www.fairchildsemi.com FAN8732G/FAN8732BG/FAN8732CG Spindle motor and 5-CH actuator driver [Spindle(PWM), Sled 2-CH(PWM) 3-CH(Linear)] Features Description Common The FAN8732G/BG/CG is a monolithic IC suitable for a PWM 3-phase BLDC spindle motor driver, 2-CH PWM motor drivers for sled motor and 3-CH linear drivers which drive the focus actuator, tracking actuator and loading motor of the optical media applications. • • • • Built-in thermal shutdown circuit (TSD) Built-in power save circuit 4 Independent voltage sources Corresponds to 3.3V or 5V DSP Spindle 42-SSOP-EP • Output PWM mode control BTL(Sled 2-channels) • Output PWM mode control BTL(Other 3-channels) • Output LINEAR mode control Typical Applications • • • • • • Compact disk ROM (CD-ROM) Compact disk RW (CD-RW) Digital video disk ROM (DVD-ROM) Digital video disk RAM (DVD-RAM) Digital video disk Player (DVDP) Other compact disk media Ordering Information Device Package Operating Temp. FAN8732G 42-SSOP-EP −20°C ~ +75°C FAN8732GX 42-SSOP-EP −20°C ~ +75°C FAN8732BG 42-SSOP-EP −20°C ~ +75°C FAN8732BGX 42-SSOP-EP −20°C ~ +75°C FAN8732CG 42-SSOP-EP −20°C ~ +75°C FAN8732CGX 42-SSOP-EP −20°C ~ +75°C X:Tape & Reel type FAN8732G:FG1X FAN8732BG:FG3X FAN8732CG:FG3X,Pull down resistor at SB pin Rev. 1.0.1 ©2003 Fairchild Semiconductor Corporation FAN8732G/FAN8732BG/FAN8732CG Pin Assignments 2 IN4 1 42 OSC IN5 2 41 MUTE PVCC3 3 40 IN3 CS2 4 39 PVCC1 DO5+ 5 38 SB DO5- 6 37 DO3- PGND3 7 36 DO3+ CS1 8 35 DO1- DO4+ 9 34 DO1+ DO4- 10 33 PGND1 PGND2 11 32 SVCC W 12 31 DO2+ V 13 30 DO2- U 14 29 SGND CS3 15 28 IN2 HW- 16 27 IN1 HW+ 17 26 SPIN HV- 18 25 VREF HV+ 19 24 FG HU- 20 23 VH HU+ 21 22 PVCC2 FAN8732G/ FAN8732BG/ FAN8732CG FAN8732G/FAN8732BG/FAN8732CG Pin Definitions Pin Number Pin Name I/O Pin Function Description 1 IN4 I CH4 input (typically sled1 input) 2 IN5 I CH5 input (typically sled2 input) 3 PVCC3 - Power supply for CH4 and CH5 4 CS2 - Current sense for CH5 5 DO5 + O CH5 + drive output (typically sled2 output +) 6 DO5 - O CH5 - drive output (typically sled2 output -) 7 PGND3 - Power ground 3 8 CS1 - Current sense for CH4 9 DO4 + O CH4 + drive output (typically sled1 output +) 10 DO4 - O CH4 - drive output (typically sled1 output -) 11 PGND2 - Power ground 2 12 W O 3-phase output W for spindle 13 V O 3-phase output V for spindle 14 U O 3-phase output U for spindle 15 CS3 - Current sense for spindle driver 16 HW - I Hall W(-) input 17 HW + I Hall W(+) input 18 HV - I Hall V(-) input 19 HV + I Hall V(+) input 20 HU - I Hall U(-) input 21 HU + I Hall U(+) input 22 PVCC2 - Power supply for spindle driver 23 VH I Hall bias 24 FG O Frequency generator (FAN8732G:FG1X, FAN8732BG:FG3X) 25 VREF I Reference voltage input 26 SPIN I Spindle torque control 27 IN1 I Channel 1 input (typically focus input) 28 IN2 I Channel 2 input (typically tracking input) 29 SGND - Signal ground 30 DO2 - O CH2 - drive output (typically tracking output +) 31 DO2 + O CH2 + drive output (typically tracking output -) 32 SVCC - Power supply for signal block and CH1, CH2 33 PGND1 - Power ground 1 3 FAN8732G/FAN8732BG/FAN8732CG Pin Definitions (Continued) 4 Pin Number Pin Name I/O 34 DO1 + O CH1 + drive output ((typically focus output +) Pin Function Description 35 DO1 - O CH1 - drive output (typically focus output -) 36 DO3 + O CH3 + drive output (typically loading output +) 37 DO3 - O CH3 - drive output (typically loading output -) 38 SB I Short Brake mode selection 39 PVCC1 - Power supply for CH3 40 IN3 I Channel 3 input (typically loading input) 41 MUTE I All channel mute 42 OSC I PWM carrier frequency set FAN8732G/FAN8732BG/FAN8732CG Internal Block Diagram IN4 IN5 PVCC3 CS2 1 Oscillator OSC 2 All mute 3 Short Brake Mode LPF 4 DO5+ DO5PGND3 7 CS1 8 Drive Logic Q R 6 S PWM Control H bridge + 4 - 4 Gm IOMAX 9 LPF DO4- 10 H bridge 12 V 13 U 14 CS3 Spindle power TSD Commutator & Power driver W 11 18 19 20 21 Hall Amp 17 PVCC1 SB 37 DO3- 36 DO3+ 6 35 DO1- - 6 34 DO1+ 33 PGND1 32 SVCC + 6 31 DO2+ - 6 30 DO2- 29 SGND 28 27 IN2 IN1 26 SPIN 25 VREF 24 FG 23 VH PVCC2 OSC PWM Control LPF 15 16 38 + Reverse detector HWHW+ HVHV+ HUHU+ MUTE IN3 PWM Control OSC PGND2 41 40 OSC PVCC3 DO4+ OSC 39 IN3 5 42 Frequency generator Focus, Tracking, Loading block Spindle power Bootstrap Regulator Hall bias 22 5 FAN8732G/FAN8732BG/FAN8732CG Equivalent Circuits Sled & Spindle Input Actuator & Loading Input SVCC SVCC 2KΩ 1 2 26 2KΩ 27 28 40 Hall Input Current Sense Input SVCC 4 8 15 2KΩ 16 17 18 19 20 21 Hall Bias Input FG Output SVCC SVCC 24 23 Vref Input Drive Output SVCC 2KΩ 2KΩ 25 2KΩ 6 5 6 12 14 30 31 34 35 36 37 FAN8732G/FAN8732BG/FAN8732CG Equivalent Circuits (Continued) Mute/SB Input(FAN8732G/BG) Oscillation Input SVCC 2KΩ 8KΩ 12KΩ 38 41 2KΩ 42 30KΩ 2KΩ SB Input(FAN8732CG) 8KΩ 12KΩ 38 10KΩ 30KΩ 7 FAN8732G/FAN8732BG/FAN8732CG Absolute Maximum Ratings (Ta = 25°C) Parameter Symbol Value Unit Supply Voltage (Signal block & CH1,2) SVCCmax 7 V Supply Voltage (Power for CH3) PVCC1max 15 V Supply Voltage (Spindle driver) PVCC2max 15 V Supply Voltage (Power for CH4 & 5) PVCC3max 15 Power dissipation PD 1.9 / 3.3 V NOTE W Operating Temperature Range TOPR -20 ~ +75 °C Storage temperature Range TSTG -40 ~ +150 °C Maximum Output Current (Spindle) IOmax1 1.5 A Maximum Output Current (Focus, Tracking, Loading) IOmax2 1.0 A Maximum Output Current (Sled) IOmax3 0.5 A Note: Case 1 Case 2 Remark Pd is measured base on the JEDEC/STD(JESD 51-2) Power plane(Cu) PCB(glass-epoxy) GND plane(Cu) Pd=1.9W Pd=3.3W 1. Case 1: Single layer PCB with 1 signal plane only. PCB size is 76mm × 114mm × 1.6mm. 2. Case 2: Multi layer PCB with 1 signal, 1 power and 1 ground planes. PCB size is 76mm × 114mm × 1.6mm. Cu planes size for power and ground is 74mm × 62mm × 0.035mm. 3. These are experimental datum. 4. Power dissipation reduce rate of the case 1: -15.2mW/°C(Ta≥25°C) 5. Power dissipation reduce rate of the case 2: -26.4mW/°C(Ta≥25°C) 6. Should not exceed PD and SOA (Safe Operating Area) Power Dissipation Curve Pd [mW] 3,000 case2 2,000 case1 1,000 SOA 0 0 8 25 50 75 100 125 150 175 Ambient Temperature, Ta [°C] FAN8732G/FAN8732BG/FAN8732CG Recommended Operating Conditions (Ta = 25°C) Parameter Symbol Min. Typ. Max. Unit Operating Supply Voltage (Signal block & CH1,2) SVCC 4.5 5 7 V Operating Supply Voltage (Power for CH3) PV CC1 4.5 12 13.2 V Operating Supply Voltage (Spindle driver) PV CC2 6 12 13.2 V Operating Supply Voltage (Power for CH4,5) PV CC3 4.5 12 13.2 V Output current(Spindle) IO1 - 0.5 1.0 A Output current(Focus, Tracking, Loading) IO2 - 0.5 0.8 A Output current(Sled) IO3 - 0.25 0.4 A PWM carrier frequency Fosc 30 - 120 KHz 9 FAN8732G/FAN8732BG/FAN8732CG Electrical Characteristics (Ta = 25°C) (Ta=25°C, SVCC =PVCC1=5V, PV CC2=PVCC3=12V unless otherwise noted) Parameter Symbol Condition Min. Typ. Max. Unit ICC − − 50 70 mA COMMON PART Quiescent Circuit Current Mute On Current IMUTE MUTE=0V − 0 30 µA Mute On Voltage VMON MUTE=variation − − 0.8 V Mute Off Voltage VMOFF IMUTEIN MUTE=variation 2.5 − − V MUTE=5V − − 500 µA COSC=330pF − 65 − KHz 1.0 − 3.3 V Mute Input Current PWM Carrier Frequency FOSC REF input voltage range VREFIN REF input current range IREFIN VREF=1.65V -10 − +10 µV SB Low Voltage VSBL SB=variation − − 0.8 V SB High Voltage VSBH SB=variation 2.5 − − V SB Input Current1 ISB1 SB=5V(FAN8732G/BG) − − 500 µA SB Input Current2 ISB2 SB=5V(FAN8732CG) − − 1.2 mA VOM1 IO=0.5A 10.6 11.1 − V − SPINDLE DRIVE PART Maximum Output Voltage1 Control Voltage Deadzone11 VDEAD11 SPIN<VREF -80 -40 0 mA Control Voltage Deadzone12 VDEAD12 SPIN>VREF 0 40 80 mA Control Voltage Input Range1 VIN1 − 0 − 5 V Voltage Gain1 GVO1 GIO1 =GVO1/Rcs[A/V] 0.85 1.0 1.15 V/V Control Voltage Limit 1F VLIMIT1F ILIMIT1F=VLIMIT1F/Rcs[A] 0.4 0.5 0.6 V Control Voltage Limit 1R VLIMIT1R ILIMIT1R=VLIMIT1R/Rcs[A] 0.22 0.28 0.34 V Hall Amp Common Mode Input Range VHCOM − 1.3 − 3.7 V Hall Bias Output Voltage VVH IVH=10mA 0.6 0.85 1.2 V VH pin Sink Current IVH MUTE-5V − − 30 mA CH4/CH5 DRIVE PART (TYPICALLY SLED DRIVER) Maximum Output Voltage21 VOM21 IO=0.5A, PVCC3=5V 3.4 3.8 − V Maximum Output Voltage22 VOM22 IO=0.5A, PVCC3=12V 10.3 10.8 − V Control Voltage Deadzone21 VDEAD21 IN4,5<VREF -80 -40 0 mV Control Voltage Deadzone22 VDEAD22 IN4,5>VREF 0 40 80 mV Control Voltage Input Range2 VIN2 − 0 − 5 V Voltage Gain2 GVO2 GIO2 =GVO2/Rcs[A/V] 0.85 1.0 1.15 V/V VLIMIT2 ILIMIT2=VLIMIT2/Rcs[A] 0.43 0.5 0.58 V MUTE=5V -100 − 100 µA Control Voltage Limit 2 Output Leak Current 10 ILEAK FAN8732G/FAN8732BG/FAN8732CG Electrical Characteristics (Ta = 25°C) (Continued) (Ta=25°C, SVCC =PVCC1=5V, PV CC2=PVCC3=12V unless otherwise noted) Parameter Symbol Condition Min. Typ. Max. Unit 3.8 4.2 − V CH1,CH2 DRIVE PART (TYPICALLY ACTUATOR DRIVER) Maximum Output Voltage 31 VOM31 Control Voltage Input Range3 VIN3 − 0 − 5 V Closed Loop Voltage Gain GVO3 − 20.2 21.6 22.8 dB Output Offset Voltage VOO1 -45 − 45 mV IO=0.5A, PVCC2=12V VREF=IN1=IN2=1.65V CH3 DRIVE PART (TYPICALLY LOADING DRIVER) Maximum Output Voltage 41 VOM41 IO=0.5A, PVCC1=5V, PVCC2=12V 3.95 4.2 − V Maximum Output Voltage 42 VOM42 IO=0.5A, PVCC1=PVCC2=12V 6.2 6.7 − V Control Voltage Input Range4 VIN4 − 0 − 5 V Closed Loop Voltage Gain GVO4 − 16.7 18.1 19.3 dB Output Offset Voltage VOO2 -50 − 50 mV VREF=IN3=1.65V 11 FAN8732G/FAN8732BG/FAN8732CG Application Information 1. Torque Control & Output Current Control Of 3-phase Bldc Motor PVCC2 Inside IC + Vcs Rcs - LPF + - REXT1 SPIN + Io VAMP Torque AMP R - REXT2 Q Commutator Driver 6 M S IOMAX Clock Generator Hall sensor VREF 1) By amplifying the voltage difference between V REF and SPIN from Servo IC(or DSP), the Torque AMP produces the input voltage(VAMP) which is input current command. 2) The output current (IO) is converted into the voltage (V CS) through the sense resistor (RCS) and compared with the VAMP. 3) The clock generator has the RS latch set periodically, this makes output driver on state and when the V CS and the VAMP is equal the state becomes off. 4) By the negative feedback loop, the sensed output voltage V CS equals to the VAMP. 5) Commutating sequence is selected by hall sensor inputs, and the minimum hall input voltage is 60mV. 6) The gain and limit current are calculated as below table.(Gvo=1[V/V]) Forward limit current Reverse limit current 0.5 ----------Rcs Input/Output gain[A/V] R EXT2 G VO ----------------------------------------------- • ------------R R +R EXT1 EXT2 CS 0.28 ----------Rcs Remark R EXT2 ----------------------------------------------R EXT1 + R EXT2 is gain scaler 7) The range of the input voltage is as shown below when Rcs=0.5Ω, REXT1=0 and REXT2=inf. Current [A] 1 0.56 SPIN > VREF Forward rotation SPIN < VREF Reverse brake − Short brake SB=H Dead Dead zone- zone+ GIO=GVO / RCS -40mV 0 40mV The input range of SPIN is 0 V ~ 5 V 12 Rotation Forward Reverse SB=L, open SPIN-VREF FAN8732G/FAN8732BG/FAN8732CG 2. Torque Control & Output Current Control Of Sled Motor(2-phase Step Motor) PVCC3 Inside IC + Vcs Rcs - LPF + - REXT1 IN4(or IN5) + Io VAMP Torque AMP R - REXT2 Q Drive Logic S IOMAX 4 Driver M Clock Generator VREF 1) By amplifying the voltage difference between V REF and IN4(or IN5) from Servo IC(or DSP), the Torque AMP produces the input voltage(VAMP) which is input current command. 2) The output current (I O) is converted into the voltage (VCS) through the sense resistor (R CS) and compared with the VAMP. 3) The clock generator has the RS latch set periodically, this makes output driver on state and when the V CS and the VAMP is equal the state becomes off. 4) By the negative feedback loop, the sensed output voltage V CS equals to the VAMP. 5) To avoid output upper and lower transistor’s short through, switch trick is needed. Turn on delay time is 1usec, turn off delay time is 2usec and the phase delay time, when the current direction is changed, is 3usec. 6) The gain and limit current are calculated as below table.(Gvo=1[V/V]) Torque limit current Input/Output gain[A/V] Remark R EXT2 ----------------------------------------------R EXT1 + R EXT2 R EXT2 G VO ------------------------------------------------ • -------------R EXT1 + R EXT2 R CS 0.5---------Rcs is gain scaler 8) The range of the torque voltage is as shown below when Rcs=0.5Ω, R EXT1=0 and REXT2=inf. Current [A] Ilimit Forward Reverse Dead Dead zone- zone+ GIO=GVO / R CS -40mV 0 40mV IN4/IN5-VREF 13 FAN8732G/FAN8732BG/FAN8732CG 3. CH1/CH2/CH3 Drive Part M + 36 34 31 DO DO− 37 35 30 Power amp Inside IC 6R (4R) R − − R 6R (4R) R Power reference + 30 SVCC R − + + R R 27 28 40 25 Vref IN1 IN2 IN3 REXT2 REXT1 1) The reference voltage, VREF, is given externally through pin 25. 2) The power amp circuit produces the differential output voltages and drives the two output power amplifier circuits. 3) The CH1/CH2 gain of DO- drive part of the power amp block is 6R/R=6 times(and the gain of CH3 is 4R/R=4times). The DO+ drive part of the power amp block is just inverting circuit of DO- drive part so the total gain of power amp block is 12 times that is 21.58dB(in case of CH3, gain is 8 times that is 18.06dB). 4) Power reference voltage, which is the mid-point of the drive output, is set to the half of the supply voltage. 5) When the total gain is too high, the external resistors(REXT1 & REXT2)can be used to make the gain proper. 14 Power amp gain Input/Output gain[V/V] 12(21.58dB) R EXT2 ----------------------------------------------- • 12 R EXT1 + R EXT2 Remark R EXT2 -----------------------------------------------R EXT1 + R EXT2 is gain scaler FAN8732G/FAN8732BG/FAN8732CG 4. Power Save & Channel Selection MUTE/SB logic tables are as below. Logic Input Drive Change Mute(pin41) SB(pin38) CH1 CH2 CH3 CH4 CH5 spindle L L off off off off off off L H off off on off off off H L H H on on off on on on 5. SB(Short Brake Mode Selection) When SB pin enabled(low), the brake mechanism of 3-phase spindle driver is changed to short brake. SHORT BRAKE OPERATING SCHEME MOTOR OFF Vcc OFF 38 12 1KΩ 13 14 ON ON 20KΩ When short brake is enabled all lower output transistors are turned on and all upper output transistors are turned off, so the current due to the motor back EMF(electro motive force) is freewheeled through lower transistors and lower freewheeling diodes. It is general that the short brake is safer than the reverse brake in high speed applications. But it is not true in all cases because the current in the short brake is depend on the amount of the motor back EMF. So in high speed applications we suggest an optimal brake which is our patent. Please contact sales persons or offices if you need more information about the optimal brake. 6. TSD(Thermal Shut Down) When the chip temperature rises up to about 160 oC(degree), all output drivers are shut down. When the chip temperature falls off to about 130 oC, then the drivers recover normal operation. TSD has the temperature hysteresis of about 30oC. 15 FAN8732G/FAN8732BG/FAN8732CG 7. FG OUTPUT FAN8732G generates FG1X, meanwhile FAN8732BG/CG generates FG3X 8. PWM Carrier Frequency PWM carrier frequency is made from charging and discharging a capacitor which should be connected to osc(#42) pin. You can get typical pwm carrier frequency from below table. capacitor[pF] 820 680 330 220 180 150 120 Carrier frequency[KHz] 28 32 65 90 110 143 179 9. Hall Sensor Connection Vcc Vcc HALL 1 HALL 1 HALL 2 HALL 3 HALL 2 HALL 3 23 VH 16 23 VH FAN8732G/FAN8732BG/FAN8732CG 10. Spindle Part Input-output Timing Chart H1 + H2 + H3 + A1 output current (H1 -)+(H2 +) A1 output voltage A2 output current (H2 -)+(H3 +) A2 output voltage A3 output current (H3 -)+(H1 +) A3 output voltage The waveforms are different in accordance with motor types. 17 FAN8732G/FAN8732BG/FAN8732CG Typical Application Circuits Sled1 1 IN4 OSC 42 2 IN5 MUTE 41 Vref Sled2 Vref 3 PVCC3 4 CS2 IN3 Mute Selection Loading 40 Vref PVCC3 PVCC1 39 PVCC1 5 DO5+ SB 38 6 DO5- DO3- 37 Short Brkae Selection M 7 3Phase BLDC motor M 8 CS1 9 DO4+ 10 DO4- 11 PGND2 12 W 13 V 14 U 15 DO3+ 36 PGND3 CS3 16 HW- 17 HW+ 18 HV- 19 HV+ 20 HU- 21 HU+ HALL-W FAN8732G/FAN8732BG/ FAN8732CG SLED (stepping) MOTOR DO1- 35 DO1+ 34 PGND1 33 SVCC 32 DO2+ 31 DO2- 30 SGND LOADING MOTOR FOCUS ACTUATOR SVCC TRACKING ACTUATOR 29 IN2 28 Tracking IN1 27 Focus SPIN 26 Spindle VREF 25 Vref (typically 1.65V) HALL-V FG VH 24 23 HALL-U PVCC2 22 PVCC2 18 FAN8732G/FAN8732BG/FAN8732CG 19 FAN8732G/FAN8732BG/FAN8732CG DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 8/18/03 0.0m 001 Stock#DSxxxxxxxx 2003 Fairchild Semiconductor Corporation