74AVCH4T245 4-bit dual supply translating transceiver with configurable voltage translation; 3-state Rev. 01 — 6 August 2009 Product data sheet 1. General description The 74AVCH4T245 is a 4-bit, dual supply transceiver that enables bidirectional level translation. The device can be used as two 2-bit transceivers or as a 4-bit transceiver. It features two data input-output ports (nAn and nBn), a direction control input (nDIR), a output enable input (nOE) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A) and VCC(B) can be supplied at any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins nAn, nOE and nDIR are referenced to VCC(A) and pins nBn are referenced to VCC(B). A HIGH on nDIR allows transmission from nAn to nBn and a LOW on nDIR allows transmission from nBn to nAn. The output enable input (nOE) can be used to disable the outputs so the buses are effectively isolated. The device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either VCC(A) or VCC(B) are at GND level, both A and B outputs are in the high-impedance OFF-state. The bus hold circuitry on the powered-up side always stays active. The 74AVCH4T245 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors. 2. Features n Wide supply voltage range: u VCC(A): 0.8 V to 3.6 V u VCC(B): 0.8 V to 3.6 V n Complies with JEDEC standards: u JESD8-12 (0.8 V to 1.3 V) u JESD8-11 (0.9 V to 1.65 V) u JESD8-7 (1.2 V to 1.95 V) u JESD8-5 (1.8 V to 2.7 V) u JESD8-B (2.7 V to 3.6 V) n ESD protection: u HBM JESD22-A114E Class 3B exceeds 8000 V u MM JESD22-A115-A exceeds 200 V u CDM JESD22-C101C exceeds 1000 V n Maximum data rates: u 380 Mbit/s (≥ 1.8 V to 3.3 V translation) 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state n n n n n n n u 200 Mbit/s (≥ 1.1 V to 3.3 V translation) u 200 Mbit/s (≥ 1.1 V to 2.5 V translation) u 200 Mbit/s (≥ 1.1 V to 1.8 V translation) u 150 Mbit/s (≥ 1.1 V to 1.5 V translation) u 100 Mbit/s (≥ 1.1 V to 1.2 V translation) Suspend mode Bus hold on data inputs Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6 V IOFF circuitry provides partial Power-down mode operation Multiple package options Specified from −40 °C to +85 °C and −40 °C to +125 °C 3. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description Version −40 °C to +125 °C SO16 plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 74AVCH4T245PW −40 °C to +125 °C TSSOP16 plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 74AVCH4T245BQ −40 °C to +125 °C DHVQFN16 plastic dual in-line compatible thermal enhanced very SOT763-1 thin quad flat package; no leads; 16 terminals; body 2.5 × 3.5 × 0.85 mm 74AVCH4T245D 4. Functional diagram 13 12 1B1 VCC(A) 15 2 11 1B2 10 2B1 2B2 VCC(B) 1OE 2OE 1DIR 2DIR 1A1 1A2 2A1 14 3 2A2 001aak280 4 Fig 1. 5 6 7 Logic symbol 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 2 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state DIR OE A1 B1 A2 B2 VCC(A) VCC(B) 001aak281 Fig 2. Logic diagram (one 2-bit transceiver) 5. Pinning information 5.1 Pinning 74AVCH4T245 VCC(A) 1 16 VCC(B) 1DIR 2 15 1OE 2DIR 3 14 2OE 1A1 4 13 1B1 1A2 5 12 1B2 2A1 6 11 2B1 2A2 7 10 2B2 GND 8 9 GND 001aak288 Fig 3. Pin configuration SOT109-1 (SO16) 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 3 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 1 terminal 1 index area 74AVCH4T245 16 VCC(B) VCC(A) 74AVCH4T245 1DIR 2 15 1OE 2DIR 3 14 2OE VCC(A) 1 16 VCC(B) 1DIR 2 15 1OE 1A1 4 13 1B1 2DIR 3 14 2OE 1A2 5 12 1B2 1A1 4 13 1B1 2A1 6 1A2 5 12 1B2 2A2 7 2A1 6 11 2B1 2A2 7 10 2B2 GND 8 8 9 GND GND 11 2B1 10 2B2 GND 9 GND(1) 001aak289 Transparent top view 001aak287 (1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input. Fig 4. Pin configuration SOT403-1 (TSSOP16) Fig 5. Pin configuration SOT763-1 (DHVQFN16) 5.2 Pin description Table 2. Pin description Symbol Pin Description VCC(A) 1 supply voltage A (nAn, nOE and nDIR inputs are referenced to VCC(A)) 1DIR, 2DIR 2, 3 direction control 1A1, 1A2 4, 5 data input or output 2A1, 2A2 6, 7 data input or output GND[1] 8, 9 ground (0 V) 2B2, 2B1 10, 11 data input or output 1B2, 1B1 12, 13 data input or output 2OE, 1OE 14, 15 output enable input (active LOW) VCC(B) 16 supply voltage B (nBn inputs are referenced to VCC(B)) [1] All GND pins must be connected to ground (0 V). 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 4 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 6. Functional description Table 3. Function table[1] Input/output[3] Supply voltage Input VCC(A), VCC(B) nOE[2] nDIR[2] nAn[2] nBn[2] 0.8 V to 3.6 V L L nAn = nBn input 0.8 V to 3.6 V L H input nBn = nAn 0.8 V to 3.6 V H X Z Z GND[3] X X Z Z [1] H = HIGH voltage level; L = LOW voltage level; X = don’t care; Z = high-impedance OFF-state. [2] The nAn, nDIR and nOE input circuit is referenced to VCC(A); The nBn input circuit is referenced to VCC(B). [3] If at least one of VCC(A) or VCC(B) is at GND level, the device goes into suspend mode. 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter VCC(A) VCC(B) IIK input clamping current Conditions Min Max Unit supply voltage A −0.5 +4.6 V supply voltage B −0.5 +4.6 V −50 - mA −0.5 +4.6 V VI < 0 V [1] VI input voltage IOK output clamping current VO < 0 V VO output voltage Active mode −50 - mA [1][2][3] −0.5 VCCO + 0.5 V Suspend or 3-state mode [1] −0.5 +4.6 V [2] - ±50 mA IO output current VO = 0 V to VCCO ICC supply current ICC(A) or ICC(B) IGND ground current Tstg storage temperature total power dissipation Ptot Tamb = −40 °C to +125 °C [4] - 100 mA −100 - mA −65 +150 °C - 500 mW [1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] VCCO is the supply voltage associated with the output port. [3] VCCO + 0.5 V should not exceed 4.6 V. [4] For SO16 package: above 70 °C the value of Ptot derates linearly at 8 mW/K. For TSSOP16 package: above 60 °C the value of Ptot derates linearly at 5.5 mW/K. For DHVQFN16 package: above 60 °C the value of Ptot derates linearly at 4.5 mW/K. 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 5 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 8. Recommended operating conditions Table 5. Recommended operating conditions Symbol Parameter VCC(A) Conditions Min Max Unit supply voltage A 0.8 3.6 V VCC(B) supply voltage B 0.8 3.6 V VI input voltage VO output voltage Active mode [1] Suspend or 3-state mode Tamb ∆t/∆V ambient temperature input transition rise and fall rate VCCI = 0.8 V to 3.6 V [1] VCCO is the supply voltage associated with the output port. [2] VCCI is the supply voltage associated with the input port. [2] 0 3.6 V 0 VCCO V 0 3.6 V −40 +125 °C - 5 ns/V 9. Static characteristics Table 6. Typical static characteristics at Tamb = 25 °C[1][2] At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter VOH HIGH-level output voltage Conditions LOW-level output voltage Typ Max Unit - 0.69 - V - 0.07 - V - ±0.025 ±0.25 µA VI = VIH or VIL IO = −1.5 mA; VCC(A) = VCC(B) = 0.8 V VOL Min VI = VIH or VIL IO = 1.5 mA; VCC(A) = VCC(B) = 0.8 V II input leakage current nDIR, nOE input; VI = 0 V or 3.6 V; VCC(A) = VCC(B) = 0.8 V to 3.6 V IBHL bus hold LOW current A or B port; VI = 0.42 V; VCC(A) = VCC(B) = 1.2 V [3] - 26 - µA A or B port; VI = 0.78 V; VCC(A) = VCC(B) = 1.2 V [4] - −24 - µA - 27 - µA IBHH bus hold HIGH current IBHLO bus hold LOW overdrive current A or B port; VCC(A) = VCC(B) = 1.2 V [5] IBHHO bus hold HIGH overdrive current A or B port; VCC(A) = VCC(B) = 1.2 V [6] - −26 - µA IOZ OFF-state output current A or B port; VO = 0 V or VCCO; VCC(A) = VCC(B) = 3.6 V [7] - ±0.5 ±2.5 µA suspend mode A port; VO = 0 V or VCCO; VCC(A) = 3.6 V; VCC(B) = 0 V [7] - ±0.5 ±2.5 µA suspend mode B port; VO = 0 V or VCCO; VCC(A) = 0 V; VCC(B) = 3.6 V [7] - ±0.5 ±2.5 µA A port; VI or VO = 0 V to 3.6 V; VCC(A) = 0 V; VCC(B) = 0.8 V to 3.6 V - ±0.1 ±1 µA B port; VI or VO = 0 V to 3.6 V; VCC(B) = 0 V; VCC(A) = 0.8 V to 3.6 V - ±0.1 ±1 µA IOFF power-off leakage current 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 6 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state Table 6. Typical static characteristics at Tamb = 25 °C[1][2] …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit CI input capacitance nDIR, nOE input; VI = 0 V or 3.3 V; VCC(A) = VCC(B) = 3.3 V - 1.0 - pF CI/O input/output capacitance A and B port; VO = 3.3 V or 0 V; VCC(A) = VCC(B) = 3.3 V - 4.0 - pF [1] VCCO is the supply voltage associated with the output port. [2] VCCI is the supply voltage associated with the data input port. [3] The bus hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VI to GND and then raising it to VIL max. [4] The bus hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VI to VCC and then lowering it to VIH min. [5] An external driver must source at least IBHLO to switch this node from LOW to HIGH. [6] An external driver must sink at least IBHHO to switch this node from HIGH to LOW. [7] For I/O ports, the parameter IOZ includes the input leakage current. Table 7. Static characteristics [1][2] At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter VIH −40 °C to +85 °C Conditions −40 °C to +125 °C Unit Min Max Min Max 0.70VCCI - 0.70VCCI - V VCCI = 1.1 V to 1.95 V 0.65VCCI - 0.65VCCI - V VCCI = 2.3 V to 2.7 V 1.6 - 1.6 - V VCCI = 3.0 V to 3.6 V 2 - 2 - V VCC(A) = 0.8 V 0.70VCC(A) - 0.70VCC(A) - V VCC(A) = 1.1 V to 1.95 V 0.65VCC(A) - 0.65VCC(A) - V VCC(A) = 2.3 V to 2.7 V 1.6 - 1.6 - V VCC(A) = 3.0 V to 3.6 V 2 - 2 - V - 0.30VCCI - 0.30VCCI V VCCI = 1.1 V to 1.95 V - 0.35VCCI - 0.35VCCI V VCCI = 2.3 V to 2.7 V - 0.7 - 0.7 V VCCI = 3.0 V to 3.6 V - 0.8 - 0.8 V VCC(A) = 0.8 V - 0.30VCC(A) - 0.30VCC(A) V VCC(A) = 1.1 V to 1.95 V - 0.35VCC(A) - 0.35VCC(A) V VCC(A) = 2.3 V to 2.7 V - 0.7 - 0.7 V VCC(A) = 3.0 V to 3.6 V - 0.8 - 0.8 V HIGH-level data input input voltage VCCI = 0.8 V nDIR, nOE input VIL LOW-level data input input voltage VCCI = 0.8 V nDIR, nOE input 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 7 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state Table 7. Static characteristics …continued[1][2] At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter VOH VOL HIGH-level output voltage LOW-level output voltage −40 °C to +85 °C Conditions Unit Min Max Min Max VCCO − 0.1 - VCCO − 0.1 - V IO = −3 mA; VCC(A) = VCC(B) = 1.1 V 0.85 - 0.85 - V IO = −6 mA; VCC(A) = VCC(B) = 1.4 V 1.05 - 1.05 - V IO = −8 mA; VCC(A) = VCC(B) = 1.65 V 1.2 - 1.2 - V IO = −9 mA; VCC(A) = VCC(B) = 2.3 V 1.75 - 1.75 - V IO = −12 mA; VCC(A) = VCC(B) = 3.0 V 2.3 - 2.3 - V IO = 100 µA; VCC(A) = VCC(B) = 0.8 V to 3.6 V - 0.1 - 0.1 V IO = 3 mA; VCC(A) = VCC(B) = 1.1 V - 0.25 - 0.25 V IO = 6 mA; VCC(A) = VCC(B) = 1.4 V - 0.35 - 0.35 V IO = 8 mA; VCC(A) = VCC(B) = 1.65 V - 0.45 - 0.45 V IO = 9 mA; VCC(A) = VCC(B) = 2.3 V - 0.55 - 0.55 V IO = 12 mA; VCC(A) = VCC(B) = 3.0 V - 0.7 - 0.7 V - ±1 - ±5 µA VI = 0.49 V; VCC(A) = VCC(B) = 1.4 V 15 - 15 - µA VI = 0.58 V; VCC(A) = VCC(B) = 1.65 V 25 - 25 - µA VI = 0.70 V; VCC(A) = VCC(B) = 2.3 V 45 - 45 - µA VI = 0.80 V; VCC(A) = VCC(B) = 3.0 V 100 - 90 - µA VI = VIH or VIL IO = −100 µA; VCC(A) = VCC(B) = 0.8 V to 3.6 V VI = VIH or VIL II input leakage nDIR, nOE input; VI = 0 V or 3.6 V; current VCC(A) = VCC(B) = 0.8 V to 3.6 V IBHL bus hold LOW current [3] A or B port 74AVCH4T245_1 Product data sheet −40 °C to +125 °C © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 8 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state Table 7. Static characteristics …continued[1][2] At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter IBHH IBHLO −40 °C to +85 °C Conditions Max Min Max −15 - −15 - µA VI = 1.07 V; VCC(A) = VCC(B) = 1.65 V −25 - −25 - µA VI = 1.60 V; VCC(A) = VCC(B) = 2.3 V −45 - −45 - µA VI = 2.00 V; VCC(A) = VCC(B) = 3.0 V −100 - −100 - µA VCC(A) = VCC(B) = 1.6 V 125 - 125 - µA VCC(A) = VCC(B) = 1.95 V 200 - 200 - µA VCC(A) = VCC(B) = 2.7 V 300 - 300 - µA 500 - 500 - µA VCC(A) = VCC(B) = 1.6 V −125 - −125 - µA VCC(A) = VCC(B) = 1.95 V −200 - −200 - µA VCC(A) = VCC(B) = 2.7 V −300 - −300 - µA VCC(A) = VCC(B) = 3.6 V −500 - −500 - µA A or B port; VO = 0 V or VCCO; VCC(A) = VCC(B) = 3.6 V [7] - ±5 - ±30 µA suspend mode A port; VO = 0 V or VCCO; VCC(A) = 3.6 V; VCC(B) = 0 V [7] - ±5 - ±30 µA suspend mode B port; VO = 0 V or VCCO; VCC(A) = 0 V; VCC(B) = 3.6 V [7] - ±5 - ±30 µA A port; VI or VO = 0 V to 3.6 V; VCC(A) = 0 V; VCC(B) = 0.8 V to 3.6 V - ±5 - ±30 µA B port; VI or VO = 0 V to 3.6 V; VCC(B) = 0 V; VCC(A) = 0.8 V to 3.6 V - ±5 - ±30 µA [4] [5] A or B port VCC(A) = VCC(B) = 3.6 V IBHHO IOZ IOFF bus hold HIGH overdrive current OFF-state output current power-off leakage current [6] A or B port 74AVCH4T245_1 Product data sheet Unit Min bus hold A or B port HIGH current VI = 0.91 V; VCC(A) = VCC(B) = 1.4 V bus hold LOW overdrive current −40 °C to +125 °C © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 9 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state Table 7. Static characteristics …continued[1][2] At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter ICC supply current −40 °C to +85 °C Conditions −40 °C to +125 °C Unit Min Max Min Max VCC(A) = 0.8 V to 3.6 V; VCC(B) = 0.8 V to 3.6 V - 10 - 55 µA VCC(A) = 1.1 V to 3.6 V; VCC(B) = 1.1 V to 3.6 V - 8 - 50 µA VCC(A) = 3.6 V; VCC(B) = 0 V - 8 - 50 µA VCC(A) = 0 V; VCC(B) = 3.6 V −2 - −12 - µA VCC(A) = 0.8 V to 3.6 V; VCC(B) = 0.8 V to 3.6 V - 10 - 55 µA VCC(A) = 1.1 V to 3.6 V; VCC(B) = 1.1 V to 3.6 V - 8 - 50 µA VCC(A) = 3.6 V; VCC(B) = 0 V −2 - −12 - µA A port; VI = 0 V or VCCI; IO = 0 A B port; VI = 0 V or VCCI; IO = 0 A VCC(A) = 0 V; VCC(B) = 3.6 V - 8 - 50 µA A plus B port (ICC(A) + ICC(B)); IO = 0 A; VI = 0 V or VCCI; VCC(A) = 0.8 V to 3.6 V; VCC(B) = 0.8 V to 3.6 V - 20 - 70 µA A plus B port (ICC(A) + ICC(B)); IO = 0 A; VI = 0 V or VCCI; VCC(A) = 1.1 V to 3.6 V; VCC(B) = 1.1 V to 3.6 V - 16 - 65 µA [1] VCCO is the supply voltage associated with the output port. [2] VCCI is the supply voltage associated with the data input port. [3] The bus hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VI to GND and then raising it to VIL max. [4] The bus hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VI to VCC and then lowering it to VIH min. [5] An external driver must source at least IBHLO to switch this node from LOW to HIGH. [6] An external driver must sink at least IBHHO to switch this node from HIGH to LOW. [7] For I/O ports, the parameter IOZ includes the input leakage current. Table 8. VCC(A) Typical total supply current (ICC(A) + ICC(B)) VCC(B) Unit 0V 0.8 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V 0V 0 0.1 0.1 0.1 0.1 0.1 0.1 µA 0.8 V 0.1 0.1 0.1 0.1 0.1 0.3 1.6 µA 1.2 V 0.1 0.1 0.1 0.1 0.1 0.1 0.8 µA 1.5 V 0.1 0.1 0.1 0.1 0.1 0.1 0.4 µA 1.8 V 0.1 0.1 0.1 0.1 0.1 0.1 0.2 µA 2.5 V 0.1 0.3 0.1 0.1 0.1 0.1 0.1 µA 3.3 V 0.1 1.6 0.8 0.4 0.2 0.1 0.1 µA 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 10 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 10. Dynamic characteristics Table 9. Typical power dissipation capacitance at VCC(A) = VCC(B) and Tamb = 25 °C [1][2] Voltages are referenced to GND (ground = 0 V). Symbol Parameter power dissipation capacitance CPD Conditions VCC(A) = VCC(B) 0.8 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V A port: (direction nAn to nBn); output enabled 0.2 0.2 0.2 0.2 0.3 0.4 pF A port: (direction nAn to nBn); output disabled 0.2 0.2 0.2 0.2 0.3 0.4 pF A port: (direction nBn to nAn); output enabled 9.5 9.7 9.8 9.9 10.7 11.9 pF A port: (direction nBn to nAn); output disabled 0.6 0.6 0.6 0.6 0.7 0.7 pF B port: (direction nAn to nBn); output enabled 9.5 9.7 9.8 9.9 10.7 11.9 pF B port: (direction nAn to nBn); output disabled 0.6 0.6 0.6 0.6 0.7 0.7 pF B port: (direction nBn to nAn); output enabled 0.2 0.2 0.2 0.2 0.3 0.4 pF B port: (direction nBn to nAn); output disabled 0.2 0.2 0.2 0.2 0.3 0.4 pF [1] CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; Σ(CL × VCC2 × fo) = sum of the outputs. [2] fi = 10 MHz; VI = GND to VCC; tr = tf = 1 ns; CL = 0 pF; RL = ∞ Ω. 74AVCH4T245_1 Product data sheet Unit © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 11 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state Table 10. Typical dynamic characteristics at VCC(A) = 0.8 V and Tamb = 25 °C [1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7 Symbol Parameter tpd VCC(B) Unit 0.8 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V propagation delay nAn to nBn 14.5 7.3 6.5 6.2 5.9 6.0 ns nBn to nAn 14.5 12.7 12.4 12.3 12.1 12.0 ns nOE to nAn 14.3 14.3 14.3 14.3 14.3 14.3 ns nOE to nBn 17.0 9.9 9.0 9.4 9.0 9.7 ns nOE to nAn 18.2 18.2 18.2 18.2 18.2 18.2 ns nOE to nBn 19.2 10.7 9.8 9.6 9.7 10.2 ns tdis disable time ten enable time [1] Conditions tpd is the same as tPLH and tPHL; tdis is the same as tPLZ and tPHZ; ten is the same as tPZL and tPZH. Table 11. Typical dynamic characteristics at VCC(B) = 0.8 V and Tamb = 25 °C [1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7 Symbol Parameter tpd VCC(A) Unit 0.8 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V propagation delay nAn to nBn 14.5 12.7 12.4 12.3 12.1 12.0 ns nBn to nAn 14.5 7.3 6.5 6.2 5.9 6.0 ns nOE to nAn 14.3 5.5 4.1 4.0 3.0 3.5 ns nOE to nBn 17.0 13.8 13.4 13.1 12.9 12.7 ns nOE to nAn 18.2 5.6 4.0 3.2 2.4 2.2 ns nOE to nBn 19.2 14.6 14.1 13.9 13.7 13.6 ns tdis disable time ten enable time [1] Conditions tpd is the same as tPLH and tPHL; tdis is the same as tPLZ and tPHZ; ten is the same as tPZL and tPZH. 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 12 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state Table 12. Dynamic characteristics for temperature range −40 °C to +85 °C [1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7. Symbol Parameter Conditions VCC(B) Unit 1.2 V ± 0.1 V 1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V Min Max Min Max Min Max Min Max Min Max 0.5 9.4 0.5 7.1 0.5 6.2 0.5 5.2 0.5 5.1 ns VCC(A) = 1.1 V to 1.3 V tpd propagation delay nAn to Bn nBn to nAn 0.5 9.4 0.5 8.9 0.5 8.7 0.5 8.4 0.5 8.2 ns tdis disable time nOE to nAn 1.8 10.9 1.8 10.9 1.8 10.9 1.8 10.9 1.8 10.9 ns nOE to nBn 1.9 12.4 1.9 9.6 1.9 9.5 1.4 8.1 1.2 9.1 ns nOE to nAn 1.4 12.8 1.4 12.8 1.4 12.8 1.4 12.8 1.4 12.8 ns nOE to nBn 1.1 13.3 1.1 10.0 1.1 8.9 1.0 7.9 1.0 7.7 ns nAn to Bn 0.3 8.9 0.3 6.3 0.3 5.2 0.3 4.2 0.3 4.2 ns nBn to nAn 0.7 7.1 0.7 6.3 0.5 6.0 0.4 5.7 0.3 5.6 ns enable time ten VCC(A) = 1.4 V to 1.6 V propagation delay tpd disable time tdis enable time ten nOE to nAn 1.8 10.2 1.8 10.2 1.5 10.2 1.3 10.2 1.6 10.2 ns nOE to nBn 1.9 11.3 1.9 10.3 1.9 9.1 1.4 7.4 1.2 7.6 ns nOE to nAn 1.1 9.4 1.4 9.4 1.1 9.4 0.7 9.4 0.4 9.4 ns nOE to nBn 1.4 12.1 1.4 9.6 1.1 7.7 0.9 5.8 0.9 5.6 ns VCC(A) = 1.65 V to 1.95 V propagation delay nAn to Bn 0.1 8.7 0.1 6.0 0.1 4.9 0.1 3.9 0.3 3.9 ns nBn to nAn 0.6 6.2 0.6 5.3 0.5 4.9 0.3 4.6 0.3 4.5 ns tdis disable time nOE to nAn 1.8 8.6 1.6 8.6 1.8 8.6 1.3 8.6 1.6 8.6 ns nOE to nBn 1.7 10.9 1.7 9.9 1.6 8.7 1.2 6.9 1.0 6.9 ns ten enable time nOE to nAn 1.0 7.2 1.0 7.2 1.0 7.2 0.6 7.2 0.4 7.2 ns nOE to nBn 1.2 11.7 1.2 9.2 1.0 7.4 0.8 5.3 0.8 4.6 ns propagation delay nAn to Bn 0.1 8.4 0.1 5.7 0.1 4.6 0.2 3.5 0.1 3.6 ns nBn to nAn 0.6 5.2 0.6 4.2 0.4 3.9 0.2 3.4 0.2 3.3 ns disable time nOE to nAn 1.0 6.2 1.0 6.2 1.0 6.2 1.0 6.2 1.0 6.2 ns nOE to nBn 1.5 10.4 1.5 8.8 1.3 8.2 1.1 6.2 0.9 5.2 ns tpd VCC(A) = 2.3 V to 2.7 V tpd tdis enable time ten nOE to nAn 0.7 4.8 0.7 4.8 0.7 4.8 0.6 4.8 0.4 4.8 ns nOE to nBn 0.9 11.3 0.9 8.8 0.8 7.0 0.6 4.8 0.6 4.0 ns 0.1 8.2 0.1 5.6 0.1 4.5 0.1 3.3 0.1 2.9 ns VCC(A) = 3.0 V to 3.6 V tpd propagation delay nAn to Bn nBn to nAn 0.6 5.1 0.6 4.2 0.4 3.4 0.2 3.0 0.1 2.8 ns tdis disable time nOE to nAn 0.7 5.6 0.7 5.6 0.7 5.6 0.7 5.6 0.7 5.6 ns nOE to nBn 1.4 10.2 1.4 9.3 1.2 8.1 1.0 6.4 0.8 6.2 ns nOE to nAn 0.6 3.8 0.6 3.8 0.6 3.8 0.6 3.8 0.4 3.8 ns nOE to nBn 0.8 11.3 0.8 8.7 0.6 6.8 0.5 4.7 0.5 3.8 ns enable time ten [1] tpd is the same as tPLH and tPHL; tdis is the same as tPLZ and tPHZ; ten is the same as tPZL and tPZH. 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 13 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state Table 13. Dynamic characteristics for temperature range −40 °C to +125 °C [1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7 Symbol Parameter Conditions VCC(B) Unit 1.2 V ± 0.1 V 1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V Min Max Min Max Min Max Min Max Min Max 0.5 10.4 0.5 7.9 0.5 6.9 0.5 5.8 0.5 5.7 ns VCC(A) = 1.1 V to 1.3 V tpd propagation delay nAn to Bn nBn to nAn 0.5 10.4 0.5 9.8 0.5 9.6 0.5 9.3 0.5 9.1 ns tdis disable time nOE to nAn 1.8 12.0 1.8 12.0 1.8 12.0 1.8 12.0 1.8 12.0 ns nOE to nBn 1.9 13.7 1.9 10.6 1.9 10.5 1.4 9.0 1.2 10.1 ns nOE to nAn 1.4 14.1 1.4 14.1 1.4 14.1 1.4 14.1 1.4 14.1 ns nOE to nBn 1.1 14.7 1.1 11.0 1.1 9.8 1.0 8.7 1.0 8.5 ns propagation delay nAn to Bn 0.3 9.8 0.3 7.0 0.3 5.8 0.3 4.7 0.3 4.7 ns nBn to nAn 0.7 7.9 0.7 7.0 0.5 6.6 0.4 6.3 0.3 6.2 ns disable time nOE to nAn 1.8 11.3 1.8 11.3 1.5 11.3 1.3 11.3 1.6 11.3 ns nOE to nBn 1.9 12.5 1.9 11.4 1.9 10.1 1.4 8.2 1.2 8.4 ns nOE to nAn 1.1 10.4 1.4 10.4 1.1 10.4 0.7 10.4 0.4 10.4 ns nOE to nBn 1.4 13.3 1.4 10.6 1.1 8.5 0.9 6.4 0.9 6.2 ns enable time ten VCC(A) = 1.4 V to 1.6 V tpd tdis enable time ten VCC(A) = 1.65 V to 1.95 V propagation delay nAn to Bn 0.1 9.6 0.1 6.6 0.1 5.4 0.1 4.3 0.3 4.3 ns nBn to nAn 0.6 6.9 0.6 5.9 0.5 5.4 0.3 5.1 0.3 5.0 ns tdis disable time nOE to nAn 1.8 9.5 1.6 9.5 1.8 9.5 1.3 9.5 1.6 9.5 ns nOE to nBn 1.7 12.0 1.7 10.9 1.6 9.6 1.2 7.6 1.0 7.6 ns ten enable time nOE to nAn 1.0 8.0 1.0 8.0 1.0 8.0 0.6 8.0 0.4 8.0 ns nOE to nBn 1.2 12.9 1.2 10.2 1.0 8.2 0.8 5.9 0.8 5.1 ns propagation delay nAn to Bn 0.1 9.3 0.1 6.3 0.1 5.1 0.2 4.0 0.1 4.0 ns nBn to nAn 0.6 5.8 0.6 4.7 0.4 4.3 0.2 3.9 0.2 3.8 ns disable time nOE to nAn 1.0 6.9 1.0 6.9 1.0 6.9 1.0 6.9 1.0 6.9 ns nOE to nBn 1.5 11.5 1.5 10.4 1.3 9.1 1.1 6.9 0.9 5.8 ns tpd VCC(A) = 2.3 V to 2.7 V tpd tdis enable time ten nOE to nAn 0.7 5.3 0.7 5.3 0.7 5.3 0.6 5.3 0.4 5.3 ns nOE to nBn 0.9 12.4 0.9 9.7 0.8 7.7 0.6 5.3 0.6 4.4 ns 0.1 9.1 0.1 6.2 0.1 5.0 0.1 3.8 0.1 3.3 ns VCC(A) = 3.0 V to 3.6 V tpd propagation delay nAn to Bn nBn to nAn 0.6 5.7 0.6 4.7 0.4 3.9 0.2 3.4 0.1 3.3 ns tdis disable time nOE to nAn 0.7 6.2 0.7 6.2 0.7 6.2 0.7 6.2 0.7 6.2 ns nOE to nBn 1.4 11.3 1.4 10.3 1.2 9.0 1.0 7.1 0.8 6.9 ns nOE to nAn 0.6 4.2 0.6 4.2 0.6 4.2 0.6 4.2 0.4 4.2 ns nOE to nBn 0.8 12.4 0.8 9.6 0.6 7.5 0.5 5.2 0.5 4.2 ns enable time ten [1] tpd is the same as tPLH and tPHL; tdis is the same as tPLZ and tPHZ; ten is the same as tPZL and tPZH. 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 14 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 11. Waveforms VI nAn, nBn input VM GND tPHL tPLH VOH VM nBn, nAn output VOL 001aak285 Measurement points are given in Table 14. VOL and VOH are typical output voltage levels that occur with the output load. Fig 6. The data input (nAn, nBn) to output (nBn, nAn) propagation delay times VI VM nOE input GND tPLZ tPZL VCCO output LOW-to-OFF OFF-to-LOW VM VX VOL tPHZ VOH tPZH VY output HIGH-to-OFF OFF-to-HIGH VM GND outputs enabled outputs disabled outputs enabled 001aak286 Measurement points are given in Table 14. VOL and VOH are typical output voltage levels that occur with the output load. Fig 7. Table 14. Enable and disable times Measurement points Supply voltage Input[1] Output[2] VCC(A), VCC(B) VM VM VX VY 0.8 V to 1.6 V 0.5VCCI 0.5VCCO VOL + 0.1 V VOH − 0.1 V 1.65 V to 2.7 V 0.5VCCI 0.5VCCO VOL + 0.15 V VOH − 0.15 V 3.0 V to 3.6 V 0.5VCCI 0.5VCCO VOL + 0.3 V VOH − 0.3 V [1] VCCI is the supply voltage associated with the data input port. [2] VCCO is the supply voltage associated with the output port. 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 15 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state tW VI 90 % negative pulse VM VM 10 % 0V tf tr tr tf VI 90 % positive pulse VM VM 10 % 0V tW VEXT VCC VI RL VO G DUT RT CL RL 001aae331 Test data is given in Table 15. RL = Load resistance. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance. VEXT = External voltage for measuring switching times. Fig 8. Table 15. Load circuit for switching times Test data Supply voltage Input VCC(A), VCC(B) VI[1] ∆t/∆V[2] Load CL RL tPLH, tPHL tPZH, tPHZ tPZL, tPLZ[3] 0.8 V to 1.6 V VCCI ≤ 1.0 ns/V 15 pF 2 kΩ open GND 2VCCO 1.65 V to 2.7 V VCCI ≤ 1.0 ns/V 15 pF 2 kΩ open GND 2VCCO 3.0 V to 3.6 V VCCI ≤ 1.0 ns/V 15 pF 2 kΩ open GND 2VCCO [1] VCCI is the supply voltage associated with the data input port. [2] dV/dt ≥ 1.0 V/ns [3] VCCO is the supply voltage associated with the output port. VEXT 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 16 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 12. Typical propagation delay characteristics 001aai476 24 tpd (ns) (1) (2) (3) (4) (5) (6) tpd (ns) (1) 20 001aai477 21 17 16 12 13 (2) (3) (4) (5) (6) 8 4 9 0 20 40 60 0 CL (pF) 40 60 CL (pF) a. Propagation delay (A to B); VCC(A) = 0.8 V b. Propagation delay (A to B); VCC(B) = 0.8 V (1) VCC(B) = 0.8 V. (1) VCC(A) = 0.8 V. (2) VCC(B) = 1.2 V. (2) VCC(A) = 1.2 V. (3) VCC(B) = 1.5 V. (3) VCC(A) = 1.5 V. (4) VCC(B) = 1.8 V. (4) VCC(A) = 1.8 V. (5) VCC(B) = 2.5 V. (5) VCC(A) = 2.5 V. (6) VCC(B) = 3.3 V. (6) VCC(A) = 3.3 V. Fig 9. 20 Typical propagation delay versus load capacitance; Tamb = 25 °C 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 17 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 001aai478 7 001aai491 7 (1) tPLH (ns) tPHL (ns) (1) (2) 5 5 (3) (2) (3) (4) (4) (5) (5) 3 3 1 1 0 20 40 60 0 20 40 CL (pF) a. LOW to HIGH propagation delay (A to B); VCC(A) = 1.2 V b. HIGH to LOW propagation delay (A to B); VCC(A) = 1.2 V 001aai479 7 60 CL (pF) 001aai480 7 (1) tPLH (ns) tPHL (ns) (1) 5 5 (2) (3) (2) (3) (4) (5) 3 (4) (5) 3 1 1 0 20 40 60 0 CL (pF) 20 40 60 CL (pF) c. LOW to HIGH propagation delay (A to B); VCC(A) = 1.5 V d. HIGH to LOW propagation delay (A to B); VCC(A) = 1.5 V (1) VCC(B) = 1.2 V. (2) VCC(B) = 1.5 V. (3) VCC(B) = 1.8 V. (4) VCC(B) = 2.5 V. (5) VCC(B) = 3.3 V. Fig 10. Typical propagation delay versus load capacitance; Tamb = 25 °C 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 18 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 001aai481 7 (1) tPLH (ns) 001aai482 7 tPHL (ns) 5 (1) 5 (2) (3) (2) (3) (4) 3 (4) (5) 3 (5) 1 1 0 20 40 60 0 20 40 CL (pF) a. LOW to HIGH propagation delay (A to B); VCC(A) = 1.8 V b. HIGH to LOW propagation delay (A to B); VCC(A) = 1.8 V 001aai483 7 tPLH (ns) 60 CL (pF) 001aai486 7 tPHL (ns) (1) 5 (1) 5 (2) (2) (3) (3) (4) 3 3 (4) (5) (5) 1 1 0 20 40 60 0 CL (pF) 20 40 60 CL (pF) c. LOW to HIGH propagation delay (A to B); VCC(A) = 2.5 V d. HIGH to LOW propagation delay (A to B); VCC(A) = 2.5 V (1) VCC(B) = 1.2 V. (2) VCC(B) = 1.5 V. (3) VCC(B) = 1.8 V. (4) VCC(B) = 2.5 V. (5) VCC(B) = 3.3 V. Fig 11. Typical propagation delay versus load capacitance; Tamb = 25 °C 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 19 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 001aai485 7 tPLH (ns) 001aai484 7 tPHL (ns) (1) 5 (1) 5 (2) (2) (3) (3) 3 3 (4) (4) (5) (5) 1 1 0 20 40 60 0 CL (pF) 20 40 60 CL (pF) a. LOW to HIGH propagation delay (A to B); VCC(A) = 3.3 V b. HIGH to LOW propagation delay (A to B); VCC(A) = 3.3 V (1) VCC(B) = 1.2 V. (2) VCC(B) = 1.5 V. (3) VCC(B) = 1.8 V. (4) VCC(B) = 2.5 V. (5) VCC(B) = 3.3 V. Fig 12. Typical propagation delay versus load capacitance; Tamb = 25 °C 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 20 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 13. Package outline SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 D E A X c y HE v M A Z 16 9 Q A2 A (A 3) A1 pin 1 index θ Lp 1 L 8 e 0 detail X w M bp 2.5 5 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y Z (1) mm 1.75 0.25 0.10 1.45 1.25 0.25 0.49 0.36 0.25 0.19 10.0 9.8 4.0 3.8 1.27 6.2 5.8 1.05 1.0 0.4 0.7 0.6 0.25 0.25 0.1 0.7 0.3 0.069 0.010 0.057 0.004 0.049 0.01 0.019 0.0100 0.39 0.014 0.0075 0.38 0.16 0.15 0.05 0.039 0.016 0.028 0.020 0.01 0.01 0.004 0.028 0.012 inches 0.244 0.041 0.228 θ o 8 o 0 Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT109-1 076E07 MS-012 JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-19 Fig 13. Package outline SOT109-1 (SO16) 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 21 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 E D A X c y HE v M A Z 9 16 Q (A 3) A2 A A1 pin 1 index θ Lp L 1 8 detail X w M bp e 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (2) e HE L Lp Q v w y Z (1) θ mm 1.1 0.15 0.05 0.95 0.80 0.25 0.30 0.19 0.2 0.1 5.1 4.9 4.5 4.3 0.65 6.6 6.2 1 0.75 0.50 0.4 0.3 0.2 0.13 0.1 0.40 0.06 8 o 0 o Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT403-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-18 MO-153 Fig 14. Package outline SOT403-1 (TSSOP16) 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 22 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; SOT763-1 16 terminals; body 2.5 x 3.5 x 0.85 mm A B D A A1 E c detail X terminal 1 index area terminal 1 index area C e1 e 2 7 y y1 C v M C A B w M C b L 1 8 Eh e 16 9 15 10 Dh X 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A(1) max. A1 b c D (1) Dh E (1) Eh e e1 L v w y y1 mm 1 0.05 0.00 0.30 0.18 0.2 3.6 3.4 2.15 1.85 2.6 2.4 1.15 0.85 0.5 2.5 0.5 0.3 0.1 0.05 0.05 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT763-1 --- MO-241 --- EUROPEAN PROJECTION ISSUE DATE 02-10-17 03-01-27 Fig 15. Package outline SOT763-1 (DHVQFN16) 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 23 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 14. Abbreviations Table 16. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model 15. Revision history Table 17. Revision history Document ID Release date Data sheet status Change notice Supersedes 74AVCH4T245_1 20090806 Product data sheet - - 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 24 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 16.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] 74AVCH4T245_1 Product data sheet © NXP B.V. 2009. All rights reserved. Rev. 01 — 6 August 2009 25 of 26 74AVCH4T245 NXP Semiconductors 4-bit dual supply translating transceiver; 3-state 18. Contents 1 2 3 4 5 5.1 5.2 6 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional description . . . . . . . . . . . . . . . . . . . 5 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5 Recommended operating conditions. . . . . . . . 6 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6 Dynamic characteristics . . . . . . . . . . . . . . . . . 11 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical propagation delay characteristics. . . 17 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 21 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 24 Legal information. . . . . . . . . . . . . . . . . . . . . . . 25 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 25 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Contact information. . . . . . . . . . . . . . . . . . . . . 25 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 6 August 2009 Document identifier: 74AVCH4T245_1