IRF IRF7484

PD - 94446B
IRF7484
Typical Applications
Relay replacement
Anti-lock Braking System
Air Bag
l
l
l
HEXFET® Power MOSFET
VDSS RDS(on) max (mW)
Benefits
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
40V
Specifically designed for Automotive applications, this
Stripe Planar design of HEXFET® Power MOSFETs
utilizes the latest processing techniques to achieve
extremely low on-resistance per silicon area. Additional
features of this HEXFET power MOSFET are a 150°C
junction operating temperature, fast switching speed
and improved repetitive avalanche rating. These benefits
combine to make this design an extremely efficient and
reliable device for use in Automotive applications and a
wide variety of other applications.
8
S
2
7
D
S
3
6
D
4
5
D
G
14A
A
A
D
1
S
Description
10@VGS = 7.0V
ID
SO-8
Top View
Absolute Maximum Ratings
Parameter
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
VGS
EAS
IAR
EAR
TJ, TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipationƒ
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy„
Avalanche Current
Repetitive Avalanche Energy†
Junction and Storage Temperature Range
Max.
Units
14
11
110
2.5
0.02
± 8.0
230
See Fig.16c, 16d, 19, 20
-55 to + 150
A
W
W/°C
V
mJ
A
mJ
°C
Thermal Resistance
Symbol
RθJL
RθJA
www.irf.com
Parameter
Junction-to-Drain Lead
Junction-to-Ambient ƒ
Typ.
Max.
Units
–––
–––
20
50
°C/W
1
04/16/04
IRF7484
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
V(BR)DSS
∆V(BR)DSS/∆TJ
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Min.
40
–––
–––
1.0
40
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.040
–––
–––
–––
–––
–––
–––
–––
69
9.0
16
9.3
5.0
180
58
3520
660
76
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
10
mΩ VGS = 7.0V, ID = 14A ‚
2.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 10V, ID = 14A
20
VDS = 40V, VGS = 0V
µA
250
VDS = 32V, VGS = 0V, TJ = 125°C
200
VGS = 8.0V
nA
-200
VGS = -8.0V
100
ID = 14A
–––
nC
VDS = 32V
–––
VGS = 7.0V
–––
VDD = 20V ‚
–––
ID = 1.0A
ns
–––
RG = 6.2Ω
–––
VGS = 7.0V
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
2.3
–––
–––
110
–––
–––
–––
–––
59
110
1.3
89
170
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 2.3A, VGS = 0V
TJ = 25°C, IF = 2.3A
di/dt = 100A/µs ‚
D
S
‚
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Pulse width ≤ 400µs; duty cycle ≤ 2%.
ƒ Surface mounted on 1 in square Cu board.
„ Starting TJ = 25°C, L = 2.3mH, RG = 25Ω,
IAS = 14A. (See Figure 12).
2
… ISD ≤ 14A, di/dt ≤ 140A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C.
† Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive
avalanche performance.
www.irf.com
IRF7484
100000
10000
VGS
7.5V
7.0V
4.5V
3.0V
2.5V
2.3V
2.0V
BOTTOM 1.8V
VGS
7.5V
7.0V
4.5V
3.0V
2.5V
2.3V
2.0V
BOTTOM 1.8V
TOP
1000
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
10000
TOP
100
10
1
1.8V
0.1
1000
100
10
1.8V
1
20µs PULSE WIDTH
Tj = 150°C
20µs PULSE WIDTH
Tj = 25°C
0.01
0.1
0.1
1
10
100
0.1
1
VDS, Drain-to-Source Voltage (V)
2.0
R DS(on) , Drain-to-Source On Resistance
100.00
TJ = 150°C
T J = 25°C
VDS = 15V
20µs PULSE WIDTH
0.10
1.0
2.0
3.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
4.0
I D = 14A
1.5
(Normalized)
ID, Drain-to-Source Current (Α)
1000.00
1.00
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
10.00
10
VDS, Drain-to-Source Voltage (V)
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
TJ , Junction Temperature
80
100
120
140
( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
160
IRF7484
100000
VGS , Gate-to-Source Voltage (V)
Coss
Crss
100
VDS = 32V
VDS = 20V
VDS = 8V
6
Ciss
1000
ID = 14A
7
Coss = Cds + Cgd
10000
C, Capacitance(pF)
8
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10
5
4
3
2
1
0
1
10
0
100
10
20
30
40
50
60
70
80
QG, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 150°C
10
T J = 25°C
1
VGS = 0V
0.10
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1.4
100µsec
10
1msec
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
0
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7484
15
RD
VDS
VGS
12
D.U.T.
ID , Drain Current (A)
RG
+
-V DD
9
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
6
Fig 10a. Switching Time Test Circuit
3
VDS
90%
0
25
50
75
100
125
150
( ° C)
TC , Case Temperature
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
(Z thJA )
100
D = 0.50
10
0.20
Thermal Response
0.10
0.05
P DM
0.02
1
t1
0.01
t2
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D =
2. Peak T
0.1
0.0001
0.001
0.01
0.1
1
t1/ t 2
J = P DM x Z thJA
10
+T A
100
100
t 1, Rectangular Pulse Duration (sec)
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
RDS (on) , Drain-to-Source On Resistance (mΩ )
RDS(on) , Drain-to -Source On Resistance (mΩ)
IRF7484
16.0
15.0
14.0
13.0
12.0
ID = 14A
11.0
10.0
9.0
8.0
2.0
3.0
4.0
5.0
6.0
7.0
9.40
9.30
9.20
9.10
9.00
VGS = 7.0V
8.90
8.80
8.70
8.60
8.0
0
VGS, Gate -to -Source Voltage (V)
60
80
100
120
Fig 13. Typical On-Resistance Vs. Drain
Current
1.8
50
1.7
1.6
40
1.5
ID = 250µA
1.4
1.3
1.2
Power (W)
VGS(th) Gate threshold Voltage (V)
40
ID , Drain Current (A)
Fig 12. Typical On-Resistance Vs. Gate
Voltage
30
20
1.1
1.0
10
0.9
0
0.8
-75 -50 -25
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
Fig 14. Typical Threshold Voltage Vs.
Junction Temperature
6
20
1.00
10.00
100.00
1000.00
Time (sec)
Fig 15. Typical Power Vs. Time
www.irf.com
IRF7484
520
EAS , Single Pulse Avalanche Energy (mJ)
416
TOP
ID
6.3A
11A
BOTTOM
14A
15V
312
208
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
tp
104
A
0.01Ω
Fig 16c. Unclamped Inductive Test Circuit
0
25
50
75
100
Starting Tj, Junction Temperature
125
150
( ° C)
V(BR)DSS
Fig 16a. Maximum Avalanche Energy
Vs. Drain Current
tp
I AS
Fig 16d. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
VGS
.2µF
.3µF
D.U.T.
QGS
+
V
- DS
QGD
VG
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 17. Gate Charge Test Circuit
www.irf.com
Charge
Fig 18. Basic Gate Charge Waveform
7
IRF7484
100
Duty Cycle = Single Pulse
Avalanche Current (A)
10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
1
0.05
0.10
0.1
0.01
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
tav (sec)
Fig 19. Typical Avalanche Current Vs.Pulsewidth
250
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 14A
EAR , Avalanche Energy (mJ)
225
200
175
150
125
100
75
50
25
0
25
50
75
100
125
Starting T J , Junction Temperature (°C)
Fig 20. Maximum Avalanche Energy
Vs. Temperature
8
150
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.irf.com
IRF7484
SO-8 Package Details
'
',0
%
$
$
+
>@
(
$
;E
>@
$
0,//,0(7(56
0,1
0$;
$ E F
'
(
H
%$6,&
%$6,&
H
+
%$6,&
%$6,&
.
/
\
ƒ
ƒ
ƒ
ƒ
$
; H
H
,1&+(6
0,1
0$;
.[ƒ
&
\
>@
;/
;F
& $ %
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
)22735,17
;>@
>@
;>@
;>@
SO-8 Part Marking
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
www.irf.com
;;;;
)
'$7(&2'(<::
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
9
IRF7484
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/04
10
www.irf.com