BD6670FM Motor driver ICs 3Phase spindle motor driver for CD-RW BD6670FM BD6670FM is a 3-phase spindle motor driver adopting 180° PWM direct driving system. Noise occurred from the motor driver when the disc is driver can be reduced. Low power consumption and low heat operation are achieved by using DMOS FET in output and driving directly. !Applications CD-RW !Features 1) 180 degree Direct-PWM driving system. 2) Built in power save circuit. 3) Built in current limit circuit. 4) Built in FG-output. 5) Built in 3phase synthesized FG-output. 6) Built in hall bias circuit. 7) Built in reverse protection circuit. 8) Built in short brake circuit. 9) Low consumption by MOS-FET. 10) Built in capacitor for oscillator. 11) Built in gain switch and current limit switch. !Absolute maximum ratings (Ta=25°C) Parameter Symbol Limits Unit Power supply voltage VCC 7 V Supply voltage for motor VM 15 V VG pin voltage VG Output current IOMAX 2500 ∗1 mA Pd 2200 ∗2 mW Power dissipation 20 V Junction temperature TJMAX 150 °C Operating temperature range Topr −20~+75 °C Storage temperature range Tstg −55~+150 °C ∗1 However, do not exceed Pd, ASO and Tj=150°C. The current is guaranteed 3.0A in case of the current is turn on / off in a duty-ratio of less than 1/10 with a maximum on-time of 5msec. ∗2 70mm×70mm×1.6mm glass epoxy board. Debating in done at 17.6mW / °C for operating above Ta=25°C. !Recommended operating conditions Parameter Symbol Min. Typ. Max. Unit Power supply voltage VCC 4.5 Supply voltage for motor VM 4.0 − 5.5 V − 13.2 VG pin voltage VG 8.5 − V 19 V 1/17 BD6670FM Motor driver ICs !Block diagram Hall comp H1+ 1 EXOR + − + H1− 2 + − 3 H3+ 4 5 27 FG 26 VH 25 VM 24 A1 23 RNF1 22 A2 21 RNF1 20 A3 19 RNF2 18 PS Torque AMP 17 EC − 16 ECR 15 VM Hall bias + − + H2− FG3 − Hall Amp H2+ 28 PWM Comp + − − TSD + − + H3− GSW 6 + − U-Pre − Driver 7 Gain control Matrix OSC Driver L-Pre Driver GND 8 CP1 9 Charge pump CP2 10 VG 11 CNF 12 SB 13 VCC 14 PS Current sense + + Matrix − CL D CK Q QB Reverse detect Fig.1 2/17 BD6670FM Motor driver ICs !Pin descriptions Pin No. Pin name Function 1 H 1+ Hall input AMP 1 positive input 2 H 1− Hall input AMP 1 negative input 3 H 2+ Hall input AMP 2 positive input 4 H 2− Hall input AMP 2 negative input 5 H 3+ Hall input AMP 3 positive input 6 H 3− Hall input AMP 3 negative input 7 GSW Gain switch pin 8 GND GND 9 CP1 Capacitor pin 1 for charge pump 10 CP2 Capacitor pin 2 for charge pump 11 VG 12 CNF 13 SB Short brake pin 14 VCC Power supply for signal division 15 VM Power supply for driver 16 ECR 17 EC Torque control voltage input terminal 18 PS Power save pin 19 RNF2 20 A3 21 RNF1 22 A2 23 RNF1 24 A1 Output 1 for motor 25 VM Power supply for driver 26 VH Hall bias pin 27 FG FG output pin 28 FG3 FG3 output pin Capacitor connection pin for charge pump Capacitor connection pin for phase compensation Torque control standard voltage input terminal Resistor connection pin for current sense Output 3 for motor Resistor connection pin for current sense Output 2 for motor Resistor connection pin for current sense 3/17 BD6670FM Motor driver ICs !Input output circuits Hall input H1+ : Pin1, H1− : Pin2, H2+ : Pin3, H2− : Pin4, H3+ : Pin5, H3− : Pin6 VCC Gain switch CP1 output Pin7 Pin9 VCC VCC 100k VCC Hn+ VCC VCC Hn− 1k 1k 1k Gain Switch (Pin7) 1k 1k 75k 10k 50 CP1 (Pin9) 10k 25k 5k CP2 / VG output CNF Short brake CP2 : Pin10, VG : Pin11 Pin12 Pin13 VCC VCC VG (Pin11) VM CNF (Pin12) 50 SB (Pin13) 30k CP2 (Pin10) 20k 2k 2k Torque amplifier Power save RNF2 ECR : Pin16, EC : Pin17 Pin18 Pin19 VCC VCC VCC PS (Pin18) ECR (Pin16) EC (Pin17) 355 30k 1k RNF2 (Pin19) 1k 20k Output pins Hall bias FG / FG3 output A1 : Pin24, A2 : Pin22, A3 : Pin20 Pin26 FG : Pin27, FG3 : Pin28 VCC VM A1 A2 VCC VH (Pin26) A3 VCC 50 FG (Pin27) FG3 (Pin28) 100k RNF1 4/17 BD6670FM Motor driver ICs !Electrical characteristics (unless otherwise noted, Ta=25°C, VCC=5V, VM=12V) Parameter Symbol Min. Typ. Max. Unit Conditions Test Circuit <Total> Circuit current 1 ICC1 − 1 10 µA Circuit current 2 ICC2 7 12 17 mA Stand by mode Fig.2 Fig.2 <Power save> ON voltage range VPSON − − 1.0 V OFF voltage range VPSOFF 2.5 − − V VHB 0.7 1.0 1.3 V Stand by mode Fig.2 Fig.2 <Hall bias> Hall bias voltage IHB=10mA Fig.2 <Hall AMP> In-phase input voltage range VHAR 1.4 − 3.6 V Minimum input level VINH 80 − − mVPP Hall hysteresis level (+) VHYS+ 5 20 40 mV Fig.3 Hall hysteresis level (−) VHYS− −40 −20 −5 mV Fig.3 Fig.3 Oneside input level Fig.3 <Gain switch> Low voltage range VGSWL − − 0.6 V Fig.4 High voltage range VGSWH 2.0 − − Fig.4 Open voltage range VGSWOP − 1.3 − V V Input voltage range EC, ECR 0 − 5 V Offset voltage (+) Ecofs+ 5 50 100 mV Offset voltage (−) Ecofs− −100 −50 5 mV −11 −2.5 0 µA Input / Output gain L ECIN GECL 0.28 0.35 0.42 A/V EC=ECR=1.65V GSL=L, RNF=0.5Ω Input / Output gain M GECM 0.56 0.70 0.84 A/V GSL=M, RNF=0.5Ω Fig.7 Input / Output gain H GECH 1.12 1.40 1.68 A/V GSL=H, RNF=0.5Ω Fig.7 Output ON-resistance RON 1.35 Ω IO=±600mA (Upper+Lower) Fig.8 ITLL − 340 1.0 Torque limit current L 400 460 mA GSW=L, RNF=0.5Ω Fig.4 Torque limit current M ITLM ITLH 680 800 920 mA GSW=M, RNF=0.5Ω Fig.4 1020 1200 1380 mA GSW=H, RNF=0.5Ω Fig.4 Fig.4 <Torque control> Input current Linear range : 0.5V∼3.0V Fig.6 Fig.6 Fig.6 Fig.6 Fig.7 <Output> Torque limit current H <FG / FG3 output> High voltage VFGH VFGL 4.6 − − − − 0.4 V V IFG=−100µA IFG=+100µA Fig.5 Low voltage VPUMP 12.5 17 19 V VCC=5V, VM=12V, CP1=CP2=0.1µF Fig.9 Upper saturation voltage VCP1H 0.45 0.4 V ICP1=−4mA Fig.10 VCP1L 0.25 0.2 0.65 Lower saturation voltage 0.6 V ICP1=+4mA Fig.10 0.4 0.15 0.6 0.35 0.8 V ICP2=−4mA Fig.11 0.55 V ICP2=+4mA Fig.11 Fig.5 <Charge pump voltage> Charge pump output voltage <CP1 output> <CP2 output> Upper saturation voltage VCP2H Lower saturation voltage VCP2L 5/17 BD6670FM Motor driver ICs !Measuring circuit 0.01µ 0.5Ω V 10kΩ 12V EC VM ECR PS A3 RNF2 RNF1 A2 RNF1 VM A1 VH FG FG3 1.65V ICC1 : Value of A VPS=Low ICC2 : Value of A VPS=High VCC SB CNF VG CP2 CP1 GND GSW H3− H3+ H2− H2 + H1− H1+ VPSON : Range of VPS that output pins become Input-output table VPSOFF : Range of VPS that output become open 17V A H1+ H1− H2+ H2− H3+ H3− 5V VHB : Value of A VPS=5V IVH=10mA Fig.2 VM ECR 1.65V EC PS RNF2 A3 RNF1 A2 RNF1 A1 VM VH FG 5V 10kΩ 12V FG3 0.01µ 0.5Ω V VHAR : Hall in-phase input voltage range that output pins become Input-output table 17V VCC SB CNF VG CP2 CP1 GND GSW H3− H3+ H2 − H2+ H1− H1+ VINH : Hall minimum input level that output pins become Input-output table VHYS+/− : Voltage difference H3+ from H3− at the point that FG voltage changes 5V H1+ H1− H2+ H2− H3+ H3− Fig.3 6/17 BD6670FM Motor driver ICs 5V 1.65V VM ECR PS EC A3 RNF2 RNF1 A2 RNF1 VM A1 VH FG FG3 12V ITLL : Defining VRNF2 as the voltage that CNF becomes low, ITLL=VRNF2 / 0.5 VGSW=Low ITLM : Defining VRNF2 as the voltage that CNF becomes low, ITLM=VRNF2 / 0.5 VGSW=Open VCC SB CNF VG CP2 CP1 GND GSW H3− H3+ H2 − H2 + H1− H1+ ITLH : Defining VRNF2 as the voltage that CNF becomes low, ITLH=VRNF2 / 0.5 VGSW=High VGSWL : Range of VGSW that ITLL < ITLM VGSWH : Range of VGSW that ITLH > ITLM 17V 5V V H1+ H1− H2+ H2− H3+ H3− Fig.4 5V 1.65V 17V VM VFGH : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = −100µA H1+=L, H2+=M, H3+=H H1−=M, H2−=M, H3−=M (for FG) H1+=L, H2+=H, H3+=H H1−=M, H2−=M, H3−=M (for FG3) VCC ECR SB PS EC CNF VG RNF2 CP2 A3 RNF1 GND V1 CP1 A2 GSW RNF1 VM VGSWOP : Value of V H3− H3 + A1 12V H2− H2+ FG H1− FG3 H1+ VH V2 V3 VFGL : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = 100µA H1+=M, H2+=H, H3+=L H1−=M, H2−=M, H3−=M (for FG) H1+=L, H2+=H, H3+=L H1−=M, H2−=M, H3−=M (for FG3) 5V H1+ H1− H2+ H2− H3+ H3− Fig.5 7/17 BD6670FM Motor driver ICs 0.01µF 0.5Ω 5Ω 1.65V V 5Ω 5Ω A1 10kΩ A2 5V 12V ECOfS+ / − : EC voltage range that VM current is 0A monitor VRNF1 VM EC ECR PS A3 RNF2 RNF1 A2 RNF1 VM A1 VH FG FG3 EC / ECR : Torque control operating range VCC SB CNF VG CP2 CP1 GND GSW H3− H3+ H2 − H2+ H1− H1+ ECIN : Value of A1 and A2 at EC=ECR=1.65V 5V H1+ H1− H2+ H2− H3+ H3− 0.1µF 100pF Fig.6 0.01µ 0.5Ω 5Ω 5Ω V 5Ω 5V 10kΩ GECL : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=0V, GECL={(V1−V2) / (1.5−1.2)} / 0.5 1.65V VM GECM : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=open, GECL={(V1−V2) / (1.5−1.2)} / 0.5 GECH : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=5V, GECL={(V1−V2) / (1.5−1.2)} / 0.5 VCC EC ECR SB CNF PS VG A3 RNF2 CP2 GND CP1 RNF1 A2 GSW RNF1 H3− VM A1 H3+ H2 H2 − VH + FG H1− H1+ FG3 12V 5V 17V H1+ H1− H2+ H2− H3+ H3− 100pF Fig.7 8/17 BD6670FM Motor driver ICs 5V 1.65V 12V VM ECR PS EC RNF2 A3 RNF1 A2 A1 RNF1 VH VM FG FG3 VOH : Value of V on condition that output pin is H and IO=−600mA VOL : Value of V on condition that output pin is L and IO=600mA 5V VCC SB CNF VG CP2 CP1 GND GSW H3− H3+ H2 − H2+ H1− H1+ RON : RON = (VOH + VOL) / 0.6 5V 17V H1+ H1− H2+ H2− H3+ H3− VM A1, A2, A3 V 600mA V A1, A2, A3 600mA Measurement of VOH Measurement of VOL Fig.8 5V 1.65V 12V VM SB VCC PS VG EC RNF2 CP2 ECR A3 CP1 CNF RNF1 RNF1 H3− GND A1 + A2 VM H2− GSW VH H2+ H3 FG − H1 FG3 H1+ VPUMP : Value of V V 5V H1+ H1− H2+ H2− H3+ H3− 0.1µF Fig.9 9/17 BD6670FM Motor driver ICs 5V 1.65V VCP1H : Value of V on condition that CP1 is H and ICP1=−4mA VM EC ECR PS RNF2 A3 RNF1 A2 RNF1 VM A1 VH FG FG3 12V VCC SB CNF VG CP2 CP1 GND GSW H3− H3+ H2 − H2 + H1− H1+ VCP1L : Value of V on condition that CP1 is L and ICP1=4mA 5V 17V V H1+ H1− H2+ H2− H3+ H3− Fig.10 5V 1.65V VCP2H : Value of V on condition that CP2 is H and ICP2=−4mA VM EC ECR PS RNF2 A3 RNF1 A2 RNF1 VM A1 VH FG FG3 12V V 17V VCC SB CNF VG CP2 CP1 GND GSW H3− H3+ − H2 H2 + H1− H1+ VCP2L : Value of V on condition that CP2 is L and ICP2=4mA 5V H1+ H1− H2+ H2− H3+ H3− Fig.11 10/17 BD6670FM Motor driver ICs !Circuit operation 1. Application (1) Input-output table Output condition Input condition EC<ECR EC>ECR 1 2 3 4 5 6 24 22 20 24 22 20 H1+ H1− H2+ H2− H3+ H3− A1 A2 A3 A1 A2 A3 L M H M M M H L L L H H Condition 2 H M L M M M L H H H L L Condition 3 M M L M H M L H L H L H Condition 4 M M H M L M H L H L H L Condition 5 H M M M L M L L H H H L Condition 6 L M M M H M H H L L L H Pin No. Condition 1 (2) Hall input Hall element can be used with both series and parallel connection. Determining R1 and R2, make sure to leave an adequate margin for temperature and dispertion in order to satisfy in-phase input voltage range and minimum input level. A motor doesn’t reach the regular number of rotation, if hall input decrease under high temperature. VCC VCC R1 R1 H1 H1 H2 H2 H3 H3 R2 R2 VH VH Parallel connection Series connection Fig.12 11/17 BD6670FM Motor driver ICs (3) Torque voltage By the voltage difference between EC and ECR, the current driving motor changes as shown in Fig.13 below. IM [A] Forward torque Reverse torque ITL 0 ECR EC [V] Fig.13 The gain of the current driving motor for the voltage of EC can be changed by the resistance of RNF and the voltage of GSW. GECL=0.175 / RNF [A / V] (GSW=L) GECM=0.35 / RNF [A / V] (GSW=M) GECH=0.70 / RNF [A / V] (GSW=H) (4) Current limit The maximum value of the current driving motor can be changed by the resistance of RNF and the voltage of GSW. ITLL=0.2 / RNF [A] (GSW=L) ITLM=0.4 / RNF [A] (GSW=M) ITLH=0.6 / RNF [A] (GSW=H) 12/17 BD6670FM Motor driver ICs (5) Short brake The short brake is switched by SB pin and its operation is shown in table below. SB EC < ECR EC > ECR L Rotating forward Reverse brake H Short brake Short brake Output upper (3phase) FET turn off and lower (3phase) FET turn on in short brake mode, as shown Fig.14. VM OFF OFF OFF ON ON ON RNF MOTOR Fig.14 (6) Reverse detection Reverse detection is constructed as shown in Fig.15. Output is opened when EC>ECR and the motor is rotating reverse. H2+ + H2− − H3+ + H3− − D Q OUT CK EC + ECR − Fig.15 13/17 BD6670FM Motor driver ICs Motor rotation at reverse detection Forward rotation (forward torque) when EC < ECR Deceleration (reverse torque) when EC > ECR Reverse detection is triggered and set outputs to open, when motor rotates in the reverse direction. Motor idles in the reverse direction by inertia. Stop 14/17 BD6670FM Motor driver ICs (7) Timing chart H1+ H2+ H3+ 30° A1 Output current A1 Output voltage A2 Output current A2 Output voltage A3 Output current A3 Output voltage Fig.16 15/17 BD6670FM Motor driver ICs !Application example 100Ω H1+ Hall comp EXOR FG3 + − H1 H1− 1000pF + + − H2+ PWM Comp FG − Hall Amp VH Hall bias + − H2 1000pF H2− VM + + − − TSD A1 H3+ + − H3 H3− 1000pF 100Ω VCC RNF1 + + − − Driver GSW Gain control Matrix OSC A2 Driver L-Pre GND RNF1 Driver A3 CP1 0.1µF CP2 Charge pump RNF2 10kΩ 0.01µF VG PS VCC PS 0.1µF CNF Torque AMP Current sense 100pF VCC 0.5Ω U-Pre Matrix − − VCC Servo signal + + SB EC ECR 1.65V VM CL 10µF D CK 100µF Q QB Reverse detect Fig.17 !Operation notes 1. Absolute maximum ratings Absolute maximum ratings are those values which, if exceeded, may cause the life of a device to become significantly shorted. Moreover, the exact failure mode cannot be defined, such as a short or an open. Physical countermeasures, such as fuse, need to be considered when using a device beyond its maximum ratings. 2. GND potential The GND terminal should be the location of the lowest voltage on the chip. All other terminals should never go under this GND level, even in transition. 16/17 BD6670FM Motor driver ICs 3. Thermal design The thermal design should allow enough margin for actual power dissipation. 4. Mounting failures Mounting failures, such as misdirection or mismounts, may destroy the device. 5. Electromagnetic fields A strong electromagnetic field may cause malfunctions. 6. Coil current flowing into VM A coil current flows from motor into VM when torque control input changes from EC<ECR into EC>ECR, and VM voltage rises if VM voltage source doesn’t have an ability of current drain. A protect circuit turns on and a current (40mA (typ.)) flows from VM to GND when VM voltage reaches to 15V (Typ.). Make sure that surrounding circuits work correctly and aren’t destroyed, when VM voltage rises. Physical countermeasures, such as a diode for voltage clamp, need to be considered under these conditions. 7. CNF pin An appropriate capacitor (100pF (typ.)) at CNF pin make motor current smooth. Make sure the motor current doesn’t oscillate, even in transition. !Electrical characteristics curve Pd (W) 2.2 2.0 1.5 1.0 0.5 0 0 25 50 75 100 125 150 Ta (°C) ∗ 70mm×70mm×1.6mm glass epoxy board. ∗ Debating in done at 17.6mW/°C for operating aboveTa=25°C. Fig.18 Power dissipation curve !External dimensions (Units : mm) 18.5±0.2 0.5±0.2 9.9±0.3 15 7.5±0.2 28 1 14 2.2±0.1 0.11 5.15±0.1 0.8 0.35±0.1 0.08 M 16.0±0.2 0.25±0.1 0.1 S HSOP-M28 17/17