PD -95487 IRF1607PbF AUTOMOTIVE MOSFET Typical Applications O O O O 42 Volts Automotive Electrical Systems Electrical Power Steering (EPS) Integrated Starter Alternator Lead-Free HEXFET® Power MOSFET D VDSS = 75V Benefits O O O O O O Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified RDS(on) = 0.0075Ω G ID = 142A S Description Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Max. Units 142 100 570 380 2.5 ± 20 1250 See Fig.12a, 12b, 15, 16 5.2 -55 to + 175 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 0.40 ––– 62 °C/W 1 06/30/04 IRF1607PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 75 ––– ––– 2.0 79 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– LS Internal Source Inductance ––– Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Typ. Max. Units Conditions ––– ––– V VGS = 0V, ID = 250µA 0.086 ––– V/°C Reference to 25°C, ID = 1mA 0.00580.0075 Ω VGS = 10V, ID = 85A ––– 4.0 V VDS = 10V, ID = 250µA ––– ––– S VDS = 25V, ID = 85A ––– 20 VDS = 75V, VGS = 0V µA ––– 250 VDS = 60V, VGS = 0V, TJ = 150°C ––– 200 VGS = 20V nA ––– -200 VGS = -20V 210 320 ID = 85A 45 68 nC VDS = 60V 73 110 VGS = 10V 22 ––– VDD = 38V 130 ––– ID = 85A ns 84 ––– RG = 1.8Ω 86 ––– VGS = 10V D Between lead, 4.5 ––– 6mm (0.25in.) nH G from package 7.5 ––– and center of die contact S 7750 ––– VGS = 0V 1230 ––– pF VDS = 25V 310 ––– ƒ = 1.0MHz, See Fig. 5 5770 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz 790 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz 1420 ––– VGS = 0V, VDS = 0V to 60V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 142 showing the A G integral reverse ––– ––– 570 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 85A, VGS = 0V ––– 130 200 ns TJ = 25°C, IF = 85A ––– 690 1040 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . Starting TJ = 25°C, L = 0.21mH Calculated continuous current based on maximum allowable RG = 25Ω, IAS = 85A, VGS=10V (See Figure 12). junction temperature. Package limitation current is 75A. ISD ≤ 85A, di/dt ≤ 310A/µs, VDD ≤ V(BR)DSS, Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive TJ ≤ 175°C avalanche performance. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF1607PbF 1000 VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 1000 10 4.5V 100 4.5V 10 20µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 1 0.1 100 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 3.0 TJ = 175 ° C 100 TJ = 25 ° C V DS = 25V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 1000 1 4.0 1 VDS , Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 10 20µs PULSE WIDTH TJ = 175 ° C 10.0 ID = 142A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF1607PbF VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 C, Capacitance(pF) Ciss Coss = Cds + Cgd 8000 6000 Coss 4000 2000 VGS , Gate-to-Source Voltage (V) 20 12000 ID = 85A V DS = 60V V DS = 37V V DS = 15V 16 12 8 4 Crss FOR TEST CIRCUIT SEE FIGURE 13 0 0 0 1 10 100 200 300 400 Q G, Total Gate Charge (nC) 100 VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) TJ = 175 ° C ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 100 1000 100 10 TJ = 25 ° C 1 0.1 0.2 V GS = 0 V 0.6 1.0 1.4 1.8 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 2.2 100µsec 1msec 10 Tc = 25°C Tj = 175°C Single Pulse 1 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF1607PbF 160 RD VDS LIMITED BY PACKAGE ID , Drain Current (A) VGS 120 D.U.T. RG + -VDD 10V 80 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 10a. Switching Time Test Circuit 40 VDS 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1607PbF EAS , Single Pulse Avalanche Energy (mJ) 3000 15V TOP 2500 DRIVER L VDS BOTTOM ID 35A 60A 85A 2000 D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 1500 1000 500 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 5.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 4.0 ID = 250µA 3.0 2.0 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF1607PbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 100 0.05 0.10 10 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 1400 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 85A 1200 1000 800 600 400 200 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f 175 ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·t av 7 IRF1607PbF Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + RG • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test VGS * + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple ≤ 5% [ ISD] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET® power MOSFETs 8 www.irf.com IRF1607PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A- -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- COLLECTOR 2- DRAIN 3- EMITTER 3- SOURCE 4 - DRAIN HEXFET 3 4- DRAIN 14.09 (.555) 13.47 (.530) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMP L E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T HE AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL RE CT IF IE R L OGO AS S E MB L Y L OT CODE PART NU MB E R DAT E CODE YE AR 7 = 1997 WEE K 19 L INE C Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04 www.irf.com 9