PD - 94446B IRF7484 Typical Applications Relay replacement Anti-lock Braking System Air Bag l l l HEXFET® Power MOSFET VDSS RDS(on) max (mW) Benefits l l l l Advanced Process Technology Ultra Low On-Resistance Fast Switching Repetitive Avalanche Allowed up to Tjmax 40V Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. 8 S 2 7 D S 3 6 D 4 5 D G 14A A A D 1 S Description 10@VGS = 7.0V ID SO-8 Top View Absolute Maximum Ratings Parameter ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C VGS EAS IAR EAR TJ, TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Junction and Storage Temperature Range Max. Units 14 11 110 2.5 0.02 ± 8.0 230 See Fig.16c, 16d, 19, 20 -55 to + 150 A W W/°C V mJ A mJ °C Thermal Resistance Symbol RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead Junction-to-Ambient Typ. Max. Units ––– ––– 20 50 °C/W 1 04/16/04 IRF7484 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance V(BR)DSS ∆V(BR)DSS/∆TJ Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Min. 40 ––– ––– 1.0 40 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.040 ––– ––– ––– ––– ––– ––– ––– 69 9.0 16 9.3 5.0 180 58 3520 660 76 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 10 mΩ VGS = 7.0V, ID = 14A 2.0 V VDS = VGS, ID = 250µA ––– S VDS = 10V, ID = 14A 20 VDS = 40V, VGS = 0V µA 250 VDS = 32V, VGS = 0V, TJ = 125°C 200 VGS = 8.0V nA -200 VGS = -8.0V 100 ID = 14A ––– nC VDS = 32V ––– VGS = 7.0V ––– VDD = 20V ––– ID = 1.0A ns ––– RG = 6.2Ω ––– VGS = 7.0V ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units 2.3 110 ––– ––– ––– ––– 59 110 1.3 89 170 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 2.3A, VGS = 0V TJ = 25°C, IF = 2.3A di/dt = 100A/µs D S Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in square Cu board. Starting TJ = 25°C, L = 2.3mH, RG = 25Ω, IAS = 14A. (See Figure 12). 2 ISD ≤ 14A, di/dt ≤ 140A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. www.irf.com IRF7484 100000 10000 VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V VGS 7.5V 7.0V 4.5V 3.0V 2.5V 2.3V 2.0V BOTTOM 1.8V TOP 1000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10000 TOP 100 10 1 1.8V 0.1 1000 100 10 1.8V 1 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.01 0.1 0.1 1 10 100 0.1 1 VDS, Drain-to-Source Voltage (V) 2.0 R DS(on) , Drain-to-Source On Resistance 100.00 TJ = 150°C T J = 25°C VDS = 15V 20µs PULSE WIDTH 0.10 1.0 2.0 3.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 4.0 I D = 14A 1.5 (Normalized) ID, Drain-to-Source Current (Α) 1000.00 1.00 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 10.00 10 VDS, Drain-to-Source Voltage (V) 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature 3 160 IRF7484 100000 VGS , Gate-to-Source Voltage (V) Coss Crss 100 VDS = 32V VDS = 20V VDS = 8V 6 Ciss 1000 ID = 14A 7 Coss = Cds + Cgd 10000 C, Capacitance(pF) 8 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10 5 4 3 2 1 0 1 10 0 100 10 20 30 40 50 60 70 80 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 1000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 150°C 10 T J = 25°C 1 VGS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1.4 100µsec 10 1msec 10msec 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7484 15 RD VDS VGS 12 D.U.T. ID , Drain Current (A) RG + -V DD 9 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 6 Fig 10a. Switching Time Test Circuit 3 VDS 90% 0 25 50 75 100 125 150 ( ° C) TC , Case Temperature 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJA ) 100 D = 0.50 10 0.20 Thermal Response 0.10 0.05 P DM 0.02 1 t1 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.0001 0.001 0.01 0.1 1 t1/ t 2 J = P DM x Z thJA 10 +T A 100 100 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 RDS (on) , Drain-to-Source On Resistance (mΩ ) RDS(on) , Drain-to -Source On Resistance (mΩ) IRF7484 16.0 15.0 14.0 13.0 12.0 ID = 14A 11.0 10.0 9.0 8.0 2.0 3.0 4.0 5.0 6.0 7.0 9.40 9.30 9.20 9.10 9.00 VGS = 7.0V 8.90 8.80 8.70 8.60 8.0 0 VGS, Gate -to -Source Voltage (V) 60 80 100 120 Fig 13. Typical On-Resistance Vs. Drain Current 1.8 50 1.7 1.6 40 1.5 ID = 250µA 1.4 1.3 1.2 Power (W) VGS(th) Gate threshold Voltage (V) 40 ID , Drain Current (A) Fig 12. Typical On-Resistance Vs. Gate Voltage 30 20 1.1 1.0 10 0.9 0 0.8 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) Fig 14. Typical Threshold Voltage Vs. Junction Temperature 6 20 1.00 10.00 100.00 1000.00 Time (sec) Fig 15. Typical Power Vs. Time www.irf.com IRF7484 520 EAS , Single Pulse Avalanche Energy (mJ) 416 TOP ID 6.3A 11A BOTTOM 14A 15V 312 208 DRIVER L VDS D.U.T RG + V - DD IAS 20V tp 104 A 0.01Ω Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 Starting Tj, Junction Temperature 125 150 ( ° C) V(BR)DSS Fig 16a. Maximum Avalanche Energy Vs. Drain Current tp I AS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 17. Gate Charge Test Circuit www.irf.com Charge Fig 18. Basic Gate Charge Waveform 7 IRF7484 100 Duty Cycle = Single Pulse Avalanche Current (A) 10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 1 0.05 0.10 0.1 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth 250 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 14A EAR , Avalanche Energy (mJ) 225 200 175 150 125 100 75 50 25 0 25 50 75 100 125 Starting T J , Junction Temperature (°C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 150 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.irf.com IRF7484 SO-8 Package Details ' ',0 % $ $ + >@ ( $ ;E >@ $ 0,//,0(7(56 0,1 0$; $ E F ' ( H %$6,& %$6,& H + %$6,& %$6,& . / \ $ ; H H ,1&+(6 0,1 0$; .[ & \ >@ ;/ ;F & $ % 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( )22735,17 ;>@ >@ ;>@ ;>@ SO-8 Part Marking (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 www.irf.com ;;;; ) '$7(&2'(<:: 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 9 IRF7484 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/04 10 www.irf.com