PD - 95824B IRF6623 l l l l l l l HEXFET® Power MOSFET Application Specific MOSFETs Ideal for CPU Core DC-DC Converters Low Conduction Losses Low Switching Losses Low Profile (<0.7 mm) Dual Sided Cooling Compatible Compatible with Existing Surface Mount Techniques VDSS RDS(on) max Qg(typ.) 20V 5.7mΩ@VGS = 10V 9.7mΩ@VGS = 4.5V 11nC DirectFET ISOMETRIC ST Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details) SQ SX ST MQ MX MT Description The IRF6623 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6623 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6623 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C EAS IAR TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V c Pulsed Drain Current Power Dissipation Power Dissipation Power Dissipation Single Pulse Avalanche Energy Avalanche Current Linear Derating Factor Operating Junction and Storage Temperature Range g g c d Max. Units 20 ±20 55 16 13 120 2.1 1.4 42 43 12 0.017 -40 to + 150 V A W mJ A W/°C °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB fj gj hj ij Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. Units ––– 12.5 20 ––– 1.0 58 ––– ––– 3.0 ––– °C/W Notes through are on page 2 www.irf.com 1 4/1/04 IRF6623 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 20 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 15 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 4.4 5.7 ––– 7.5 9.7 VGS(th) Gate Threshold Voltage 1.55 ––– 2.45 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.4 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 V Conditions VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A e VGS = 4.5V, ID = 12A e VDS = VGS, ID = 250µA VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V gfs Forward Transconductance 34 ––– ––– Qg Total Gate Charge ––– 11 17 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.3 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.2 ––– Qgd Gate-to-Drain Charge ––– 4.0 ––– ID = 12A Qgodr See Fig. 17 Gate Charge Overdrive ––– 2.5 ––– Qsw Switch Charge (Qgs2 + Qgd) ––– 5.2 ––– ––– 8.9 ––– S VDS = 10V, ID = 12A VDS = 10V nC VGS = 4.5V Qoss Output Charge td(on) Turn-On Delay Time ––– 9.7 ––– VDD = 16V, VGS = 4.5Ve tr Rise Time ––– 40 ––– ID = 12A td(off) Turn-Off Delay Time ––– 12 ––– tf Fall Time ––– 4.5 ––– Ciss Input Capacitance ––– 1360 ––– Coss Output Capacitance ––– 630 ––– Crss Reverse Transfer Capacitance ––– 240 ––– Min. Typ. Max. Units ––– ––– nC ns VDS = 10V, VGS = 0V Clamped Inductive Load VGS = 0V pF VDS = 10V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current 2.6 MOSFET symbol A ––– ––– Conditions D 120 showing the integral reverse 1.0 p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V e G S (Body Diode)c VSD Diode Forward Voltage trr Reverse Recovery Time ––– 20 30 ns TJ = 25°C, IF = 12A Qrr Reverse Recovery Charge ––– 12 18 nC di/dt = 100A/µs e ––– 0.81 V Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.61mH, RG = 25Ω, IAS = 12A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. 2 Used double sided cooling, mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. www.irf.com IRF6623 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 1 2.5V ≤ 60µs PULSE WIDTH Tj = 25°C 100 BOTTOM 10 2.5V ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1000.0 1.5 100.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics T J = 150°C 10.0 T J = 25°C 1.0 VDS = 10V ≤ 60µs PULSE WIDTH 0.1 2.5 3.0 3.5 4.0 4.5 ID = 15A VGS = 10V 1.0 0.5 5.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 11A C oss = C ds + C gd C, Capacitance (pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Ciss 1000 Coss Crss VDS= 20V VDS= 10V 10 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6623 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 100.0 T J = 150°C 10.0 T J = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 1 100µsec Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 1msec 10msec 0.1 0.1 0.2 0.4 0.6 0.8 1.0 0 1.2 1 10 100 VSD, Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 2.5 VGS(th) Gate threshold Voltage (V) 60 ID , Drain Current (A) 50 40 30 20 10 2.0 ID = 250µA 1.5 0 1.0 25 50 75 100 125 150 -75 -50 -25 T J , Junction Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) R4 R4 τi (sec) 2.023 0.000678 19.48 0.240237 21.78 2.0167 14.71 58 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com 200 20 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRF6623 ID = 15A 16 12 T J = 125°C 8 T J = 25°C 4 2.0 4.0 6.0 8.0 ID 5.2A 7.9A BOTTOM 12A TOP 160 120 80 40 0 10.0 25 50 VGS, Gate-to-Source Voltage (V) 75 100 125 150 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13c. Maximum Avalanche Energy Vs. Drain Current 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 13a. Unclamped Inductive Test Circuit V(BR)DSS Fig 14a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 13b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. tr td(off) Fig 14b. Switching Time Waveforms Id Vds 50KΩ 12V tf Vgs .2µF .3µF D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 15. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 16. Gate Charge Waveform 5 IRF6623 D.U.T Driver Gate Drive + + - - D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period * • • • • D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer RG Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 5 7 6 3 4 1 2 www.irf.com IRF6623 DirectFET Outline Dimension, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS Note: Controlling dimensions are in mm METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.62 E 0.58 0.62 F 0.58 0.79 G 0.75 0.57 H 0.53 0.30 J 0.26 K O.88 0.98 2.28 L 2.18 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN 0.187 0.146 0.108 0.014 0.023 0.023 0.030 0.021 0.010 0.035 0.086 0.023 0.001 0.003 MAX 0.191 0.156 0.112 0.018 0.024 0.024 0.031 0.022 0.012 0.039 0.090 0.028 0.003 0.007 DirectFET Part Marking www.irf.com 7 IRF6623 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel, order IRF6618TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION IMPERIAL METRIC METRIC MIN CODE MAX MAX MAX MIN MIN A 12.992 N.C 330.0 177.77 N.C N.C B 0.795 20.2 19.06 N.C N.C N.C C 0.504 12.8 13.5 0.520 13.2 12.8 D 0.059 1.5 1.5 N.C N.C N.C E 3.937 100.0 58.72 N.C N.C N.C F N.C N.C N.C 0.724 18.4 13.50 G 0.488 12.4 11.9 0.567 14.4 12.01 H 0.469 11.9 11.9 0.606 15.4 12.01 (QTY 1000) IMPERIAL MAX MIN N.C 6.9 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM DIMENSIONS METRIC CODE A B C D E F G H IMPERIAL MIN 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04 8 www.irf.com