PD - 93944C IRF7103Q AUTOMOTIVE MOSFET Typical Applications ● ● ● HEXFET® Power MOSFET Anti-lock Braking Systems (ABS) Electronic Fuel Injection Power Doors, Windows & Seats VDSS Benefits ● ● ● ● ● ● Ω) RDS(on) max (mΩ) ID 130@VGS = 10V 3.0A 200@VGS = 4.5V 1.5A 50V Advanced Process Technology Dual N-Channel MOSFET Ultra Low On-Resistance 175°C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified S1 Description Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available G1 S2 G2 1 8 D1 2 7 D1 3 6 4 5 D2 D2 SO-8 T o p V ie w in Tape & Reel. Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 70°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ, TSTG Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Q Power DissipationS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyT Avalanche CurrentQ Repetitive Avalanche EnergyV Peak Diode Recovery dv/dt U Junction and Storage Temperature Range Max. Units 3.0 2.5 25 2.4 16 ± 20 22 See Fig.16c, 16d, 19, 20 12 -55 to + 175 A W mW/°C V mJ A mJ V/ns °C Thermal Resistance Symbol RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead Junction-to-Ambient S Typ. Max. Units ––– ––– 20 50 °C/W 1 03/14/02 IRF7103Q Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 50 ––– ––– ––– 1.0 3.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.057 ––– ––– ––– ––– ––– ––– ––– ––– 10 1.2 2.8 5.1 1.7 15 2.3 255 69 29 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 130 VGS = 10V, ID = 3.0A R mΩ 200 VGS = 4.5V, ID = 1.5A R 3.0 V VDS = VGS, ID = 250µA ––– S VDS = 15V, ID = 3.0A 2.0 VDS = 40V, VGS = 0V µA 25 VDS = 40V, VGS = 0V, TJ = 55°C 100 VGS = 20V nA -100 VGS = -20V 15 ID = 2.0A ––– nC VDS = 40V ––– VGS = 10V ––– VDD = 25V R ––– ID = 1.0A ns ––– RG = 6.0Ω ––– RD = 25Ω ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– 3.0 ––– ––– 12 ––– ––– ––– ––– 35 45 1.2 53 67 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 1.5A, VGS = 0VR TJ = 25°C, IF = 1.5A di/dt = 100A/µs R D S Notes: Q Repetitive rating; pulse width limited by T Starting TJ = 25°C, L = 4.9mH max. junction temperature. R Pulse width ≤ 400µs; duty cycle ≤ 2%. S Surface mounted on 1 in square Cu board U ISD ≤ 2.0A, di/dt ≤ 155A/µs, VDD ≤ V(BR)DSS, RG = 25Ω, IAS = 3.0A. (See Figure 12). TJ ≤ 175°C V Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. 2 www.irf.com IRF7103Q 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V ID , Drain-to-Source Current (A) ID , Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP TOP 4.5V 10 10 4.5V 1 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.1 1 0.1 1 10 0.1 100 2.5 R DS(on) , Drain-to-Source On Resistance (Normalized) ID , Drain-to-Source Current (Α ) 100.00 T J = 175°C T J = 25°C VDS = 25V 20µs PULSE WIDTH 3.0 6.0 9.0 12.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1.00 10 VDS , Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 10.00 1 15.0 ID = 3.0A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 V GS = 10V 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7103Q 10000 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd V DS = 10V 9 1000 VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) V DS = 40V V DS = 25V Coss = Cds + Cgd Ciss Coss 100 I D = 2.0A Crss 10 6 3 0 1 10 0 100 3 6 9 12 Q G, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 100 ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 1 0.1 0.4 TJ = 25 ° C V GS = 0 V 0.6 0.8 1.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 ID, Drain-to-Source Current (A) TJ = 175 ° C 1.2 10 1 100µsec 1msec 0.1 Tc = 25°C Tj = 175°C Single Pulse 10msec 0.01 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7103Q 3.0 RD VDS VGS I D , Drain Current (A) 2.4 D.U.T. RG + -VDD 1.8 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 1.2 Fig 10a. Switching Time Test Circuit 0.6 VDS 90% 0.0 25 50 75 100 125 150 175 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJA) 100 D = 0.50 10 0.20 Thermal Response 0.10 0.05 P DM 0.02 1 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = 2. Peak T 0.1 0.00001 0.0001 0.001 0.01 0.1 t1/ t 2 J = P DM x Z thJA +T A 1 10 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.15 R DS (on) , Drain-to-Source On Resistance ( Ω) R DS(on) , Drain-to -Source On Resistance ( Ω ) IRF7103Q 0.14 0.13 0.12 ID = 3.0A 0.11 0.10 0.09 4.5 6.0 7.5 9.0 10.5 12.0 13.5 2.500 2.000 VGS = 4.5V 1.500 1.000 0.500 VGS = 10V 0.000 15.0 0 -V GS, Gate -to -Source Voltage (V) 15 20 25 30 35 40 Fig 13. Typical On-Resistance Vs. Drain Current 70 2.0 60 1.8 50 ID = 250µA Power (W) V GS(th) Gate threshold Voltage (V) 10 ID , Drain Current (A) Fig 12. Typical On-Resistance Vs. Gate Voltage 1.5 40 30 20 1.3 10 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) Fig 14. Typical Threshold Voltage Vs. Junction Temperature 6 5 1.00 10.00 100.00 1000.00 Time (sec) Fig 15. Typical Power Vs. Time www.irf.com IRF7103Q EAS , Single Pulse Avalanche Energy (mJ) 60 TOP 48 BOTTOM ID 1.2A 2.5A 3.0A 1 5V 36 D .U .T RG 24 D R IV E R L VDS + V - DD IA S 20V tp 12 A 0 .0 1 Ω Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( ° C) V (B R )D SS Fig 16a. Maximum Avalanche Energy Vs. Drain Current tp IAS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 17. Gate Charge Test Circuit www.irf.com Charge Fig 18. Basic Gate Charge Waveform 7 IRF7103Q 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 10 0.01 1 0.05 0.10 0.1 0.01 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 25 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.0A 20 15 10 5 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·tav www.irf.com IRF7103Q SO-8 Package Details D 5 A 8 6 7 6 5 H 0.25 [.010] 1 6X 2 3 A MAX MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 .050 BAS IC 1.27 BAS IC e1 e .025 BAS IC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C y 0.10 [.004] 8X b 0.25 [.010] MAX e 4 e1 MILLIMET ERS MIN A E INCHES DIM B A1 8X L 8X c 7 C A B F OOT PRINT NOT ES : 1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES ]. 4. OUTLINE CONFORMS T O JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENSION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) INTERNAT IONAL RECTIFIER LOGO www.irf.com YWW XXXX F7101 DATE CODE (YWW) Y = LAS T DIGIT OF THE YEAR WW = WEEK LOT CODE PART NUMBER 9 IRF7103Q SO-8 Tape and Reel T E R M IN A L N U M B E R 1 1 2 .3 ( .48 4 ) 1 1 .7 ( .46 1 ) 8 .1 ( .31 8 ) 7 .9 ( .31 2 ) F E E D D IR E C T IO N N O TES: 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1. 33 0.0 0 (1 2 .9 9 2 ) M AX . 1 4 .4 0 ( .5 66 ) 1 2 .4 0 ( .4 88 ) N O TE S : 1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 . Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/02 10 www.irf.com