IRF IRF6633ATRPBF

PD - 97122A
IRF6633APbF
IRF6633ATRPbF
DirectFET™ Power MOSFET ‚
RoHS Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses and Switching Losses
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
Typical values (unless otherwise specified)
l
VDSS
VGS
RDS(on)
RDS(on)
20V max
±20V max 4.1mΩ@ 10V 7.0mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
3.9nC
1.7nC
33nC
8.5nC
1.8V
tot
11nC
DirectFET™ ISOMETRIC
MU
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MU
Description
The IRF6633APbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6633APbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6633APbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.
Absolute Maximum Ratings
Parameter
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical R DS (on) (mΩ)
20
ID = 16A
15
10
TJ = 125°C
5
TJ = 25°C
0
2.0
Notes:
4.0
6.0
8.0
VGS, Gate-to-Source Voltage (V)
10.0
Fig 1. Typical On-Resistance Vs. Gate Voltage
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
20
±20
16
13
69
130
65
13
V
A
mJ
A
12
ID= 13A
10
VDS = 16V
VDS= 10V
8
6
4
2
0
0
5
10
15
20
25
30
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.77mH, RG = 25Ω, IAS = 13A.
1
3/13/08
IRF6633APbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
20
–––
–––
ΔΒVDSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
14
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
4.1
5.6
–––
7.0
9.4
VGS = 0V, ID = 250μA
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 16A i
VGS = 4.5V, ID = 13A i
VGS(th)
Gate Threshold Voltage
1.4
1.8
2.2
V
ΔVGS(th)/ΔTJ
Gate Threshold Voltage Coefficient
–––
-5.0
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
IGSS
gfs
Qg
Qgs1
Gate-to-Source Forward Leakage
Conditions
Typ. Max. Units
–––
–––
150
–––
–––
100
VDS = VGS, ID = 250μA
VDS = 16V, VGS = 0V
VDS = 16V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
31
–––
–––
Total Gate Charge
–––
11
17
Pre-Vth Gate-to-Source Charge
–––
2.0
–––
VDS = 10V
VGS = 4.5V
S
VDS = 10V, ID = 13A
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.7
–––
Qgd
Gate-to-Drain Charge
–––
3.9
–––
ID = 13A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
3.4
–––
See Fig. 15
Qsw
–––
5.6
–––
Qoss
Output Charge
–––
8.5
–––
nC
RG
Gate Resistance
–––
1.5
–––
Ω
td(on)
Turn-On Delay Time
–––
6.9
–––
VDD = 16V, VGS = 4.5Vi
tr
Rise Time
–––
13
–––
ID = 13A
td(off)
Turn-Off Delay Time
–––
8.4
–––
tf
Fall Time
–––
7.7
–––
Ciss
Input Capacitance
–––
1410
–––
Coss
Output Capacitance
–––
680
–––
Crss
Reverse Transfer Capacitance
–––
250
–––
Min.
Typ. Max. Units
Continuous Source Current
@TC=25°C (Body Diode)
–––
–––
Pulsed Source Current
–––
nC
ns
VDS = 10V, VGS = 0V
RG= 1.8 Ω
VGS = 0V
pF
VDS = 10V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
ISM
MOSFET symbol
69
A
–––
Conditions
showing the
130
integral reverse
VSD
Diode Forward Voltage
–––
0.8
1.0
V
p-n junction diode.
TJ = 25°C, IS = 13A, VGS = 0V i
trr
Reverse Recovery Time
–––
20
30
ns
TJ = 25°C, IF = 13A
Qrr
Reverse Recovery Charge
–––
33
50
nC
di/dt = 500A/μs i
(Body Diode)g
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRF6633APbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.3
1.5
42
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
55
–––
–––
3.0
–––
°C/W
0.018
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
τa
τ2
τ1
τ2
τ3
τ3
Ci= τi/Ri
τ
Ri (°C/W) τι (sec)
6.713214 0.003276
28.70184 0.9822
19.59917
41.2
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
ˆ Used double sided cooling, mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
Š Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6633APbF
1000
1000
100
BOTTOM
10
2.5V
1
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
100
BOTTOM
10
2.5V
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
0.1
1
10
0.1
100
1
10
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
1000
2.0
Typical RDS(on) (Normalized)
ID = 16A
ID, Drain-to-Source Current (Α)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
100
TJ = 150°C
TJ = 25°C
TJ = -40°C
10
1
VGS = 4.5V
VGS = 10V
1.5
1.0
VDS = 10V
≤60μs PULSE WIDTH
0.1
0.5
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Typical RDS (on) (mΩ)
C, Capacitance(pF)
Ciss
Coss
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
14
10
6
Crss
2
100
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
TJ = 25°C
18
Coss = Cds + Cgd
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
10000
-60 -40 -20 0
0
20
40
60
80
100
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6633APbF
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.0
TJ = 150°C
TJ = 25°C
100.0
TJ = -40°C
10.0
1.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10
1
10msec
TA = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.1
0.2
0.4
0.6
0.8
1.0
0.1
1.2
1.0
10.0
100.0
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Typical VGS(th) Gate threshold Voltage (V)
70
60
ID, Drain Current (A)
100μsec
1msec
50
40
30
20
10
2.0
ID = 250μA
1.5
1.0
0.5
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
TJ , Junction Temperature ( °C )
TC , Case Temperature (°C)
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS, Single Pulse Avalanche Energy (mJ)
240
ID
1.45A
1.8A
BOTTOM 13A
TOP
200
160
120
80
40
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6633APbF
Id
Vds
Vgs
L
VCC
DUT
0
1K
Vgs(th)
Qgs1 Qgs2
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6633APbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MU Outline
(Medium Size Can, U-Designation).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
G = GATE
D = DRAIN
S = SOURCE
D
D
G
D
S
S
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
www.irf.com
7
IRF6633APbF
DirectFET™ Outline Dimension, MU Outline
(Medium Size Can, U-Designation).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
DIMENSIONS
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
METRIC
MIN MAX
6.25 6.35
4.80 5.05
3.85 3.95
0.35 0.45
0.73 0.77
0.78 0.82
0.75 0.79
0.53 0.57
0.26 0.30
1.43 1.56
2.88 3.01
0.59 0.70
0.03 0.08
0.08 0.17
IMPERIAL
MIN
MAX
0.246
0.250
0.189
0.201
0.152
0.156
0.014
0.018
0.029
0.030
0.031
0.032
0.030
0.031
0.021
0.022
0.010
0.012
0.056
0.061
0.113
0.118
0.023
0.028
0.001
0.003
0.003
0.007
DirectFET™ Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
8
www.irf.com
IRF6633APbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6633TRPBF).
IRF6633ATRPbF). For 1000 parts on 7"
reel, order IRF6633ATR1PbF
IRF6633TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MAX
MIN
CODE
MAX
MIN
MAX
MAX
MIN
12.992
6.9
N.C
A
N.C
177.77 N.C
330.0
N.C
0.795
0.75
B
N.C
N.C
19.06
20.2
N.C
N.C
0.504
0.53
C
0.50
13.5
12.8
0.520
13.2
12.8
0.059
D
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
3.937
2.31
58.72
N.C
100.0
N.C
N.C
N.C
N.C
F
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.488
0.47
11.9
N.C
12.4
0.567
14.4
12.01
H
0.469
0.47
11.9
N.C
11.9
0.606
15.4
12.01
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
5.45
0.219
5.55
0.201
5.10
0.209
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/08
www.irf.com
9