IRF IRFB4127PBF

PD -97136A
IRFB4127PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
VDSS
RDS(on) typ.
max.
ID
D
G
S
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
G
D
200V
17m:
20m:
76A
S
TO-220AB
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Units
76
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
54
IDM
Pulsed Drain Current c
300
PD @TC = 25°C
Maximum Power Dissipation
375
W
Linear Derating Factor
2.5
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dv/dt
TJ
Peak Diode Recovery e
57
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
A
V/ns
°C
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
10lbxin (1.1Nxm)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy d
IAR
Avalanche Current c
EAR
Repetitive Avalanche Energy f
mJ
250
See Fig. 14, 15, 22a, 22b,
A
mJ
Thermal Resistance
Typ.
Max.
RθJC
Symbol
Junction-to-Case j
–––
0.4
RθCS
Case-to-Sink, Flat Greased Surface
0.50
–––
RθJA
Junction-to-Ambient ij
–––
62
www.irf.com
Parameter
Units
°C/W
1
8/28/08
IRFB4127PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
ΔV(BR)DSS/ΔTJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
RG(int)
Min. Typ. Max. Units
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
200
–––
–––
3.0
–––
–––
–––
–––
–––
0.23
17
–––
–––
–––
–––
–––
–––
–––
20
5.0
20
250
100
-100
Internal Gate Resistance
–––
3.0
–––
Conditions
V VGS = 0V, ID = 250μA
V/°C Reference to 25°C, ID = 5mAc
mΩ VGS = 10V, ID = 44A f
V VDS = VGS, ID = 250μA
μA VDS = 200V, VGS = 0V
VDS = 200V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
79
–––
–––
–––
–––
Turn-On Delay Time
–––
Rise Time
–––
Turn-Off Delay Time
–––
Fall Time
–––
Input Capacitance
–––
Output Capacitance
–––
Reverse Transfer Capacitance
–––
Effective Output Capacitance (Energy Related)h –––
–––
Effective Output Capacitance (Time Related)g
–––
100
30
31
69
17
18
56
22
5380
410
86
360
590
–––
150
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 50V, ID = 44A
ID = 44A
VDS = 100V
VGS = 10V f
ID = 44A, VDS =0V, VGS = 10V
VDD = 130V
ID = 44A
RG = 2.7Ω
VGS = 10V f
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 160V h
VGS = 0V, VDS = 0V to 160V g
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
76
ISM
(Body Diode)
Pulsed Source Current
–––
–––
300
VSD
trr
(Body Diode)c
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.26mH
RG = 25Ω, IAS = 44A, VGS =10V. Part not recommended for use
above this value .
ƒ ISD ≤ 44A, di/dt ≤ 760A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
„ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
A
Conditions
MOSFET symbol
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 44A, VGS = 0V f
TJ = 25°C
VR = 100V,
IF = 44A
TJ = 125°C
di/dt = 100A/μs f
TJ = 25°C
S
––– –––
1.3
V
––– 136 –––
ns
––– 139 –––
––– 458 –––
nC
TJ = 125°C
––– 688 –––
–––
8.3
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
… Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
† Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
ˆ Rθ is measured at TJ approximately 90°C
www.irf.com
IRFB4127PbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
10
BOTTOM
1
0.1
≤ 60μs PULSE WIDTH
Tj = 25°C
4.5V
0.01
100
BOTTOM
10
4.5V
1
≤ 60μs PULSE WIDTH
Tj = 175°C
0.1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
3.5
1000
≤ 60μs PULSE WIDTH
100
10
TJ = 25°C
1
0.1
4.0
5.0
6.0
7.0
VGS = 10V
3.0
2.5
(Normalized)
TJ = 175°C
3.0
ID = 44A
RDS(on) , Drain-to-Source On Resistance
VDS = 50V
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
2.0
1.5
1.0
0.5
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
8000
Ciss
4000
2000
Coss
Crss
1
ID= 44A
VDS = 160V
VDS = 100V
12
VDS = 40V
8
4
0
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
Fig 4. Normalized On-Resistance vs. Temperature
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
0
20 40 60 80 100 120 140 160 180
16
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
6000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
0
20
40
60
80
100
120
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB4127PbF
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
TJ = 175°C
100
10
TJ = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100μsec
100
1msec
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1
1.4
60
40
20
0
75
100
125
150
175
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
ID , Drain Current (A)
80
50
1000
260
Id = 5mA
240
220
200
180
-60 -40 -20 0 20 40 60 80 100120140160180
TC , CaseTemperature (°C)
TJ , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
1000
EAS, Single Pulse Avalanche Energy (mJ)
8.0
6.0
Energy (μJ)
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
10
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
4.0
2.0
0.0
ID
8.2A
13A
BOTTOM 44A
TOP
800
600
400
200
0
0
40
80
120
160
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
0.1
0.1
200
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFB4127PbF
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
τJ
0.05
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ2
0.02
τ1
0.01
Ci= τi/Ri
Ci i/Ri
τ3
τ2
τ4
τ3
τ4
τ
Ri (°C/W)
0.02
0.083333
0.181667
0.113333
τι (sec)
0.000019
0.000078
0.001716
0.008764
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse
0.01
10
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 44A
200
150
100
50
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB4127PbF
50
ID = 1.0A
ID = 1.0mA
5.0
40
ID = 250μA
4.0
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
6.0
3.0
2.0
30
20
IF = 29A
VR = 100V
10
1.0
TJ = 125°C
TJ = 25°C
0
-75
-50 -25
0
25
50
75
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / μs)
Fig. 17 - Typical Recovery Current vs. dif/dt
60
3000
50
2500
40
2000
QRR - (nC)
IRRM - (A)
Fig 16. Threshold Voltage Vs. Temperature
30
20
10
0
1500
1000
IF = 44A
VR = 100V
IF = 29A
VR = 100V
500
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
dif / dt - (A / μs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
3000
2500
QRR - (nC)
2000
1500
1000
500
0
IF = 44A
VR = 100V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB4127PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFB4127PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS SEMBLED ON WW 19, 2000
IN T HE AS SEMBLY LINE "C"
Note: "P" in as sembly line position
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/08
www.irf.com