PHILIPS TDA9176

INTEGRATED CIRCUITS
DATA SHEET
TDA9176
Luminance Transient Improvement
(LTI) IC
Preliminary specification
Supersedes data of 1995 Jun 13
File under Integrated Circuits, IC02
1996 Jan 30
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
FEATURES
GENERAL DESCRIPTION
• Luminance transient improvement
The TDA9176 is a Luminance Transient Improvement
(LTI) IC which is suitable for operation in both
50 and 100 Hz environments. The device can be used in
conjunction with both LCD and CRT displays.
• Line width control
• Can be used in 50 and 100 Hz environments
(1FH and 2FH)
The TDA9176 also contains chrominance delay lines to
compensate for the luminance delay. The device can be
used as a low-power, cost effective alternative to (but also
in combination with) Scan Velocity Modulation (SVM).
The device operates at a supply voltage of 8 V. The device
is contained in a 16 pin dual in-line package.
• Compensating chrominance delay
• YUV interface
• Black insertion or clamping are selectable
• Amplitude selection for optimum operation with
450 mV (p-p) and 1 Vbl-wh luminance signals.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
VCC
supply voltage
ICC
supply current
CONDITIONS
MIN.
TYP.
MAX.
UNIT
7.2
8.0
8.8
V
at 1FH
−
24
−
mA
at 2FH
−
30
−
mA
ViY( p-p)
Y input voltage (peak-to-peak value)
low amplitude mode
−
0.45
0.63
V
ViY(bl-wh)
Y input voltage (black-to-white)
high amplitude mode
−
1.0
1.4
V
GY
Y path gain
−
1
ViU(p-p)
U input voltage (peak-to-peak value)
−
1.33
1.90
V
ViV(p-p)
V input voltage (peak-to-peak value)
−
1.05
1.50
V
GU. V
U and V path gain
−
1
−
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
TDA9176
1996 Jan 30
DIP16
DESCRIPTION
plastic dual in-line package; 16 leads (300 mil); long body
2
VERSION
SOT38-1
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
BLOCK DIAGRAM
handbook, full pagewidth
VCC
SC
15
8
SANDCASTLE
DETECTOR
4
YIN
BLI/CL
AMPSEL
RT
3
LTI
CONTROL
TDA9176
BLACK
INSERTION
CLAMP
DELAY
CLAMPS
MINMAX
DELAY
DELAY
PTAT
CURRENT
SOURCE
LW
2
LTI
SHAPER
13
7
9
14
6
11
5
12
16
10
BAND GAP
1
MBE775
GND
VIN
VOUT UIN
UOUT
Fig.1 Block diagram.
1996 Jan 30
YOUT
3
Rext
fSEL
Vref
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
PINNING
SYMBOL
PIN
DESCRIPTION
fSEL
1
1FH or 2FH mode selection
LW
2
vertical line width control input
RT
3
rise time control input
YIN
4
luminance signal input
UIN
5
U input (colour difference signal)
fSEL
1
16 Rext
VIN
6
V input (colour difference signal)
LW
2
15 VCC
BLI/CL
7
black level insertion/clamp mode
selection
RT
3
14 GND
SC
8
synchronization input signal
YIN
4
AMPSEL
9
high/low amplitude luminance
signal mode selection
Vref
10
11
V output (colour difference signal)
UOUT
12
U output (colour difference signal)
YOUT
13
luminance signal output
GND
14
ground (0 V)
VCC
15
supply voltage (+8 V)
Rext
16
external resistor for PTAT current
source
13 YOUT
TDA9176
internally generated reference
voltage for line width control and
rise time control
VOUT
1996 Jan 30
handbook, halfpage
UIN
5
12 UOUT
VIN
6
11 VOUT
BLI/CL
7
10 Vref
SC
8
9 AMPSEL
MBE776
Fig.2 Pin configuration.
4
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
set the device to the clamping mode. If no inserted black
level is available on the input signal it is recommended to
select the black insert mode of the input clamp.
FUNCTIONAL DESCRIPTION
The TDA9176 is a Luminance Transient Improvement
(LTI) IC which is suitable for operation in both
50 and 100 Hz environments. The IC also contains
chrominance delay lines to compensate for the luminance
delay. A diagram of the LTI processor is illustrated in Fig.3.
The chrominance delay lines compensate for the delay of
the luminance signal in the LTI circuit. This is to safeguard
a correct colour fit.
The LTI processor contains a delay line which drives a
minimum/maximum (MINMAX) detector and a control
circuit. When the control circuit discovers a transient, the
LTI shaper switches from the minimum to the maximum
signal (or vice-versa, depending on the sign of the
transient). By mixing the original signal with the switched
signal, a variable transient improvement is obtained.
The 50% crossing point of the transient is not affected by
the LTI circuit.
Two and three level sandcastles can be used as a timing
signal, only the clamp pulse of the sandcastle input is used
in the device.
If the rise time improvement is active, the duty cycle of the
output signal can be varied with the line width control input.
This function delays the rising edge and advances the
falling edge (or vice-versa). This can be used for example
aperture correction. Figures 4 and 5 illustrate some
waveforms of the LTI processor.
3. Black insertion or clamping of the luminance signal.
There are three selection inputs to select the modes of
operation. These selections are as follows:
1. 1FH or 2FH, for the 50 or 100 Hz applications.
2. Amplitude selection, for optimum operation of the
circuit with 450 mV (p-p) or 1 Vbl-wh luminance signals.
The selection inputs must be directly connected to either
ground or the supply rail. The modes are selected as
follows:
Frequency selection: GND = 1FH mode,
VCC = 2FH mode
For correct operation the LTI circuit requires a number of
fast clamps. To overcome problems where noise is
superimposed on the input signal the device contains an
input clamp that can either clamp to the black level of the
input signal, or, insert a black level. When a black level is
inserted, the internal clamps do not respond to the noise
on the input signal (see Fig.1). When the input signal
already has an inserted black level (e.g. when it is driven
from the TDA9170 picture booster) it is recommended to
Amplitude selection: GND = 450 mV (p-p),
VCC = 1 Vbl-wh mode
Black insertion/clamp: GND = clamp mode,
VCC = black insert mode.
If the selection pins are left floating, internal 1 MΩ resistors
connected to the pins set the device to, 1FH mode, black
insert mode and 1 Vbl-wh mode.
RT
handbook, full pagewidth
3
LTI
CONTROL
TDA9176
LW
2
LTI
SHAPER
13
4
YIN
DELAY
CLAMPS
MINMAX
MBE777
Fig.3 Block diagram of the LTI circuit.
1996 Jan 30
5
YOUT
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
MBE779
handbook, full pagewidth
rise time = nominal
line width = don't care
rise time = minimal
line width = nominal
2.0 µs
0.0
Fig.4 LTI waveforms for 2T pulse and step (1FH mode, rise time varied).
1996 Jan 30
6
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
MBE780
handbook, full pagewidth
rise time = nominal
line width = don't care
rise time = minimal
line width = nominal
rise time = minimal
line width = maximum
black expansion
rise time = minimal
line width = maximum
white expansion
1.0 µs
0.0
Fig.5 LTI waveforms for 2T pulse and step (2FH mode, line width varied).
1996 Jan 30
7
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCC
supply voltage
−
−
9.0
V
ICC
supply current
−
−
35
mA
Ptot
total power dissipation
−
−
0.315
W
Tstg
storage temperature
−55
−
+150
°C
Tamb
operating ambient temperature
−10
−
+70
°C
Ves
electrostatic handling
note 1
−3000
−
+3000
V
note 2
−300
−
+300
V
Notes
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor (all pins).
2. Machine model: equivalent to discharging a 200 pF capacitor through a 0 Ω resistor (all pins).
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
PARAMETER
thermal resistance from junction to ambient in free air
VALUE
UNIT
69
K/W
QUALITY SPECIFICATION
In accordance with SNW-FQ-611 part E. The numbers of the quality specification can be found in the “Quality reference
Handbook”. The handbook can be ordered using the code 9397 750 00192.
1996 Jan 30
8
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
CHARACTERISTICS
VCC = 8 V; Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VCC
supply voltage
ICC
supply current
Pdis
power dissipation
7.2
8.0
8.8
V
1FH mode
−
24
−
mA
2FH mode
−
30
−
mA
1FH mode
−
192
−
mW
2FH mode
−
240
−
mW
Y channel; note 1
Vi(Y p-p)
input voltage
(peak-to-peak value)
LOW amplitude mode
−
0.45
0.63
V
ViY(bl-wh)
input voltage (black-to-white)
HIGH amplitude mode
−
1.0
1.4
V
Ii(Y)
input current
−
0
−
µA
VBLos
black offset voltage
black insert mode
−
−
10
mV
Vo(DC)
DC output voltage level during
clamping
low amplitude mode
−
3.7
−
V
high amplitude mode
−
2.2
−
V
G(Y)
gain
all modes
−
1
−
td
delay time
1FH mode
−
165
−
ns
2FH mode
−
100
−
ns
Vtr
VLW
tr(min)
rise time control voltage
line width control voltage
minimum rise time
minimum rise time
3.5
−
4.0
V
nominal rise time
0
−
0.5
V
normal width
−
2.0
−
V
maximum black expansion 0
−
0.5
V
maximum white expansion 3.5
−
4.0
V
1FH mode; note 2
−
20
−
ns
2FH mode; note 2
−
14
−
ns
δ(min)
minimum duty factor
fi = 2 MHz; line width
minimum; maximum black
expansion; note 3
−
33
−
%
δ(max)
maximum duty factor
fi = 2 MHz; line width
maximum; maximum
white expansion; note 3
−
67
−
%
BY
bandwidth
1FH mode; nominal rise
time; note 4
7
−
−
MHz
2FH mode; nominal rise
time; note 4
14
−
−
MHz
1996 Jan 30
9
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
SYMBOL
PARAMETER
TDA9176
CONDITIONS
MIN.
TYP.
MAX.
UNIT
U and V channels
input voltage
(peak-to-peak value)
V channel
−
1.05
1.50
V
U channel
−
1.33
1.90
V
IiUV
input current
both channels
−
0
−
µA
VoUV(DC)
DC output voltage level during
clamping
both channels
−
3.0
−
V
GUV
gain
both channels
−
1
−
td(UV)
delay time
1FH mode
−
165
−
ns
2FH mode
−
100
−
ns
BUV
bandwidth
both channels
5
−
−
MHz
ViUV( p-p)
Sandcastle input
CLth
clamping threshold
−
Vtop − 0.6
−
V
Vripple
allowed ripple on clamping pulse
−
−
0.4
V
−
4.0
−
V
−
−
1
mA
Reference voltage
Vref(DC)
DC reference voltage level
Isource
source current
note 5
Notes
1. All data given is for a 3.0 kΩ external resistor connected to the PTAT current source (pin 16).
2. The test input is a step whose rising edge is the rising half of a sine wave. For the 1FH mode the input rise time is
250 ns (i.e. half of a 2 MHz sine wave). For the 2FH mode the input rise time is 125 ns (i.e. half of a 4 MHz sine
wave). The output rise time is measured between the 10% and 90% points of the output signal.
3. The figures given on duty cycle variation refer to the following conditions: the device should be in 1FH mode (pin 1
at ground level) and the rise time should be at minimum (pin 3 connected to Vref, pin 10).
4. In the transparent mode, i.e. at normal rise time, the bandwidth of the luminance path for which the group delay time
constant is 7 MHz in the 1FH mode and 14 MHz in the 2FH mode. However, as the circuit uses all-pass filters, ringing
on the output signal may occur if the bandwidth of the input signal is larger than 7 MHz in the 1FH mode or 14 MHz
in the 2FH mode. As the LTI processor adds harmonics to the luminance signal, the bandwidth of the output signal
is much larger than 14 MHz.
5. The maximum DC load on the reference voltage pin (pin 10) should not exceed 1 mA.
1996 Jan 30
10
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
TEST AND APPLICATION INFORMATION
YOUT UOUT VOUT
handbook, full pagewidth
100
nF
100
nF
100
nF
8V
100
nF
100 µF
0V
100
nF
3.0
kΩ
16
15
14
13
12
11
10
9
6
7
8
TDA9176
1
2
3
4
5
MBE778
100
nF
YIN
100
nF
UIN
100
nF
VIN
SC
Fig.6 Application diagram for 50 Hz application with 1 Vbl-wh input signal and luminance clamping.
1996 Jan 30
11
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
INPUT PIN CONFIGURATION
handbook, full pagewidth
100 Ω
1
MΩ
fSEL
16
1 kΩ
15
14
LW
2
1 kΩ
3
1 kΩ
YIN
4
VCC
GND
2V
100 Ω
RT
Rext
1
2V
13
YOUT
1.5
mA
100 Ω
4V
100 Ω
12
UOUT
0.5
mA
UIN
5
100 Ω
4V
6
100 Ω
4V
100 Ω
VIN
11
10
BLI/CL
7
1 kΩ
VOUT
0.5
mA
TDA9176
30
kΩ
100 Ω
Vref
1
MΩ
SC
8
1 kΩ
100 Ω
9
AMPSEL
1
MΩ
MBE781
Fig.7 Input pin configuration.
1996 Jan 30
12
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
PACKAGE OUTLINE
DIP16: plastic dual in-line package; 16 leads (300 mil); long body
SOT38-1
ME
seating plane
D
A2
A
A1
L
c
e
Z
b1
w M
(e 1)
b
MH
9
16
pin 1 index
E
1
8
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
min.
A2
max.
b
b1
c
D (1)
E (1)
e
e1
L
ME
MH
w
Z (1)
max.
mm
4.7
0.51
3.7
1.40
1.14
0.53
0.38
0.32
0.23
21.8
21.4
6.48
6.20
2.54
7.62
3.9
3.4
8.25
7.80
9.5
8.3
0.254
2.2
inches
0.19
0.020
0.15
0.055
0.045
0.021
0.015
0.013
0.009
0.86
0.84
0.26
0.24
0.10
0.30
0.15
0.13
0.32
0.31
0.37
0.33
0.01
0.087
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT38-1
050G09
MO-001AE
1996 Jan 30
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
92-10-02
95-01-19
13
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
TDA9176
with the joint for more than 5 seconds. The total contact
time of successive solder waves must not exceed
5 seconds.
SOLDERING
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified maximum storage temperature (Tstg max). If the
printed-circuit board has been pre-heated, forced cooling
may be necessary immediately after soldering to keep the
temperature within the permissible limit.
Repairing soldered joints
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
Apply a low voltage soldering iron (less than 24 V) to the
lead(s) of the package, below the seating plane or not
more than 2 mm above it. If the temperature of the
soldering iron bit is less than 300 °C it may remain in
contact for up to 10 seconds. If the bit temperature is
between 300 and 400 °C, contact may be up to 5 seconds.
Soldering by dipping or by wave
The maximum permissible temperature of the solder is
260 °C; solder at this temperature must not be in contact
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1996 Jan 30
14
Philips Semiconductors
Preliminary specification
Luminance Transient Improvement (LTI) IC
NOTES
1996 Jan 30
15
TDA9176
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40-2783749, Fax. (31)40-2788399
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,
CEP: 04552-903-SÃO PAULO-SP, Brazil,
P.O. Box 7383 (01064-970),
Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. (852)2319 7888, Fax. (852)2319 7700
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,
Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300
COPENHAGEN S, Tel. (45)32 88 26 36, Fax. (45)31 57 19 49
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (358)0-615 800, Fax. (358)0-61580 920
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 51 40, 20035 HAMBURG,
Tel. (040)23 53 60, Fax. (040)23 53 63 00
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
India: Philips INDIA Ltd, Shivsagar Estate, A Block,
Dr. Annie Besant Rd. Worli, Bombay 400 018
Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950,
Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)7640 000, Fax. (01)7640 200
Italy: PHILIPS SEMICONDUCTORS S.r.l.,
Piazza IV Novembre 3, 20124 MILANO,
Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5130, Fax. (03)3740 5077
Korea: Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,
Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. (040)2783749, Fax. (040)2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,
KARACHI 75600, Tel. (021)587 4641-49,
Fax. (021)577035/5874546
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,
Apartado 300, 2795 LINDA-A-VELHA,
Tel. (01)4163160/4163333, Fax. (01)4163174/4163366
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG,
P.O. Box 7430, Johannesburg 2000,
Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong,
Bangkok 10260, THAILAND,
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0 212)279 27 70, Fax. (0212)282 67 07
Ukraine: Philips UKRAINE, 2A Akademika Koroleva str., Office 165,
252148 KIEV, Tel. 380-44-4760297, Fax. 380-44-4766991
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,
Tel. (0181)730-5000, Fax. (0181)754-8421
United States: 811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
Internet: http://www.semiconductors.philips.com/ps/
For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BE-p,
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,
Telex 35000 phtcnl, Fax. +31-40-2724825
SCDS47
© Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands
537021/1100/02/pp16
Document order number:
Date of release: 1996 Jan 30
9397 750 00598