PD - 94545C IRGB8B60K IRGS8B60K IRGSL8B60K INSULATED GATE BIPOLAR TRANSISTOR Features • • • • C Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. VCES = 600V IC = 20A, TC=100°C G tsc>10µs, TJ=150°C E n-channel Benefits VCE(on) typ. = 1.8V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB IRGB8B60K D2Pak IRGS8B60K TO-262 IRGSL8B60K Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 28 IC @ TC = 100°C Continuous Collector Current 19 ICM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current 56 ILM VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 167 W c 56 PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range A 83 -55 to +175 °C Storage Temperature Range, for 10 sec. 300 (0.063 in. (1.6mm) from case) Thermal / Mechanical Characteristics Parameter RθJC Junction-to-Case- IGBT RθCS RθJA Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount RθJA Junction-to-Ambient (PCB Mount, Steady State) Weight www.irf.com d e Min. Typ. Max. ––– ––– 0.90 ––– 0.50 ––– ––– ––– 62 ––– ––– 40 ––– 1.44 ––– Units °C/W g 1 10/16/03 IRGB/S/SL8B60K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage — — — Ref.Fig. — 1.8 2.2 V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C 5,6,7 IC = 8.0A, VGE = 15V, TJ = 150°C 8,9,10 — 2.2 2.5 — 2.3 2.6 Gate Threshold Voltage 3.5 4.5 5.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.5 — gfe ICES Forward Transconductance — 3.7 — Zero Gate Voltage Collector Current — 1.0 150 — 200 500 — 800 1320 — — ±100 Gate-to-Emitter Leakage Current Conditions VGE = 0V, IC = 500µA 0.57 VGE(th) IGES V V IC = 8.0A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 250µA 8,9,10, mV/°C VCE = VGE, IC = 1mA (25°C-125°C) S VCE = 50V, IC = 8.0A, PW = 80µs 11 VGE = 0V, VCE = 600V µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Ref.Fig. Qg Total Gate Charge (turn-on) — 29 — Qge Gate-to-Emitter Charge (turn-on) — 3.7 — Qgc Gate-to-Collector Charge (turn-on) — 14 — Eon Turn-On Switching Loss — 160 268 Eoff Turn-Off Switching Loss — 160 268 Etot Total Switching Loss — 320 433 TJ = 25°C td(on) Turn-On delay time — 23 27 IC = 8.0A, VCC = 400V tr Rise time — 22 26 td(off) Turn-Off delay time — 140 150 tf Fall time — 32 42 Eon Turn-On Switching Loss — 220 330 Eoff Turn-Off Switching Loss — 270 381 Etot Total Switching Loss — 490 608 TJ = 150°C td(on) Turn-On delay time — 22 27 IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH CT4 TJ = 150°C WF1 tr Rise time — 21 25 td(off) Turn-Off delay time — 180 198 tf Fall time — 40 56 Cies Input Capacitance — 440 — Coes Output Capacitance — 38 — Cres Reverse Transfer Capacitance — 16 — RBSOA Reverse Bias Safe Operating Area IC = 8.0A nC 17 VCC = 480V CT1 VGE = 15V IC = 8.0A, VCC = 400V µJ ns CT4 VGE = 15V, RG = 50Ω, L = 1.1mH f VGE = 15V, RG = 50Ω, L = 1.1mH CT4 TJ = 25°C IC = 8.0A, VCC = 400V µJ ns CT4 VGE = 15V, RG = 50Ω, L = 1.1mH f 12,14 WF1,WF2 13,15 WF2 VGE = 0V pF VCC = 30V 16 f = 1.0MHz TJ = 150°C, IC = 34A, Vp = 600V FULL SQUARE VCC=500V,VGE = +15V to 0V,RG = 50Ω SCSOA Short Circuit Safe Operating Area 10 — — µs TJ = 150°C, Vp = 600V, RG = 100Ω CT3 VCC=360V,VGE = +15V to 0V WF3 Notes to are on page 13. 2 4 CT2 www.irf.com 35 175 30 150 25 125 20 100 Ptot (W) IC (A) IRGB/S/SL8B60K 15 75 10 50 5 25 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 100 µs 10 IC A) IC (A) 10 1ms 1 10ms 0.1 1 DC 0 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGB/S/SL8B60K 40 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 0 1 VCE (V) 2 3 4 5 6 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 40 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 ICE (A) ICE (A) 25 35 20 15 10 5 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 www.irf.com 20 20 18 18 16 16 14 14 12 VCE (V) VCE (V) IRGB/S/SL8B60K ICE = 4.0A ICE = 8.0A 10 8 ICE = 16A 6 12 10 ICE = 4.0A ICE = 8.0A 8 ICE = 16A 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 8 - Typical VCE vs. VGE TJ = -40°C 100 20 18 80 16 12 10 ICE = 4.0A 8 ICE = 8.0A 6 ICE = 16A ICE (A) VCE (V) 14 T J = 25°C T J = 150°C 60 40 T J = 150°C 20 4 TJ = 25°C 2 0 0 5 10 15 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs 5 IRGB/S/SL8B60K 600 1000 Swiching Time (ns) 500 Energy (µJ) 400 EOFF 300 200 tdOFF 100 tF EON tdON 100 tR 0 10 0 5 10 15 20 0 5 Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.1mH; VCE= 400V, RG= 50Ω; VGE= 15V 700 20 Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=1.1mH; VCE= 400V RG= 50Ω; VGE= 15V Swiching Time (ns) EON 500 Energy (µJ) 15 10000 600 EOFF 400 300 200 1000 tdOFF tdON 100 tF 100 tR 0 10 0 100 200 300 400 RG ( Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V 6 10 IC (A) IC (A) 500 0 100 200 300 400 500 RG ( Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V www.irf.com IRGB/S/SL8B60K 1000 16 Cies Coes 12 Cres 10 100 VGE (V) Capacitance (pF) 14 10 300V 400V 8 6 4 2 0 1 1 10 0 100 5 VCE (V) 10 15 20 25 30 Q G , Total Gate Charge (nC) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 17 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 600µH Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 τJ 0.10 0.1 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ1 τ2 τ2 τ Ri (°C/W) 0.491 τi (sec) 0.000190 0.409 0.001153 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRGB/S/SL8B60K L L VCC DUT 0 80 V + - DUT Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC 480V Rg 1K DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRGB/S/SL8B60K tf 500 Vce 400 12 600 10 500 8 Ice 6 200 4 5% Ice 100 Vce (V) 5% Vce 0 Eoff Loss -100 -200 0.4 0.6 10% Ice 300 12 200 8 100 0 0.2 16 2 Ice 0 20 Vce 90% Ice Ice (A) Vce (V) tr 400 90% Ice 300 24 Ice (A) 600 0.8 -2 0 -4 -100 1 4 5% Vce 0 Eon Loss -4 0.3 0.5 Time (uS) 0.7 0.9 Time (uS) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 80 400 350 60 300 200 40 Ice (A) Vce (V) 250 150 100 20 50 0 0.00 10.00 20.00 30.00 40.00 0 50.00 Time (uS) Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 9 IRGB/S/SL8B60K TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A6.47 (.255) 6.10 (.240) 4 LEAD ASSIGNMENTS IGBTs, CoPACK 15.24 (.600) 14.84 (.584) HEXFET 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1- GATE 1- GATE 2- COLLECTOR 2- DRAIN1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 3X 1.32 (.052) 1.22 (.048) 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 0.55 (.022) 0.46 (.018) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE ASSEMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE 10 PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRGB/S/SL8B60K D2Pak Package Outline D2Pak Part Marking Information THIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN THE ASS EMBLY LINE "L" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE www.irf.com PART NUMBER F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L 11 IRGB/S/SL8B60K TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE 12 PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRGB/S/SL8B60K D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 24.30 (.957) 23.90 (.941) 15.42 (.609) 15.22 (.601) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. This is only applied to TO-220AB package. This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE. TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/03 www.irf.com 13