ROHM BD6670FM

BD6670FM
Motor driver ICs
3Phase spindle motor driver for CD-RW
BD6670FM
BD6670FM is a 3-phase spindle motor driver adopting 180° PWM direct driving system. Noise occurred from the motor
driver when the disc is driver can be reduced. Low power consumption and low heat operation are achieved by using
DMOS FET in output and driving directly.
!Applications
CD-RW
!Features
1) 180 degree Direct-PWM driving system.
2) Built in power save circuit.
3) Built in current limit circuit.
4) Built in FG-output.
5) Built in 3phase synthesized FG-output.
6) Built in hall bias circuit.
7) Built in reverse protection circuit.
8) Built in short brake circuit.
9) Low consumption by MOS-FET.
10) Built in capacitor for oscillator.
11) Built in gain switch and current limit switch.
!Absolute maximum ratings (Ta=25°C)
Parameter
Symbol
Limits
Unit
Power supply voltage
VCC
7
V
Supply voltage for motor
VM
15
V
VG pin voltage
VG
Output current
IOMAX
2500 ∗1
mA
Pd
2200 ∗2
mW
Power dissipation
20
V
Junction temperature
TJMAX
150
°C
Operating temperature range
Topr
−20~+75
°C
Storage temperature range
Tstg
−55~+150
°C
∗1 However, do not exceed Pd, ASO and Tj=150°C.
The current is guaranteed 3.0A in case of the current is turn on / off
in a duty-ratio of less than 1/10 with a maximum on-time of 5msec.
∗2 70mm×70mm×1.6mm glass epoxy board.
Debating in done at 17.6mW / °C for operating above Ta=25°C.
!Recommended operating conditions
Parameter
Symbol
Min.
Typ.
Max.
Unit
Power supply voltage
VCC
4.5
Supply voltage for motor
VM
4.0
−
5.5
V
−
13.2
VG pin voltage
VG
8.5
−
V
19
V
1/17
BD6670FM
Motor driver ICs
!Block diagram
Hall comp
H1+
1
EXOR
+
−
+
H1−
2
+
−
3
H3+
4
5
27
FG
26
VH
25
VM
24
A1
23
RNF1
22
A2
21
RNF1
20
A3
19
RNF2
18
PS
Torque
AMP
17
EC
−
16
ECR
15
VM
Hall
bias
+
−
+
H2−
FG3
−
Hall Amp
H2+
28
PWM
Comp
+
−
−
TSD
+
−
+
H3−
GSW
6
+
−
U-Pre
−
Driver
7
Gain
control
Matrix
OSC
Driver
L-Pre
Driver
GND
8
CP1
9
Charge
pump
CP2
10
VG
11
CNF
12
SB
13
VCC
14
PS
Current
sense
+
+
Matrix
−
CL
D
CK
Q
QB
Reverse
detect
Fig.1
2/17
BD6670FM
Motor driver ICs
!Pin descriptions
Pin No.
Pin name
Function
1
H 1+
Hall input AMP 1 positive input
2
H 1−
Hall input AMP 1 negative input
3
H 2+
Hall input AMP 2 positive input
4
H 2−
Hall input AMP 2 negative input
5
H 3+
Hall input AMP 3 positive input
6
H 3−
Hall input AMP 3 negative input
7
GSW
Gain switch pin
8
GND
GND
9
CP1
Capacitor pin 1 for charge pump
10
CP2
Capacitor pin 2 for charge pump
11
VG
12
CNF
13
SB
Short brake pin
14
VCC
Power supply for signal division
15
VM
Power supply for driver
16
ECR
17
EC
Torque control voltage input terminal
18
PS
Power save pin
19
RNF2
20
A3
21
RNF1
22
A2
23
RNF1
24
A1
Output 1 for motor
25
VM
Power supply for driver
26
VH
Hall bias pin
27
FG
FG output pin
28
FG3
FG3 output pin
Capacitor connection pin for charge pump
Capacitor connection pin for phase compensation
Torque control standard voltage input terminal
Resistor connection pin for current sense
Output 3 for motor
Resistor connection pin for current sense
Output 2 for motor
Resistor connection pin for current sense
3/17
BD6670FM
Motor driver ICs
!Input output circuits
Hall input
H1+ : Pin1, H1− : Pin2, H2+ : Pin3,
H2− : Pin4, H3+ : Pin5, H3− : Pin6
VCC
Gain switch
CP1 output
Pin7
Pin9
VCC
VCC
100k
VCC
Hn+
VCC
VCC
Hn−
1k
1k
1k
Gain
Switch
(Pin7)
1k
1k
75k
10k
50
CP1 (Pin9)
10k
25k
5k
CP2 / VG output
CNF
Short brake
CP2 : Pin10, VG : Pin11
Pin12
Pin13
VCC
VCC
VG (Pin11)
VM
CNF (Pin12)
50
SB (Pin13)
30k
CP2 (Pin10)
20k
2k
2k
Torque amplifier
Power save
RNF2
ECR : Pin16, EC : Pin17
Pin18
Pin19
VCC
VCC
VCC
PS (Pin18)
ECR (Pin16)
EC (Pin17)
355
30k
1k
RNF2 (Pin19)
1k
20k
Output pins
Hall bias
FG / FG3 output
A1 : Pin24, A2 : Pin22, A3 : Pin20
Pin26
FG : Pin27, FG3 : Pin28
VCC
VM
A1
A2
VCC
VH (Pin26)
A3
VCC
50
FG (Pin27)
FG3 (Pin28)
100k
RNF1
4/17
BD6670FM
Motor driver ICs
!Electrical characteristics (unless otherwise noted, Ta=25°C, VCC=5V, VM=12V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Test Circuit
<Total>
Circuit current 1
ICC1
−
1
10
µA
Circuit current 2
ICC2
7
12
17
mA
Stand by mode
Fig.2
Fig.2
<Power save>
ON voltage range
VPSON
−
−
1.0
V
OFF voltage range
VPSOFF
2.5
−
−
V
VHB
0.7
1.0
1.3
V
Stand by mode
Fig.2
Fig.2
<Hall bias>
Hall bias voltage
IHB=10mA
Fig.2
<Hall AMP>
In-phase input voltage range
VHAR
1.4
−
3.6
V
Minimum input level
VINH
80
−
−
mVPP
Hall hysteresis level (+)
VHYS+
5
20
40
mV
Fig.3
Hall hysteresis level (−)
VHYS−
−40
−20
−5
mV
Fig.3
Fig.3
Oneside input level
Fig.3
<Gain switch>
Low voltage range
VGSWL
−
−
0.6
V
Fig.4
High voltage range
VGSWH
2.0
−
−
Fig.4
Open voltage range
VGSWOP
−
1.3
−
V
V
Input voltage range
EC, ECR
0
−
5
V
Offset voltage (+)
Ecofs+
5
50
100
mV
Offset voltage (−)
Ecofs−
−100
−50
5
mV
−11
−2.5
0
µA
Input / Output gain L
ECIN
GECL
0.28
0.35
0.42
A/V
EC=ECR=1.65V
GSL=L, RNF=0.5Ω
Input / Output gain M
GECM
0.56
0.70
0.84
A/V
GSL=M, RNF=0.5Ω
Fig.7
Input / Output gain H
GECH
1.12
1.40
1.68
A/V
GSL=H, RNF=0.5Ω
Fig.7
Output ON-resistance
RON
1.35
Ω
IO=±600mA (Upper+Lower)
Fig.8
ITLL
−
340
1.0
Torque limit current L
400
460
mA
GSW=L, RNF=0.5Ω
Fig.4
Torque limit current M
ITLM
ITLH
680
800
920
mA
GSW=M, RNF=0.5Ω
Fig.4
1020
1200
1380
mA
GSW=H, RNF=0.5Ω
Fig.4
Fig.4
<Torque control>
Input current
Linear range : 0.5V∼3.0V
Fig.6
Fig.6
Fig.6
Fig.6
Fig.7
<Output>
Torque limit current H
<FG / FG3 output>
High voltage
VFGH
VFGL
4.6
−
−
−
−
0.4
V
V
IFG=−100µA
IFG=+100µA
Fig.5
Low voltage
VPUMP
12.5
17
19
V
VCC=5V, VM=12V, CP1=CP2=0.1µF
Fig.9
Upper saturation voltage
VCP1H
0.45
0.4
V
ICP1=−4mA
Fig.10
VCP1L
0.25
0.2
0.65
Lower saturation voltage
0.6
V
ICP1=+4mA
Fig.10
0.4
0.15
0.6
0.35
0.8
V
ICP2=−4mA
Fig.11
0.55
V
ICP2=+4mA
Fig.11
Fig.5
<Charge pump voltage>
Charge pump output voltage
<CP1 output>
<CP2 output>
Upper saturation voltage
VCP2H
Lower saturation voltage
VCP2L
5/17
BD6670FM
Motor driver ICs
!Measuring circuit
0.01µ
0.5Ω
V
10kΩ
12V
EC
VM
ECR
PS
A3
RNF2
RNF1
A2
RNF1
VM
A1
VH
FG
FG3
1.65V
ICC1 : Value of A
VPS=Low
ICC2 : Value of A
VPS=High
VCC
SB
CNF
VG
CP2
CP1
GND
GSW
H3−
H3+
H2−
H2
+
H1−
H1+
VPSON : Range of VPS that output pins become
Input-output table
VPSOFF : Range of VPS that output become
open
17V
A
H1+ H1− H2+ H2− H3+ H3−
5V
VHB : Value of A
VPS=5V
IVH=10mA
Fig.2
VM
ECR
1.65V
EC
PS
RNF2
A3
RNF1
A2
RNF1
A1
VM
VH
FG
5V
10kΩ
12V
FG3
0.01µ
0.5Ω
V
VHAR : Hall in-phase input voltage range that
output pins become Input-output table
17V
VCC
SB
CNF
VG
CP2
CP1
GND
GSW
H3−
H3+
H2
−
H2+
H1−
H1+
VINH : Hall minimum input level that output
pins become Input-output table
VHYS+/− : Voltage difference H3+ from H3−
at the point that FG voltage changes
5V
H1+ H1− H2+ H2− H3+ H3−
Fig.3
6/17
BD6670FM
Motor driver ICs
5V
1.65V
VM
ECR
PS
EC
A3
RNF2
RNF1
A2
RNF1
VM
A1
VH
FG
FG3
12V
ITLL : Defining VRNF2 as the voltage that CNF
becomes low,
ITLL=VRNF2 / 0.5
VGSW=Low
ITLM : Defining VRNF2 as the voltage that CNF
becomes low,
ITLM=VRNF2 / 0.5
VGSW=Open
VCC
SB
CNF
VG
CP2
CP1
GND
GSW
H3−
H3+
H2
−
H2
+
H1−
H1+
ITLH : Defining VRNF2 as the voltage that CNF
becomes low,
ITLH=VRNF2 / 0.5
VGSW=High
VGSWL : Range of VGSW that ITLL < ITLM
VGSWH : Range of VGSW that ITLH > ITLM
17V
5V
V
H1+ H1− H2+ H2− H3+ H3−
Fig.4
5V
1.65V
17V
VM
VFGH : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = −100µA
H1+=L, H2+=M, H3+=H
H1−=M, H2−=M, H3−=M (for FG)
H1+=L, H2+=H, H3+=H
H1−=M, H2−=M, H3−=M (for FG3)
VCC
ECR
SB
PS
EC
CNF
VG
RNF2
CP2
A3
RNF1
GND
V1
CP1
A2
GSW
RNF1
VM
VGSWOP : Value of V
H3−
H3
+
A1
12V
H2−
H2+
FG
H1−
FG3
H1+
VH
V2
V3
VFGL : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = 100µA
H1+=M, H2+=H, H3+=L
H1−=M, H2−=M, H3−=M (for FG)
H1+=L, H2+=H, H3+=L
H1−=M, H2−=M, H3−=M (for FG3)
5V
H1+ H1− H2+ H2− H3+ H3−
Fig.5
7/17
BD6670FM
Motor driver ICs
0.01µF
0.5Ω
5Ω
1.65V
V
5Ω
5Ω
A1
10kΩ
A2
5V
12V
ECOfS+ / − : EC voltage range that VM current
is 0A monitor VRNF1
VM
EC
ECR
PS
A3
RNF2
RNF1
A2
RNF1
VM
A1
VH
FG
FG3
EC / ECR : Torque control operating range
VCC
SB
CNF
VG
CP2
CP1
GND
GSW
H3−
H3+
H2
−
H2+
H1−
H1+
ECIN : Value of A1 and A2 at EC=ECR=1.65V
5V
H1+ H1− H2+ H2− H3+ H3−
0.1µF
100pF
Fig.6
0.01µ
0.5Ω
5Ω
5Ω
V
5Ω
5V
10kΩ
GECL : Defining V1 as value of V at EC=1.2V
and V2 as value of V at EC=1.5V on
condition that GSW=0V,
GECL={(V1−V2) / (1.5−1.2)} / 0.5
1.65V
VM
GECM : Defining V1 as value of V at EC=1.2V
and V2 as value of V at EC=1.5V on
condition that GSW=open,
GECL={(V1−V2) / (1.5−1.2)} / 0.5
GECH : Defining V1 as value of V at EC=1.2V
and V2 as value of V at EC=1.5V on
condition that GSW=5V,
GECL={(V1−V2) / (1.5−1.2)} / 0.5
VCC
EC
ECR
SB
CNF
PS
VG
A3
RNF2
CP2
GND
CP1
RNF1
A2
GSW
RNF1
H3−
VM
A1
H3+
H2
H2
−
VH
+
FG
H1−
H1+
FG3
12V
5V
17V
H1+ H1− H2+ H2− H3+ H3−
100pF
Fig.7
8/17
BD6670FM
Motor driver ICs
5V
1.65V
12V
VM
ECR
PS
EC
RNF2
A3
RNF1
A2
A1
RNF1
VH
VM
FG
FG3
VOH : Value of V on condition that output pin is
H and IO=−600mA
VOL : Value of V on condition that output pin is
L and IO=600mA
5V
VCC
SB
CNF
VG
CP2
CP1
GND
GSW
H3−
H3+
H2
−
H2+
H1−
H1+
RON : RON = (VOH + VOL) / 0.6
5V
17V
H1+ H1− H2+ H2− H3+ H3−
VM
A1, A2, A3
V
600mA
V
A1, A2, A3
600mA
Measurement of VOH
Measurement of VOL
Fig.8
5V
1.65V
12V
VM
SB
VCC
PS
VG
EC
RNF2
CP2
ECR
A3
CP1
CNF
RNF1
RNF1
H3−
GND
A1
+
A2
VM
H2−
GSW
VH
H2+
H3
FG
−
H1
FG3
H1+
VPUMP : Value of V
V
5V
H1+ H1− H2+ H2− H3+ H3−
0.1µF
Fig.9
9/17
BD6670FM
Motor driver ICs
5V
1.65V
VCP1H : Value of V on condition that CP1 is
H and ICP1=−4mA
VM
EC
ECR
PS
RNF2
A3
RNF1
A2
RNF1
VM
A1
VH
FG
FG3
12V
VCC
SB
CNF
VG
CP2
CP1
GND
GSW
H3−
H3+
H2
−
H2
+
H1−
H1+
VCP1L : Value of V on condition that CP1 is
L and ICP1=4mA
5V
17V
V
H1+ H1− H2+ H2− H3+ H3−
Fig.10
5V
1.65V
VCP2H : Value of V on condition that CP2 is
H and ICP2=−4mA
VM
EC
ECR
PS
RNF2
A3
RNF1
A2
RNF1
VM
A1
VH
FG
FG3
12V
V
17V
VCC
SB
CNF
VG
CP2
CP1
GND
GSW
H3−
H3+
−
H2
H2
+
H1−
H1+
VCP2L : Value of V on condition that CP2 is
L and ICP2=4mA
5V
H1+ H1− H2+ H2− H3+ H3−
Fig.11
10/17
BD6670FM
Motor driver ICs
!Circuit operation
1. Application
(1) Input-output table
Output condition
Input condition
EC<ECR
EC>ECR
1
2
3
4
5
6
24
22
20
24
22
20
H1+
H1−
H2+
H2−
H3+
H3−
A1
A2
A3
A1
A2
A3
L
M
H
M
M
M
H
L
L
L
H
H
Condition 2
H
M
L
M
M
M
L
H
H
H
L
L
Condition 3
M
M
L
M
H
M
L
H
L
H
L
H
Condition 4
M
M
H
M
L
M
H
L
H
L
H
L
Condition 5
H
M
M
M
L
M
L
L
H
H
H
L
Condition 6
L
M
M
M
H
M
H
H
L
L
L
H
Pin No.
Condition 1
(2) Hall input
Hall element can be used with both series and parallel connection. Determining R1 and R2, make sure to leave an
adequate margin for temperature and dispertion in order to satisfy in-phase input voltage range and minimum input
level.
A motor doesn’t reach the regular number of rotation, if hall input decrease under high temperature.
VCC
VCC
R1
R1
H1
H1
H2
H2
H3
H3
R2
R2
VH
VH
Parallel connection
Series connection
Fig.12
11/17
BD6670FM
Motor driver ICs
(3) Torque voltage
By the voltage difference between EC and ECR, the current driving motor changes as shown in Fig.13 below.
IM [A]
Forward torque
Reverse torque
ITL
0
ECR
EC [V]
Fig.13
The gain of the current driving motor for the voltage of EC can be changed by the resistance of RNF and the voltage of
GSW.
GECL=0.175 / RNF [A / V] (GSW=L)
GECM=0.35 / RNF [A / V] (GSW=M)
GECH=0.70 / RNF [A / V] (GSW=H)
(4) Current limit
The maximum value of the current driving motor can be changed by the resistance of RNF and the voltage of GSW.
ITLL=0.2 / RNF [A] (GSW=L)
ITLM=0.4 / RNF [A] (GSW=M)
ITLH=0.6 / RNF [A] (GSW=H)
12/17
BD6670FM
Motor driver ICs
(5) Short brake
The short brake is switched by SB pin and its operation is shown in table below.
SB
EC < ECR
EC > ECR
L
Rotating forward
Reverse brake
H
Short brake
Short brake
Output upper (3phase) FET turn off and lower (3phase) FET turn on in short brake mode, as shown Fig.14.
VM
OFF
OFF
OFF
ON
ON
ON
RNF
MOTOR
Fig.14
(6) Reverse detection
Reverse detection is constructed as shown in Fig.15. Output is opened when EC>ECR and the motor is rotating
reverse.
H2+
+
H2−
−
H3+
+
H3−
−
D
Q
OUT
CK
EC
+
ECR
−
Fig.15
13/17
BD6670FM
Motor driver ICs
Motor rotation at reverse detection
Forward rotation (forward torque) when EC < ECR
Deceleration (reverse torque) when EC > ECR
Reverse detection is triggered and set outputs to open,
when motor rotates in the reverse direction.
Motor idles in the reverse direction by inertia.
Stop
14/17
BD6670FM
Motor driver ICs
(7) Timing chart
H1+
H2+
H3+
30°
A1 Output current
A1 Output voltage
A2 Output current
A2 Output voltage
A3 Output current
A3 Output voltage
Fig.16
15/17
BD6670FM
Motor driver ICs
!Application example
100Ω
H1+
Hall comp
EXOR
FG3
+
−
H1
H1−
1000pF
+
+
−
H2+
PWM
Comp
FG
−
Hall Amp
VH
Hall
bias
+
−
H2
1000pF
H2−
VM
+
+
−
−
TSD
A1
H3+
+
−
H3
H3−
1000pF
100Ω
VCC
RNF1
+
+
−
−
Driver
GSW
Gain
control
Matrix
OSC
A2
Driver
L-Pre
GND
RNF1
Driver
A3
CP1
0.1µF
CP2
Charge
pump
RNF2
10kΩ
0.01µF
VG
PS
VCC
PS
0.1µF
CNF
Torque
AMP
Current
sense
100pF
VCC
0.5Ω
U-Pre
Matrix
−
−
VCC
Servo
signal
+
+
SB
EC
ECR
1.65V
VM
CL
10µF
D
CK
100µF
Q
QB
Reverse
detect
Fig.17
!Operation notes
1. Absolute maximum ratings
Absolute maximum ratings are those values which, if exceeded, may cause the life of a device to become significantly
shorted. Moreover, the exact failure mode cannot be defined, such as a short or an open. Physical countermeasures,
such as fuse, need to be considered when using a device beyond its maximum ratings.
2. GND potential
The GND terminal should be the location of the lowest voltage on the chip. All other terminals should never go under
this GND level, even in transition.
16/17
BD6670FM
Motor driver ICs
3. Thermal design
The thermal design should allow enough margin for actual power dissipation.
4. Mounting failures
Mounting failures, such as misdirection or mismounts, may destroy the device.
5. Electromagnetic fields
A strong electromagnetic field may cause malfunctions.
6. Coil current flowing into VM
A coil current flows from motor into VM when torque control input changes from EC<ECR into EC>ECR, and VM
voltage rises if VM voltage source doesn’t have an ability of current drain. A protect circuit turns on and a current
(40mA (typ.)) flows from VM to GND when VM voltage reaches to 15V (Typ.).
Make sure that surrounding circuits work correctly and aren’t destroyed, when VM voltage rises.
Physical countermeasures, such as a diode for voltage clamp, need to be considered under these conditions.
7. CNF pin
An appropriate capacitor (100pF (typ.)) at CNF pin make motor current smooth. Make sure the motor current doesn’t
oscillate, even in transition.
!Electrical characteristics curve
Pd (W)
2.2
2.0
1.5
1.0
0.5
0
0
25
50
75
100
125
150
Ta (°C)
∗ 70mm×70mm×1.6mm glass epoxy board.
∗ Debating in done at 17.6mW/°C for operating aboveTa=25°C.
Fig.18 Power dissipation curve
!External dimensions (Units : mm)
18.5±0.2
0.5±0.2
9.9±0.3
15
7.5±0.2
28
1
14
2.2±0.1
0.11
5.15±0.1
0.8 0.35±0.1
0.08 M
16.0±0.2
0.25±0.1
0.1 S
HSOP-M28
17/17