8
RG = 100 Ω
4
0
4
0
4
8
12
IF (A)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
www.irf.com
16
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 7.5A
5
IRGI4060DPbF
16
700
10Ω
22Ω
600
100Ω
12
500
QRR (nC)
IRR (A)
15A
47 Ω
7.5A
400
8
300
3.8A
200
4
0
500
0
1000
500
1000
diF /dt (A/μs)
diF /dt (A/μs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 150°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 7.5A; TJ = 150°C
300
80
20
Isc
15
Tsc
10 Ω
100
60
Current (A)
Time (μs)
Energy (μJ)
200
10
22 Ω
40
47 Ω
5
100 Ω
0
20
0
0
4
8
12
16
8
9
10
11
12
13
14
15
VGE (V)
IF (A)
Fig. 22- Typ. VGE vs Short Circuit Time
VCC=400V, TC =25°C
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
1000
16
Cies
300V
14
400V
12
100
VGE (V)
Capacitance (pF)
16
Coes
10
8
6
10
Cres
4
2
0
1
0
100
200
300
400
VCE (V)
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
500
0
4
8
12
16
20
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 7.5A, L=600μH
www.irf.com
IRGI4060DPbF
Thermal Response ( ZthJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ3
τ2
τ
τ3
Ci= τi/Ri
Ci= τi/Ri
τι (sec)
0.813883 0.000438
0.907622 0.044572
1.679598 2.1542
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( ZthJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.02
τJ
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ1
τ2
τ3
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R4
R4
τ3
τ4
τ4
τ
Ri (°C/W) τι (sec)
0.433397 0.000095
1.635087 0.001553
1.4856
0.05426
2.547074
2.646
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGI4060DPbF
L
L
VCC
DUT
0
1K
80 V
+
-
DUT
480V
VCC
Rg
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
VCC
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
100K
D1
22K
C sense
0.0075μ
G force
DUT
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
8
Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
www.irf.com
550
10
400
16
500
9
350
14
450
8
400
7
350
6
250
200
4
3
90% ICE
150
100
2
50
250
10
200
8
150
0
Eoff Loss
0
0.2
-2
0.4
0.6
0
Eon Loss
-50
-0.1
50
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
10
500
0
5
QRR
10%
Peak
IRR
Vce
IF (A)
VF (V)
80
300
-5
Peak
IRR
-350
ICE
60
250
40
200
150
-10
20
100
0
-400
50
-450
-15
0.00
0.10
0.20
0.30
time (μS)
WF.3- Typ. Reverse Recovery Waveform
@ TJ = 150°C using CT.4
www.irf.com
100
350
0
-0.10
VCE
400
tRR
-200
-300
120
450
-150
-250
0.1
time (μ s)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
-100
-2
0
time(μs)
-50
2
0
-1
-50
-0.2
4
10% test current
5% VCE
50
0
6
90% test current
100
1
90% VCE
5% ICE
12
tr
ICE (A)
5
tf
VCE (V)
300
TEST CURRENT
300
ICE (A)
VCE (V)
IRGI4060DPbF
0
-10
-20
-5
Time (µs)
0
5
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
9
IRGI4060DPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
EXAMPLE: T HIS IS AN IRFI840G
WITH ASS EMBLY
LOT CODE 3432
AS SEMBLED ON WW 24, 2001
IN T HE ASS EMBLY LINE "K"
Note: "P" in ass embly line position
indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFI840G
124K
34
32
ASS EMBLY
LOT CODE
DAT E CODE
YEAR 1 = 2001
WEEK 24
LINE K
TO-220 Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 4/09
10
www.irf.com