IRF IRGB8B60K

PD - 94545C
IRGB8B60K
IRGS8B60K
IRGSL8B60K
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
C
Low VCE (on) Non Punch Through IGBT Technology.
10µs Short Circuit Capability.
Square RBSOA.
Positive VCE (on) Temperature Coefficient.
VCES = 600V
IC = 20A, TC=100°C
G
tsc>10µs, TJ=150°C
E
n-channel
Benefits
VCE(on) typ. = 1.8V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
IRGB8B60K
D2Pak
IRGS8B60K
TO-262
IRGSL8B60K
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
28
IC @ TC = 100°C
Continuous Collector Current
19
ICM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
56
ILM
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
167
W
c
56
PD @ TC = 100°C Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
83
-55 to +175
°C
Storage Temperature Range, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Parameter
RθJC
Junction-to-Case- IGBT
RθCS
RθJA
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
RθJA
Junction-to-Ambient (PCB Mount, Steady State)
Weight
www.irf.com
d
e
Min.
Typ.
Max.
–––
–––
0.90
–––
0.50
–––
–––
–––
62
–––
–––
40
–––
1.44
–––
Units
°C/W
g
1
10/16/03
IRGB/S/SL8B60K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
VCE(on)
Collector-to-Emitter Voltage
—
—
—
Ref.Fig.
—
1.8
2.2
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 8.0A, VGE = 15V, TJ = 25°C
5,6,7
IC = 8.0A, VGE = 15V, TJ = 150°C
8,9,10
—
2.2
2.5
—
2.3
2.6
Gate Threshold Voltage
3.5
4.5
5.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-9.5
—
gfe
ICES
Forward Transconductance
—
3.7
—
Zero Gate Voltage Collector Current
—
1.0
150
—
200
500
—
800
1320
—
—
±100
Gate-to-Emitter Leakage Current
Conditions
VGE = 0V, IC = 500µA
0.57
VGE(th)
IGES
V
V
IC = 8.0A, VGE = 15V, TJ = 175°C
VCE = VGE, IC = 250µA
8,9,10,
mV/°C VCE = VGE, IC = 1mA (25°C-125°C)
S VCE = 50V, IC = 8.0A, PW = 80µs
11
VGE = 0V, VCE = 600V
µA
VGE = 0V, VCE = 600V, TJ = 150°C
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Ref.Fig.
Qg
Total Gate Charge (turn-on)
—
29
—
Qge
Gate-to-Emitter Charge (turn-on)
—
3.7
—
Qgc
Gate-to-Collector Charge (turn-on)
—
14
—
Eon
Turn-On Switching Loss
—
160
268
Eoff
Turn-Off Switching Loss
—
160
268
Etot
Total Switching Loss
—
320
433
TJ = 25°C
td(on)
Turn-On delay time
—
23
27
IC = 8.0A, VCC = 400V
tr
Rise time
—
22
26
td(off)
Turn-Off delay time
—
140
150
tf
Fall time
—
32
42
Eon
Turn-On Switching Loss
—
220
330
Eoff
Turn-Off Switching Loss
—
270
381
Etot
Total Switching Loss
—
490
608
TJ = 150°C
td(on)
Turn-On delay time
—
22
27
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
CT4
TJ = 150°C
WF1
tr
Rise time
—
21
25
td(off)
Turn-Off delay time
—
180
198
tf
Fall time
—
40
56
Cies
Input Capacitance
—
440
—
Coes
Output Capacitance
—
38
—
Cres
Reverse Transfer Capacitance
—
16
—
RBSOA
Reverse Bias Safe Operating Area
IC = 8.0A
nC
17
VCC = 480V
CT1
VGE = 15V
IC = 8.0A, VCC = 400V
µJ
ns
CT4
VGE = 15V, RG = 50Ω, L = 1.1mH
f
VGE = 15V, RG = 50Ω, L = 1.1mH
CT4
TJ = 25°C
IC = 8.0A, VCC = 400V
µJ
ns
CT4
VGE = 15V, RG = 50Ω, L = 1.1mH
f
12,14
WF1,WF2
13,15
WF2
VGE = 0V
pF
VCC = 30V
16
f = 1.0MHz
TJ = 150°C, IC = 34A, Vp = 600V
FULL SQUARE
VCC=500V,VGE = +15V to 0V,RG = 50Ω
SCSOA
Short Circuit Safe Operating Area
10
—
—
µs
TJ = 150°C, Vp = 600V, RG = 100Ω
CT3
VCC=360V,VGE = +15V to 0V
WF3
Notes  to „ are on page 13.
2
4
CT2
www.irf.com
35
175
30
150
25
125
20
100
Ptot (W)
IC (A)
IRGB/S/SL8B60K
15
75
10
50
5
25
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
100 µs
10
IC A)
IC (A)
10
1ms
1
10ms
0.1
1
DC
0
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGB/S/SL8B60K
40
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
25
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
VCE (V)
2
3
4
5
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
40
35
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
ICE (A)
ICE (A)
25
35
20
15
10
5
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
www.irf.com
20
20
18
18
16
16
14
14
12
VCE (V)
VCE (V)
IRGB/S/SL8B60K
ICE = 4.0A
ICE = 8.0A
10
8
ICE = 16A
6
12
10
ICE = 4.0A
ICE = 8.0A
8
ICE = 16A
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
100
20
18
80
16
12
10
ICE = 4.0A
8
ICE = 8.0A
6
ICE = 16A
ICE (A)
VCE (V)
14
T J = 25°C
T J = 150°C
60
40
T J = 150°C
20
4
TJ = 25°C
2
0
0
5
10
15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 360V; tp = 10µs
5
IRGB/S/SL8B60K
600
1000
Swiching Time (ns)
500
Energy (µJ)
400
EOFF
300
200
tdOFF
100
tF
EON
tdON
100
tR
0
10
0
5
10
15
20
0
5
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V,
RG= 50Ω; VGE= 15V
700
20
Fig. 13 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V
RG= 50Ω; VGE= 15V
Swiching Time (ns)
EON
500
Energy (µJ)
15
10000
600
EOFF
400
300
200
1000
tdOFF
tdON
100
tF
100
tR
0
10
0
100
200
300
400
RG ( Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
6
10
IC (A)
IC (A)
500
0
100
200
300
400
500
RG ( Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
www.irf.com
IRGB/S/SL8B60K
1000
16
Cies
Coes
12
Cres
10
100
VGE (V)
Capacitance (pF)
14
10
300V
400V
8
6
4
2
0
1
1
10
0
100
5
VCE (V)
10
15
20
25
30
Q G , Total Gate Charge (nC)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 8.0A; L = 600µH
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
τJ
0.10
0.1
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ1
τ2
τ2
τ
Ri (°C/W)
0.491
τi (sec)
0.000190
0.409
0.001153
Ci= τi/Ri
Ci i/Ri
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGB/S/SL8B60K
L
L
VCC
DUT
0
80 V
+
-
DUT
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
480V
Rg
1K
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGB/S/SL8B60K
tf
500
Vce
400
12
600
10
500
8
Ice
6
200
4
5% Ice
100
Vce (V)
5% Vce
0
Eoff Loss
-100
-200
0.4
0.6
10% Ice
300
12
200
8
100
0
0.2
16
2
Ice
0
20
Vce
90% Ice
Ice (A)
Vce (V)
tr
400
90% Ice
300
24
Ice (A)
600
0.8
-2
0
-4
-100
1
4
5% Vce
0
Eon
Loss
-4
0.3
0.5
Time (uS)
0.7
0.9
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
80
400
350
60
300
200
40
Ice (A)
Vce (V)
250
150
100
20
50
0
0.00
10.00
20.00
30.00
40.00
0
50.00
Time (uS)
Fig. WF3- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
www.irf.com
9
IRGB/S/SL8B60K
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A6.47 (.255)
6.10 (.240)
4
LEAD ASSIGNMENTS
IGBTs, CoPACK
15.24 (.600)
14.84 (.584)
HEXFET
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
1- GATE
1- GATE
2- COLLECTOR
2- DRAIN1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
3
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
3X
1.32 (.052)
1.22 (.048)
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
0.55 (.022)
0.46 (.018)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS SEMBLED ON WW 19, 1997
IN T HE ASSEMBLY LINE "C"
INT ERNAT IONAL
RECT IFIER
LOGO
AS SEMBLY
LOT CODE
10
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
www.irf.com
IRGB/S/SL8B60K
D2Pak Package Outline
D2Pak Part Marking Information
THIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN THE ASS EMBLY LINE "L"
INT ERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
www.irf.com
PART NUMBER
F530S
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
11
IRGB/S/SL8B60K
TO-262 Package Outline
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE ASS EMBLY LINE "C"
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
12
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
www.irf.com
IRGB/S/SL8B60K
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
15.42 (.609)
15.22 (.601)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω.
‚ This is only applied to TO-220AB package.
ƒ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
„ Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE.
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/03
www.irf.com
13