PD - 95936B IRFB4610PbF IRFS4610PbF IRFSL4610PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits l Lead-Free HEXFET® Power MOSFET D G S Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability VDSS RDS(on) typ. max. ID S GD S D G D2Pak IRFS4610PbF TO-262 IRFSL4610PbF S D G TO-220AB IRFB4610PbF 100V 11m: 14m: 73A Absolute Maximum Ratings Symbol Parameter Max. Units 73 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 52 IDM Pulsed Drain Current 290 PD @TC = 25°C Maximum Power Dissipation VGS dV/dt TJ Peak Diode Recovery 7.6 TSTG Storage Temperature Range f 190 W Linear Derating Factor 1.3 Gate-to-Source Voltage ± 20 W/°C V e -55 to + 175 Operating Junction and 300 Soldering Temperature, for 10 seconds (1.6mm from case) x Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy x 10lb in (1.1N m) Mounting torque, 6-32 or M3 screw c V/ns °C d mJ 370 See Fig. 14, 15, 16a, 16b, f A mJ Thermal Resistance Symbol Parameter Typ. Max. ––– 0.77 Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– Junction-to-Ambient, TO-220 ––– 62 ––– 40 j RθJC Junction-to-Case RθCS RθJA RθJA Junction-to-Ambient (PCB Mount) , D2Pak www.irf.com j ij Units °C/W 1 01/23/06 IRF/B/S/SL4610PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.085 ––– 11 14 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 1.5 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 44A V VDS = VGS, ID = 100µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain c f Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance 73 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related) ––– ––– Effective Output Capacitance (Time Related) ––– 90 20 36 18 87 53 70 3550 260 150 330 380 ––– 140 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns pF Conditions VDS = 50V, ID = 44A ID = 44A VDS = 80V VGS = 10V VDD = 65V ID = 44A RG = 5.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V f f h, See Fig.11 g, See Fig. 5 Diode Characteristics Symbol Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 73 ISM (Body Diode) Pulsed Source Current ––– ––– 290 VSD trr (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time c Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.39mH RG = 25Ω, IAS = 44A, VGS =10V. Part not recommended for use above this value. ISD ≤ 44A, di/dt ≤ 660A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 44A, VGS = 0V VR = 85V, ––– 35 53 ns TJ = 25°C IF = 44A TJ = 125°C ––– 42 63 di/dt = 100A/µs ––– 44 66 nC TJ = 25°C TJ = 125°C ––– 65 98 ––– 2.1 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) f S f Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C www.irf.com IRF/B/S/SL4610PbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM 10 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C BOTTOM 100 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 1 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1000.0 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100.0 TJ = 175°C 10.0 TJ = 25°C 1.0 VDS = 25V ≤ 60µs PULSE WIDTH 0.1 2.0 3.0 4.0 5.0 6.0 7.0 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd 4000 Ciss 3000 2000 1000 Coss Crss 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com ID= 44A VDS = 80V VDS= 50V VDS= 20V 16 12 8 4 0 0 1 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 5000 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 6000 ID = 73A VGS = 10V 2.5 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRF/B/S/SL4610PbF 1000 100.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 TJ = 175°C 10.0 TJ = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 10 1msec 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 2.0 V(BR)DSS , Drain-to-Source Breakdown Voltage ID , Drain Current (A) 80 60 40 20 0 50 75 100 125 150 1000 125 120 115 110 105 100 175 -60 -40 -20 0 TJ , Junction Temperature (°C) 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage EAS, Single Pulse Avalanche Energy (mJ) 2.0 1.5 Energy (µJ) 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 10 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) 1.0 0.5 1600 I D 4.6A 6.3A BOTTOM 44A TOP 1200 800 400 0 0.0 0 20 40 60 80 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 0.1 0.1 100 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRF/B/S/SL4610PbF 1 Thermal Response ( ZthJC ) D = 0.50 0.20 0.10 0.1 0.05 R1 R1 0.02 0.01 τJ 0.01 τJ τ1 R2 R2 τC τ2 τ1 τ Ri (°C/W) τi (sec) 0.4367 0.001016 0.3337 τ2 0.009383 Ci= τi/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 400 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 44A 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRF/B/S/SL4610PbF 16 ID = 1.0A ID = 1.0mA ID = 250µA 4.0 12 ID = 100µA IRRM - (A) VGS(th) Gate threshold Voltage (V) 5.0 3.0 8 IF = 29A VR = 85V 4 2.0 TJ = 125°C TJ = 25°C 0 1.0 -75 -50 -25 0 25 50 75 100 200 300 400 500 600 700 800 900 1000 100 125 150 175 dif / dt - (A / µs) TJ , Temperature ( °C ) Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage Vs. Temperature 16 300 12 QRR - (nC) IRRM - (A) 200 8 100 4 IF = 44A VR = 85V IF = 29A VR = 85V TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 300 QRR - (nC) 200 100 0 IF = 44A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRF/B/S/SL4610PbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRF/B/S/SL4610PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRF/B/S/SL4610PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( www.irf.com 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( 9 IRF/B/S/SL4610PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/ ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 10 3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/ 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com IRF/B/S/SL4610PbF D2Pak (TO-263AB) Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/06 www.irf.com 11