PD - 97122A IRF6633APbF IRF6633ATRPbF DirectFET Power MOSFET RoHS Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Conduction Losses and Switching Losses l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques Typical values (unless otherwise specified) l VDSS VGS RDS(on) RDS(on) 20V max ±20V max 4.1mΩ@ 10V 7.0mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 3.9nC 1.7nC 33nC 8.5nC 1.8V tot 11nC DirectFET ISOMETRIC MU Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MU Description The IRF6633APbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6633APbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6633APbF has been optimized for parameters that are critical in synchronous buck operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses. Absolute Maximum Ratings Parameter VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical R DS (on) (mΩ) 20 ID = 16A 15 10 TJ = 125°C 5 TJ = 25°C 0 2.0 Notes: 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) 10.0 Fig 1. Typical On-Resistance Vs. Gate Voltage Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f VGS, Gate-to-Source Voltage (V) VDS Max. Units 20 ±20 16 13 69 130 65 13 V A mJ A 12 ID= 13A 10 VDS = 16V VDS= 10V 8 6 4 2 0 0 5 10 15 20 25 30 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.77mH, RG = 25Ω, IAS = 13A. 1 3/13/08 IRF6633APbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage 20 ––– ––– ΔΒVDSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 14 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 4.1 5.6 ––– 7.0 9.4 VGS = 0V, ID = 250μA V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 16A i VGS = 4.5V, ID = 13A i VGS(th) Gate Threshold Voltage 1.4 1.8 2.2 V ΔVGS(th)/ΔTJ Gate Threshold Voltage Coefficient ––– -5.0 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 μA IGSS gfs Qg Qgs1 Gate-to-Source Forward Leakage Conditions Typ. Max. Units ––– ––– 150 ––– ––– 100 VDS = VGS, ID = 250μA VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 31 ––– ––– Total Gate Charge ––– 11 17 Pre-Vth Gate-to-Source Charge ––– 2.0 ––– VDS = 10V VGS = 4.5V S VDS = 10V, ID = 13A Qgs2 Post-Vth Gate-to-Source Charge ––– 1.7 ––– Qgd Gate-to-Drain Charge ––– 3.9 ––– ID = 13A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 3.4 ––– See Fig. 15 Qsw ––– 5.6 ––– Qoss Output Charge ––– 8.5 ––– nC RG Gate Resistance ––– 1.5 ––– Ω td(on) Turn-On Delay Time ––– 6.9 ––– VDD = 16V, VGS = 4.5Vi tr Rise Time ––– 13 ––– ID = 13A td(off) Turn-Off Delay Time ––– 8.4 ––– tf Fall Time ––– 7.7 ––– Ciss Input Capacitance ––– 1410 ––– Coss Output Capacitance ––– 680 ––– Crss Reverse Transfer Capacitance ––– 250 ––– Min. Typ. Max. Units Continuous Source Current @TC=25°C (Body Diode) ––– ––– Pulsed Source Current ––– nC ns VDS = 10V, VGS = 0V RG= 1.8 Ω VGS = 0V pF VDS = 10V ƒ = 1.0MHz Diode Characteristics Parameter IS ISM MOSFET symbol 69 A ––– Conditions showing the 130 integral reverse VSD Diode Forward Voltage ––– 0.8 1.0 V p-n junction diode. TJ = 25°C, IS = 13A, VGS = 0V i trr Reverse Recovery Time ––– 20 30 ns TJ = 25°C, IF = 13A Qrr Reverse Recovery Charge ––– 33 50 nC di/dt = 500A/μs i (Body Diode)g Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF6633APbF Absolute Maximum Ratings e e f Max. Units 2.3 1.5 42 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 55 ––– ––– 3.0 ––– °C/W 0.018 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 τa τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri τ Ri (°C/W) τι (sec) 6.713214 0.003276 28.70184 0.9822 19.59917 41.2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling, mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6633APbF 1000 1000 100 BOTTOM 10 2.5V 1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 BOTTOM 10 2.5V ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 150°C Tj = 25°C 1 0.1 0.1 1 10 0.1 100 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 2.0 Typical RDS(on) (Normalized) ID = 16A ID, Drain-to-Source Current (Α) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 TJ = 150°C TJ = 25°C TJ = -40°C 10 1 VGS = 4.5V VGS = 10V 1.5 1.0 VDS = 10V ≤60μs PULSE WIDTH 0.1 0.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Typical RDS (on) (mΩ) C, Capacitance(pF) Ciss Coss Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 14 10 6 Crss 2 100 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 TJ = 25°C 18 Coss = Cds + Cgd 1000 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 10000 -60 -40 -20 0 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6633APbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 150°C TJ = 25°C 100.0 TJ = -40°C 10.0 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 1 10msec TA = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 0.1 1.2 1.0 10.0 100.0 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area Typical VGS(th) Gate threshold Voltage (V) 70 60 ID, Drain Current (A) 100μsec 1msec 50 40 30 20 10 2.0 ID = 250μA 1.5 1.0 0.5 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) TC , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 240 ID 1.45A 1.8A BOTTOM 13A TOP 200 160 120 80 40 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6633APbF Id Vds Vgs L VCC DUT 0 1K Vgs(th) Qgs1 Qgs2 Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6633APbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MU Outline (Medium Size Can, U-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G = GATE D = DRAIN S = SOURCE D D G D S S D Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com 7 IRF6633APbF DirectFET Outline Dimension, MU Outline (Medium Size Can, U-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS CODE A B C D E F G H J K L M N P METRIC MIN MAX 6.25 6.35 4.80 5.05 3.85 3.95 0.35 0.45 0.73 0.77 0.78 0.82 0.75 0.79 0.53 0.57 0.26 0.30 1.43 1.56 2.88 3.01 0.59 0.70 0.03 0.08 0.08 0.17 IMPERIAL MIN MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.029 0.030 0.031 0.032 0.030 0.031 0.021 0.022 0.010 0.012 0.056 0.061 0.113 0.118 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package 8 www.irf.com IRF6633APbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6633TRPBF). IRF6633ATRPbF). For 1000 parts on 7" reel, order IRF6633ATR1PbF IRF6633TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MAX MIN CODE MAX MIN MAX MAX MIN 12.992 6.9 N.C A N.C 177.77 N.C 330.0 N.C 0.795 0.75 B N.C N.C 19.06 20.2 N.C N.C 0.504 0.53 C 0.50 13.5 12.8 0.520 13.2 12.8 0.059 D 0.059 N.C 1.5 1.5 N.C N.C N.C E 3.937 2.31 58.72 N.C 100.0 N.C N.C N.C N.C F N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.488 0.47 11.9 N.C 12.4 0.567 14.4 12.01 H 0.469 0.47 11.9 N.C 11.9 0.606 15.4 12.01 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 5.45 0.219 5.55 0.201 5.10 0.209 5.30 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/08 www.irf.com 9