FAIRCHILD FAN8732G

www.fairchildsemi.com
FAN8732G/FAN8732BG/FAN8732CG
Spindle motor and 5-CH actuator driver
[Spindle(PWM), Sled 2-CH(PWM) 3-CH(Linear)]
Features
Description
Common
The FAN8732G/BG/CG is a monolithic IC suitable for a
PWM 3-phase BLDC spindle motor driver, 2-CH PWM
motor drivers for sled motor and 3-CH linear drivers which
drive the focus actuator, tracking actuator and loading motor
of the optical media applications.
•
•
•
•
Built-in thermal shutdown circuit (TSD)
Built-in power save circuit
4 Independent voltage sources
Corresponds to 3.3V or 5V DSP
Spindle
42-SSOP-EP
• Output PWM mode control
BTL(Sled 2-channels)
• Output PWM mode control
BTL(Other 3-channels)
• Output LINEAR mode control
Typical Applications
•
•
•
•
•
•
Compact disk ROM (CD-ROM)
Compact disk RW (CD-RW)
Digital video disk ROM (DVD-ROM)
Digital video disk RAM (DVD-RAM)
Digital video disk Player (DVDP)
Other compact disk media
Ordering Information
Device
Package
Operating Temp.
FAN8732G
42-SSOP-EP
−20°C ~ +75°C
FAN8732GX
42-SSOP-EP
−20°C ~ +75°C
FAN8732BG
42-SSOP-EP
−20°C ~ +75°C
FAN8732BGX
42-SSOP-EP
−20°C ~ +75°C
FAN8732CG
42-SSOP-EP
−20°C ~ +75°C
FAN8732CGX
42-SSOP-EP
−20°C ~ +75°C
X:Tape & Reel type
FAN8732G:FG1X
FAN8732BG:FG3X
FAN8732CG:FG3X,Pull down resistor at SB pin
Rev. 1.0.1
©2003 Fairchild Semiconductor Corporation
FAN8732G/FAN8732BG/FAN8732CG
Pin Assignments
2
IN4
1
42
OSC
IN5
2
41
MUTE
PVCC3
3
40
IN3
CS2
4
39
PVCC1
DO5+
5
38
SB
DO5-
6
37
DO3-
PGND3
7
36
DO3+
CS1
8
35
DO1-
DO4+
9
34
DO1+
DO4-
10
33
PGND1
PGND2
11
32
SVCC
W
12
31
DO2+
V
13
30
DO2-
U
14
29
SGND
CS3
15
28
IN2
HW-
16
27
IN1
HW+
17
26
SPIN
HV-
18
25
VREF
HV+
19
24
FG
HU-
20
23
VH
HU+
21
22
PVCC2
FAN8732G/
FAN8732BG/
FAN8732CG
FAN8732G/FAN8732BG/FAN8732CG
Pin Definitions
Pin Number
Pin Name
I/O
Pin Function Description
1
IN4
I
CH4 input (typically sled1 input)
2
IN5
I
CH5 input (typically sled2 input)
3
PVCC3
-
Power supply for CH4 and CH5
4
CS2
-
Current sense for CH5
5
DO5 +
O
CH5 + drive output (typically sled2 output +)
6
DO5 -
O
CH5 - drive output (typically sled2 output -)
7
PGND3
-
Power ground 3
8
CS1
-
Current sense for CH4
9
DO4 +
O
CH4 + drive output (typically sled1 output +)
10
DO4 -
O
CH4 - drive output (typically sled1 output -)
11
PGND2
-
Power ground 2
12
W
O
3-phase output W for spindle
13
V
O
3-phase output V for spindle
14
U
O
3-phase output U for spindle
15
CS3
-
Current sense for spindle driver
16
HW -
I
Hall W(-) input
17
HW +
I
Hall W(+) input
18
HV -
I
Hall V(-) input
19
HV +
I
Hall V(+) input
20
HU -
I
Hall U(-) input
21
HU +
I
Hall U(+) input
22
PVCC2
-
Power supply for spindle driver
23
VH
I
Hall bias
24
FG
O
Frequency generator
(FAN8732G:FG1X, FAN8732BG:FG3X)
25
VREF
I
Reference voltage input
26
SPIN
I
Spindle torque control
27
IN1
I
Channel 1 input (typically focus input)
28
IN2
I
Channel 2 input (typically tracking input)
29
SGND
-
Signal ground
30
DO2 -
O
CH2 - drive output (typically tracking output +)
31
DO2 +
O
CH2 + drive output (typically tracking output -)
32
SVCC
-
Power supply for signal block and CH1, CH2
33
PGND1
-
Power ground 1
3
FAN8732G/FAN8732BG/FAN8732CG
Pin Definitions (Continued)
4
Pin Number
Pin Name
I/O
34
DO1 +
O
CH1 + drive output ((typically focus output +)
Pin Function Description
35
DO1 -
O
CH1 - drive output (typically focus output -)
36
DO3 +
O
CH3 + drive output (typically loading output +)
37
DO3 -
O
CH3 - drive output (typically loading output -)
38
SB
I
Short Brake mode selection
39
PVCC1
-
Power supply for CH3
40
IN3
I
Channel 3 input (typically loading input)
41
MUTE
I
All channel mute
42
OSC
I
PWM carrier frequency set
FAN8732G/FAN8732BG/FAN8732CG
Internal Block Diagram
IN4
IN5
PVCC3
CS2
1
Oscillator
OSC
2
All mute
3
Short Brake Mode
LPF
4
DO5+
DO5PGND3
7
CS1
8
Drive
Logic
Q R
6
S
PWM Control
H bridge
+
4
-
4
Gm
IOMAX
9
LPF
DO4-
10
H
bridge
12
V
13
U
14
CS3
Spindle
power
TSD
Commutator
& Power driver
W
11
18
19
20
21
Hall Amp
17
PVCC1
SB
37
DO3-
36
DO3+
6
35
DO1-
-
6
34
DO1+
33
PGND1
32
SVCC
+
6
31
DO2+
-
6
30
DO2-
29
SGND
28
27
IN2
IN1
26
SPIN
25
VREF
24
FG
23
VH
PVCC2
OSC
PWM Control
LPF
15
16
38
+
Reverse
detector
HWHW+
HVHV+
HUHU+
MUTE
IN3
PWM Control
OSC
PGND2
41
40
OSC
PVCC3
DO4+
OSC
39
IN3
5
42
Frequency
generator
Focus, Tracking,
Loading block
Spindle
power
Bootstrap
Regulator
Hall
bias
22
5
FAN8732G/FAN8732BG/FAN8732CG
Equivalent Circuits
Sled & Spindle Input
Actuator & Loading Input
SVCC
SVCC
2KΩ
1
2
26
2KΩ
27 28 40
Hall Input
Current Sense Input
SVCC
4
8
15
2KΩ
16 17 18
19 20 21
Hall Bias Input
FG Output
SVCC
SVCC
24
23
Vref Input
Drive Output
SVCC
2KΩ
2KΩ
25
2KΩ
6
5
6
12 14
30 31 34 35
36 37
FAN8732G/FAN8732BG/FAN8732CG
Equivalent Circuits (Continued)
Mute/SB Input(FAN8732G/BG)
Oscillation Input
SVCC
2KΩ
8KΩ
12KΩ
38 41
2KΩ
42
30KΩ
2KΩ
SB Input(FAN8732CG)
8KΩ
12KΩ
38
10KΩ
30KΩ
7
FAN8732G/FAN8732BG/FAN8732CG
Absolute Maximum Ratings (Ta = 25°C)
Parameter
Symbol
Value
Unit
Supply Voltage (Signal block & CH1,2)
SVCCmax
7
V
Supply Voltage (Power for CH3)
PVCC1max
15
V
Supply Voltage (Spindle driver)
PVCC2max
15
V
Supply Voltage (Power for CH4 & 5)
PVCC3max
15
Power dissipation
PD
1.9 / 3.3
V
NOTE
W
Operating Temperature Range
TOPR
-20 ~ +75
°C
Storage temperature Range
TSTG
-40 ~ +150
°C
Maximum Output Current (Spindle)
IOmax1
1.5
A
Maximum Output Current
(Focus, Tracking, Loading)
IOmax2
1.0
A
Maximum Output Current (Sled)
IOmax3
0.5
A
Note:
Case 1
Case 2
Remark
Pd is measured
base on the JEDEC/STD(JESD
51-2)
Power
plane(Cu)
PCB(glass-epoxy)
GND plane(Cu)
Pd=1.9W
Pd=3.3W
1. Case 1: Single layer PCB with 1 signal plane only. PCB size is 76mm × 114mm × 1.6mm.
2. Case 2: Multi layer PCB with 1 signal, 1 power and 1 ground planes. PCB size is 76mm × 114mm × 1.6mm. Cu planes size for
power and ground is 74mm × 62mm × 0.035mm.
3. These are experimental datum.
4. Power dissipation reduce rate of the case 1: -15.2mW/°C(Ta≥25°C)
5. Power dissipation reduce rate of the case 2: -26.4mW/°C(Ta≥25°C)
6. Should not exceed PD and SOA (Safe Operating Area)
Power Dissipation Curve
Pd [mW]
3,000
case2
2,000
case1
1,000
SOA
0
0
8
25
50
75
100
125
150
175
Ambient Temperature, Ta [°C]
FAN8732G/FAN8732BG/FAN8732CG
Recommended Operating Conditions (Ta = 25°C)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Operating Supply Voltage (Signal block & CH1,2)
SVCC
4.5
5
7
V
Operating Supply Voltage (Power for CH3)
PV CC1
4.5
12
13.2
V
Operating Supply Voltage (Spindle driver)
PV CC2
6
12
13.2
V
Operating Supply Voltage (Power for CH4,5)
PV CC3
4.5
12
13.2
V
Output current(Spindle)
IO1
-
0.5
1.0
A
Output current(Focus, Tracking, Loading)
IO2
-
0.5
0.8
A
Output current(Sled)
IO3
-
0.25
0.4
A
PWM carrier frequency
Fosc
30
-
120
KHz
9
FAN8732G/FAN8732BG/FAN8732CG
Electrical Characteristics (Ta = 25°C)
(Ta=25°C, SVCC =PVCC1=5V, PV CC2=PVCC3=12V unless otherwise noted)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
ICC
−
−
50
70
mA
COMMON PART
Quiescent Circuit Current
Mute On Current
IMUTE
MUTE=0V
−
0
30
µA
Mute On Voltage
VMON
MUTE=variation
−
−
0.8
V
Mute Off Voltage
VMOFF
IMUTEIN
MUTE=variation
2.5
−
−
V
MUTE=5V
−
−
500
µA
COSC=330pF
−
65
−
KHz
1.0
−
3.3
V
Mute Input Current
PWM Carrier Frequency
FOSC
REF input voltage range
VREFIN
REF input current range
IREFIN
VREF=1.65V
-10
−
+10
µV
SB Low Voltage
VSBL
SB=variation
−
−
0.8
V
SB High Voltage
VSBH
SB=variation
2.5
−
−
V
SB Input Current1
ISB1
SB=5V(FAN8732G/BG)
−
−
500
µA
SB Input Current2
ISB2
SB=5V(FAN8732CG)
−
−
1.2
mA
VOM1
IO=0.5A
10.6
11.1
−
V
−
SPINDLE DRIVE PART
Maximum Output Voltage1
Control Voltage Deadzone11
VDEAD11
SPIN<VREF
-80
-40
0
mA
Control Voltage Deadzone12
VDEAD12
SPIN>VREF
0
40
80
mA
Control Voltage Input Range1
VIN1
−
0
−
5
V
Voltage Gain1
GVO1
GIO1 =GVO1/Rcs[A/V]
0.85
1.0
1.15
V/V
Control Voltage Limit 1F
VLIMIT1F
ILIMIT1F=VLIMIT1F/Rcs[A]
0.4
0.5
0.6
V
Control Voltage Limit 1R
VLIMIT1R
ILIMIT1R=VLIMIT1R/Rcs[A]
0.22
0.28
0.34
V
Hall Amp Common Mode
Input Range
VHCOM
−
1.3
−
3.7
V
Hall Bias Output Voltage
VVH
IVH=10mA
0.6
0.85
1.2
V
VH pin Sink Current
IVH
MUTE-5V
−
−
30
mA
CH4/CH5 DRIVE PART (TYPICALLY SLED DRIVER)
Maximum Output Voltage21
VOM21
IO=0.5A, PVCC3=5V
3.4
3.8
−
V
Maximum Output Voltage22
VOM22
IO=0.5A, PVCC3=12V
10.3
10.8
−
V
Control Voltage Deadzone21
VDEAD21
IN4,5<VREF
-80
-40
0
mV
Control Voltage Deadzone22
VDEAD22
IN4,5>VREF
0
40
80
mV
Control Voltage Input Range2
VIN2
−
0
−
5
V
Voltage Gain2
GVO2
GIO2 =GVO2/Rcs[A/V]
0.85
1.0
1.15
V/V
VLIMIT2
ILIMIT2=VLIMIT2/Rcs[A]
0.43
0.5
0.58
V
MUTE=5V
-100
−
100
µA
Control Voltage Limit 2
Output Leak Current
10
ILEAK
FAN8732G/FAN8732BG/FAN8732CG
Electrical Characteristics (Ta = 25°C) (Continued)
(Ta=25°C, SVCC =PVCC1=5V, PV CC2=PVCC3=12V unless otherwise noted)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
3.8
4.2
−
V
CH1,CH2 DRIVE PART (TYPICALLY ACTUATOR DRIVER)
Maximum Output Voltage 31
VOM31
Control Voltage Input Range3
VIN3
−
0
−
5
V
Closed Loop Voltage Gain
GVO3
−
20.2
21.6
22.8
dB
Output Offset Voltage
VOO1
-45
−
45
mV
IO=0.5A, PVCC2=12V
VREF=IN1=IN2=1.65V
CH3 DRIVE PART (TYPICALLY LOADING DRIVER)
Maximum Output Voltage 41
VOM41
IO=0.5A, PVCC1=5V,
PVCC2=12V
3.95
4.2
−
V
Maximum Output Voltage 42
VOM42
IO=0.5A, PVCC1=PVCC2=12V
6.2
6.7
−
V
Control Voltage Input Range4
VIN4
−
0
−
5
V
Closed Loop Voltage Gain
GVO4
−
16.7
18.1
19.3
dB
Output Offset Voltage
VOO2
-50
−
50
mV
VREF=IN3=1.65V
11
FAN8732G/FAN8732BG/FAN8732CG
Application Information
1. Torque Control & Output Current Control Of 3-phase Bldc Motor
PVCC2
Inside IC
+
Vcs
Rcs
-
LPF
+
-
REXT1
SPIN
+
Io
VAMP
Torque AMP
R
-
REXT2
Q
Commutator
Driver
6
M
S
IOMAX
Clock
Generator
Hall sensor
VREF
1) By amplifying the voltage difference between V REF and SPIN from Servo IC(or DSP), the Torque AMP produces the
input voltage(VAMP) which is input current command.
2) The output current (IO) is converted into the voltage (V CS) through the sense resistor (RCS) and compared with the VAMP.
3) The clock generator has the RS latch set periodically, this makes output driver on state and when the V CS and the VAMP is
equal the state becomes off.
4) By the negative feedback loop, the sensed output voltage V CS equals to the VAMP.
5) Commutating sequence is selected by hall sensor inputs, and the minimum hall input voltage is 60mV.
6) The gain and limit current are calculated as below table.(Gvo=1[V/V])
Forward limit current
Reverse limit current
0.5
----------Rcs
Input/Output gain[A/V]
R EXT2
G VO
----------------------------------------------- • ------------R
R
+R
EXT1
EXT2
CS
0.28
----------Rcs
Remark
R EXT2
----------------------------------------------R EXT1 + R EXT2
is gain scaler
7) The range of the input voltage is as shown below when Rcs=0.5Ω, REXT1=0 and REXT2=inf.
Current
[A]
1
0.56
SPIN > VREF
Forward rotation
SPIN < VREF
Reverse brake
−
Short brake
SB=H
Dead Dead
zone- zone+
GIO=GVO / RCS
-40mV
0
40mV
The input range of SPIN is 0 V ~ 5 V
12
Rotation
Forward
Reverse
SB=L,
open
SPIN-VREF
FAN8732G/FAN8732BG/FAN8732CG
2. Torque Control & Output Current Control Of Sled Motor(2-phase Step Motor)
PVCC3
Inside IC
+
Vcs
Rcs
-
LPF
+
-
REXT1
IN4(or IN5)
+
Io
VAMP
Torque AMP
R
-
REXT2
Q
Drive Logic
S
IOMAX
4
Driver
M
Clock
Generator
VREF
1) By amplifying the voltage difference between V REF and IN4(or IN5) from Servo IC(or DSP), the Torque AMP produces
the input voltage(VAMP) which is input current command.
2) The output current (I O) is converted into the voltage (VCS) through the sense resistor (R CS) and compared with the VAMP.
3) The clock generator has the RS latch set periodically, this makes output driver on state and when the V CS and the VAMP is
equal the state becomes off.
4) By the negative feedback loop, the sensed output voltage V CS equals to the VAMP.
5) To avoid output upper and lower transistor’s short through, switch trick is needed. Turn on delay time is 1usec, turn off
delay time is 2usec and the phase delay time, when the current direction is changed, is 3usec.
6) The gain and limit current are calculated as below table.(Gvo=1[V/V])
Torque limit current
Input/Output gain[A/V]
Remark
R EXT2
----------------------------------------------R EXT1 + R EXT2
R EXT2
G VO
------------------------------------------------ • -------------R EXT1 + R EXT2 R CS
0.5---------Rcs
is gain scaler
8) The range of the torque voltage is as shown below when Rcs=0.5Ω, R EXT1=0 and REXT2=inf.
Current
[A]
Ilimit
Forward
Reverse
Dead Dead
zone- zone+
GIO=GVO / R CS
-40mV
0
40mV
IN4/IN5-VREF
13
FAN8732G/FAN8732BG/FAN8732CG
3. CH1/CH2/CH3 Drive Part
M
+
36 34 31 DO
DO− 37 35 30
Power amp
Inside IC
6R
(4R)
R
−
−
R
6R
(4R)
R
Power reference
+
30
SVCC
R
−
+
+
R
R
27 28 40
25
Vref
IN1 IN2 IN3
REXT2
REXT1
1) The reference voltage, VREF, is given externally through pin 25.
2) The power amp circuit produces the differential output voltages and drives the two output power amplifier circuits.
3) The CH1/CH2 gain of DO- drive part of the power amp block is 6R/R=6 times(and the gain of CH3 is 4R/R=4times). The
DO+ drive part of the power amp block is just inverting circuit of DO- drive part so the total gain of power amp block is 12
times that is 21.58dB(in case of CH3, gain is 8 times that is 18.06dB).
4) Power reference voltage, which is the mid-point of the drive output, is set to the half of the supply voltage.
5) When the total gain is too high, the external resistors(REXT1 & REXT2)can be used to make the gain proper.
14
Power amp gain
Input/Output gain[V/V]
12(21.58dB)
R EXT2
----------------------------------------------- • 12
R EXT1 + R EXT2
Remark
R EXT2
-----------------------------------------------R EXT1 + R EXT2
is gain scaler
FAN8732G/FAN8732BG/FAN8732CG
4. Power Save & Channel Selection
MUTE/SB logic tables are as below.
Logic Input
Drive Change
Mute(pin41)
SB(pin38)
CH1
CH2
CH3
CH4
CH5
spindle
L
L
off
off
off
off
off
off
L
H
off
off
on
off
off
off
H
L
H
H
on
on
off
on
on
on
5. SB(Short Brake Mode Selection)
When SB pin enabled(low), the brake mechanism of 3-phase spindle driver is changed to short brake.
SHORT BRAKE OPERATING SCHEME
MOTOR
OFF
Vcc
OFF
38
12
1KΩ
13
14
ON
ON
20KΩ
When short brake is enabled all lower output transistors are turned on and all upper output transistors are turned off, so the current due to the motor back EMF(electro motive force) is freewheeled through lower transistors and lower freewheeling diodes.
It is general that the short brake is safer than the reverse brake in high speed applications. But it is not true in all cases because
the current in the short brake is depend on the amount of the motor back EMF. So in high speed applications we suggest an
optimal brake which is our patent. Please contact sales persons or offices if you need more information about the optimal
brake.
6. TSD(Thermal Shut Down)
When the chip temperature rises up to about 160 oC(degree), all output drivers are shut down. When the chip temperature falls
off to about 130 oC, then the drivers recover normal operation. TSD has the temperature hysteresis of about 30oC.
15
FAN8732G/FAN8732BG/FAN8732CG
7. FG OUTPUT
FAN8732G generates FG1X, meanwhile FAN8732BG/CG generates FG3X
8. PWM Carrier Frequency
PWM carrier frequency is made from charging and discharging a capacitor which should be connected to osc(#42) pin. You
can get typical pwm carrier frequency from below table.
capacitor[pF]
820
680
330
220
180
150
120
Carrier frequency[KHz]
28
32
65
90
110
143
179
9. Hall Sensor Connection
Vcc
Vcc
HALL 1
HALL 1
HALL 2
HALL 3
HALL 2
HALL 3
23 VH
16
23 VH
FAN8732G/FAN8732BG/FAN8732CG
10. Spindle Part Input-output Timing Chart
H1 +
H2 +
H3 +
A1 output current
(H1 -)+(H2 +)
A1 output voltage
A2 output current
(H2 -)+(H3 +)
A2 output voltage
A3 output current
(H3 -)+(H1 +)
A3 output voltage
The waveforms are different in accordance with motor types.
17
FAN8732G/FAN8732BG/FAN8732CG
Typical Application Circuits
Sled1
1
IN4
OSC
42
2
IN5
MUTE
41
Vref
Sled2
Vref
3
PVCC3
4
CS2
IN3
Mute
Selection
Loading
40
Vref
PVCC3
PVCC1
39
PVCC1
5
DO5+
SB
38
6
DO5-
DO3-
37
Short Brkae
Selection
M
7
3Phase
BLDC
motor
M
8
CS1
9
DO4+
10
DO4-
11
PGND2
12
W
13
V
14
U
15
DO3+ 36
PGND3
CS3
16
HW-
17
HW+
18
HV-
19
HV+
20
HU-
21
HU+
HALL-W
FAN8732G/FAN8732BG/
FAN8732CG
SLED
(stepping)
MOTOR
DO1-
35
DO1+ 34
PGND1
33
SVCC
32
DO2+
31
DO2-
30
SGND
LOADING
MOTOR
FOCUS
ACTUATOR
SVCC
TRACKING
ACTUATOR
29
IN2
28
Tracking
IN1
27
Focus
SPIN
26
Spindle
VREF
25
Vref
(typically 1.65V)
HALL-V
FG
VH
24
23
HALL-U
PVCC2
22
PVCC2
18
FAN8732G/FAN8732BG/FAN8732CG
19
FAN8732G/FAN8732BG/FAN8732CG
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
8/18/03 0.0m 001
Stock#DSxxxxxxxx
 2003 Fairchild Semiconductor Corporation