ETC IRF7341Q

PD - 94391A
IRF7341Q
HEXFET® Power MOSFET
Typical Applications
• Anti-lock Braking Systems (ABS)
• Electronic Fuel Injection
• Air bag
Benefits
•
•
•
•
•
•
VDSS
RDS(on) max
ID
55V
0.050@VGS = 10V
0.065@VGS = 4.5V
5.1A
4.42A
Advanced Process Technology
Dual N-Channel MOSFET
Ultra Low On-Resistance
175°C Operating Temperature
Repetitive Avalanche Allowed up to Tjmax
Automotive [Q101] Qualified
Description
Specifically designed for Automotive applications, these
HEXFET ® Power MOSFET’s in a Dual SO-8 package utilize
the lastest processing techniques to achieve extremely low
on-resistance per silicon area. Additional features of these
Automotive qualified HEXFET Power MOSFET’s are a 175°C
junction operating temperature, fast switching speed and
improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety
of other applications.
The 175°C rating for the SO-8 package provides improved
thermal performance with increased safe operating area and
dual MOSFET die capability make it ideal in a variety of
power applications. This dual, surface mount SO-8 can
dramatically reduce board space and is also available in
Tape & Reel.
S1
G1
S2
G2
1
8
D1
2
7
D1
3
6
4
5
D2
D2
SO-8
Top V ie w
Absolute Maximum Ratings
Parameter
VDS
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
VGS
EAS
IAR
EAR
TJ , TSTG
Max.
Drain-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain CurrentQ
Maximum Power DissipationS
Maximum Power DissipationS
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche EnergyR
Avalanche CurrentQ
Repetitive Avalanche Energy
Junction and Storage Temperature Range
55
5.1
4.2
42
2.4
1.7
16
± 20
140
5.1
See Fig. 14, 15, 16
-55 to + 175
Units
V
A
W
W
mW/°C
V
mJ
A
mJ
°C
Thermal Resistance
Parameter
RθJA
www.irf.com
Max.
Maximum Junction-to-Ambient S
Units
62.5
°C/W
1
03/14/02
IRF7341Q
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
IGSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
55
–––
–––
–––
1.0
10.4
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.052
0.043
0.056
–––
–––
–––
–––
–––
–––
29
2.9
7.3
9.2
7.7
31
12.5
780
190
66
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
0.050
VGS = 10V, ID = 5.1A R
Ω
0.065
VGS = 4.5V, ID = 4.42A R
–––
V
VDS = VGS, ID = 250µA
–––
S
VDS = 10V, ID = 5.2A
2.0
VDS = 44V, VGS = 0V
µA
25
VDS = 44V, VGS = 0V, TJ = 150°C
100
VGS = 20V
nA
-100
VGS = -20V
44
ID = 5.2A
4.4
nC
VDS = 44V
11
VGS = 10V
–––
VDD = 28V
–––
ID = 1.0A
ns
–––
RG = 6.0Ω
–––
VGS = 10V R
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) Q
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
2.4
–––
–––
42
–––
–––
–––
–––
51
76
1.2
77
114
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 2.6A, VGS = 0V R
TJ = 25°C, I F = 2.6A
di/dt = 100A/µs R
D
S
Notes:
Q Repetitive rating; pulse width limited by
S Surface mounted on FR-4 board, t ≤ 10sec.
max. junction temperature.
R Pulse width ≤ 300µs; duty cycle ≤ 2%.
2
www.irf.com
IRF7341Q
100
VGS
TOP
15.0V
10.0V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 2.7V
10
2.7V
1
10
2.7V
1
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
0.1
0.1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
2.5
TJ = 175 ° C
10
V DS = 25V
20µs PULSE WIDTH
4.0
5.0
6.0
7.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
R DS(on) , Drain-to-Source On Resistance
(Normalized)
TJ = 25 ° C
3.0
10
100
Fig 2. Typical Output Characteristics
100
1
2.0
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
I D , Drain-to-Source Current (A)
VGS
15.0V
10.0V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 2.7V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
ID = 5.2A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF7341Q
20
VGS = 0V,
f = 1 MHZ
C iss
= Cgs + Cgd ,
SHORTED
C, Capacitance(pF)
1200
Cds
VGS , Gate-to-Source Voltage (V)
1400
Crss = Cgd
Coss = Cds + Cgd
1000
Ciss
800
600
400
Coss
200
ID = 5.2A
VDS = 44V
VDS = 27V
VDS = 11V
16
12
8
4
Crss
0
0
1
10
100
0
10
VDS, Drain-to-Source Voltage (V)
100
1000
40
50
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
TJ = 175 ° C
100
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
30
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10
TJ = 25 ° C
1
10us
100us
10
1ms
10ms
1
0.1
0.2
V GS = 0 V
0.5
0.8
1.1
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
20
QG , Total Gate Charge (nC)
1.4
TC = 25 ° C
TJ = 175 ° C
Single Pulse
0.1
0.1
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7341Q
6.0
VDS
VGS
I D , Drain Current (A)
5.0
RD
D.U.T.
RG
+
- VDD
4.0
10V
3.0
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
2.0
Fig 10a. Switching Time Test Circuit
1.0
VDS
90%
0.0
25
50
75
100
125
TC , Case Temperature
150
175
( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
100
Thermal Response (Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
1
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
0.1
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJA + TA
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
0.070
RDS ( on ) , Drain-to-Source On Resistance (Ω )
(
RDS(on), Drain-to -Source On Resistance Ω)
IRF7341Q
0.060
0.050
0.040
ID = 7.1A
0.030
0.020
2.0
4.0
6.0
8.0
10.0
12.0
14.0
0.100
0.080
0.060
VGS = 4.5V
0.040
VGS = 10V
0.020
16.0
0
10
VGS, Gate -to -Source Voltage (V)
20
30
40
50
60
ID , Drain Current ( A )
Fig 11. Typical On-Resistance Vs.
Gate Voltage
Fig 12. Typical On-Resistance Vs.
Drain Current
QG
10 V
400
QGS
ID
QGD
TOP
2.1A
4.3A
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
BOTTOM
160
80
0
50
75
100
Starting Tj, Junction Temperature
3mA
IG
5.1A
240
25
VGS
125
150
175
( ° C)
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
EAS , Single Pulse Avalanche Energy (mJ)
320
Fig 14. Maximum Avalanche Energy
Vs. Drain Current
www.irf.com
IRF7341Q
100
Duty Cycle = Single Pulse
Avalanche Current (A)
10
1
0.01
0.1
0.05
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.001
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
140
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 5.1A
EAR , Avalanche Energy (mJ)
120
100
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·t av
7
IRF7341Q
SO-8 Package Details
D IM
D
-B -
5
E
-A -
5
A
8
7
6
5
1
2
3
4
e
6X
H
0.2 5 (.0 10 )
M
A M
θ
e1
A
-C-
0 .10 (.00 4)
B 8X
0 .25 (.01 0)
A1
L
8X
6
C
8X
M C A S B S
N O TE S :
1 . D IM EN SIO N IN G AN D TO L ER A NC IN G P ER AN S I Y1 4.5 M -198 2.
2 . C O N TRO L LIN G D IM EN SIO N : IN C H .
3 . D IM EN SIO N S A RE SH O W N IN M ILLIM E TE R S (IN C HE S).
4 . O U TLIN E CO N F O RM S TO JED E C O U TLINE M S -0 12 AA .
5 D IM E NS IO N D O ES N O T IN C LU D E M O LD PR O TR US IO N S
M O LD P R O TR U SIO NS N O T TO EXCE ED 0 .2 5 (.00 6).
6 D IM E NS IO N S IS TH E LE N G TH O F L EA D FO R SO L DE R IN G TO A SU B STRA TE..
M IN
M AX
.0532
.0688
1 .35
1 .75
.0040
.0098
0 .10
0 .25
B
.014
.018
0 .36
0 .46
C
.0 075
.0 098
0 .19
0.25
D
.1 89
.1 96
4 .80
4.98
E
.150
.157
3 .81
3 .99
e1
θ
M IL LIM E T E R S
MAX
A1
e
K x 45 °
IN C H E S
M IN
.050 B A S IC
1.2 7 B A S IC
.025 B A S IC
0.6 35 B A S IC
H
.2 284
.2 440
K
.011
.019
0 .28
5 .80
0 .48
6.20
L
0 .16
.050
0 .41
1.27
θ
0°
8°
0°
8°
R E CO M M E ND E D F O O TP R IN T
0 .72 (.02 8 )
8X
6 .46 ( .25 5 )
1 .78 (.07 0)
8X
1.27 ( .0 50 )
3X
Part Marking
8
www.irf.com
IRF7341Q
Tape and Reel
T E R M IN A L N U M B E R 1
1 2 .3 ( .48 4 )
1 1 .7 ( .46 1 )
8 .1 ( .31 8 )
7 .9 ( .31 2 )
F E E D D IR E C T IO N
N O TES:
1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .
2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ).
3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1.
33 0.0 0
(1 2 .9 9 2 )
M AX .
1 4 .4 0 ( .5 66 )
1 2 .4 0 ( .4 88 )
N O TE S :
1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .
2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 .
Data and specifications subject to change without notice.
This product has been designed and qualified for the Autyomotivr [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/02
www.irf.com
9