PD - 60024C IR2125Z CURRENT LIMITING SINGLE CHANNEL DRIVER Features n Floating channel designed for bootstrap operation Fully operational to +400V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 12 to 18V n Undervoltage lockout n Current detection and limiting loop to limit driven power transistor current n Error lead indicates fault conditions and pro grams shutdown time n Output in phase with input Product Summary VOFFSET IO+/VOUT VCSth ton/off (typ.) 400V max. 1A / 2A 12 - 18V 230 mv 150 & 150 ns Description The IR2125Z is a high voltage, high speed power MOSFET and IGBT driver with over-current limiting protection circuitry. Proprietary GVIC and latch immune CMOS technologies enable ruggedized minilithic consturction. Logic inputs are compatible with standard CMOS or LSTTL outputs. the ouput driver features a high pulse current buffer stage designed for minimum driver cross-conduction. The protection circuitry detects over-current in the driven power transistor and limits the gate drive voltage. Cycle by cycle shutdown is programmed by an external capacitor which directly controls the time interval between detection of the over-current limiting conditions and latched shutdown. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high or low side configuration which operates up to 400 volts. Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS V HO V CC V ERR V CS V IN dV s/dt PD RqJA TJ TS TL Parameter High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Logic Supply Voltage Error Signal Voltage Current Sense Voltage Logic Input Voltage Allowable Offset Supply Voltage Transient Package Power Dissipation @ TA £ +25°C Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) www.irf.com Min. Max. -0.3 -5 VS - 0.3 -0.3 -0.3 VS - 0.3 -0.3 — — — -55 -55 — VS + 20 400 VB + 0.3 20 VCC + 0.3 VB + 0.3 VCC + 0.3 50 1.0 100 125 150 300 Units V V/ns W °C/W °C 1 5/16/01 IR2125Z Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS offset ratings are tested with all supplies biased at 15V differential. Symbol Parameter Min. Max. Units VB VS VHO VCC VIN VERR VCS High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Logic Input Voltage Error Signal Voltage Current Sense Signal Voltage VS + 12 -5 VS 12 VSS VSS VS VS + 18 400 VB 18 VCC VCC VB V Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, and CL = 3300 PF and Ta = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3 through 6. Tj = 25°C Symbol Parameter ton Turn-On Propagation Delay toff Min. Typ. Tj = -55 to 125°C Max. Min. Max. Units — 150 200 — 270 Turn-Off Propagation Delay — 150 300 — 330 tr Turn-On Rise Time — 43 60 — 80 tf Turn-Off Fall Time — 26 35 — 50 CS to output shutdown propagation — 0.7 1.2 — 1.4 t cs ns Test Conditions VS = 0V to 400V CL = 3300pf delay tsd Shutdown Propagation Delay — 1.7 2.2 — 2.5 terr CS to ERR pull-up propagation time — 9 22 — 25 µs VS = 0V TO 400V Cerr= 270pf Typical Connection up to 400V V CC IN 2 V CC IN VB OUT ERR CS COM VS TO LOAD www.irf.com IR2125Z Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and Ta = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM . VO and IO parameters are referenced to VS. Tj = 25°C Tj = -55 to 125°C Symbol Parameter Min. Typ. Max. Min. Max. Units Test Conditions ILK Offset Supply Leakage Current — — 50 — 250 VB = VS = 400V IQBS Quiescent VBS Supply Current — 400 1000 — 1300 IN = CS = 0V, or 5V IQCC Quiescent VCC Supply Current — 700 1200 — 1500 IN = CS = 0V, or 5V IIN+ Logic “1” Input Bias Current — 4 25 — 30 IINICS+ ICS- Logic “0” Input Bias Current — — 1.0 — 1.0 IN = 0V “High” CS Bias Current — 6 15 — 30 CS = 3V “Low” CS Bias Current — — 1.0 — 1.0 CS = 0V V IH Logic “1” Input Voltage — — — 3.0 — V IL Logic “0” Input Voltage — — — — 0.8 + Logic “1” ERR Input Voltage — — — 2.2 — V ERR - Logic “0” ERR Input Voltage — — — — 0.8 VERR VCSTH+ CS Input Positive Going Threshold 150 230 320 — — - CS Input Positive Going Threshold 130 200 300 — — VBS Supply Overvoltage Positive 8.5 9.3 10 — — VBS Supply Undervoltage Negative 7.7 8.5 9.0 — — Going Threshold VBS Supply Overvoltage Positive 19.8 21.5 23 — — 19.1 20.8 22.4 — — 8.3 8.8 9.6 — — 7.3 8.1 8.7 — — 20 21.2 23 — — 19.3 20.7 22.5 — — 40 100 130 — — 8.0 15 — — — VCSTH VBSUV+ µA IN = 5V VCC = 10 TO 20V V mV 10V < VCC < 20V 10V < VCC < 20V Going Threshold VBSUV - VBSOV+ Going Threshold VBSOV- IERR VBS Supply Undervoltage Negative Going Threshold VCC Supply Overvoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold VCC Supply Overvoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold ERR Timing Charge Current IERR+ ERR Pull-up Current VCCUV+ VCCUV VCCOV+ VCCOV - V µA mA IERRV OH VOL Ron,ON ERR Pull-down Current High Level Output Voltage Low Level Output Voltage Output High on Resistance 16 VB-0.1 — — 30 — — 9 Ron,OFF Output Low on Resistance — 3 www.irf.com — — — — VB -0.1 — VS+0.1 — VS+0.1 — — — — — — V IN = 5V, CS = 3V + ERR < VERR IN = 5V, CS = 3V + ERR > VERR IN = 0V IN = 5V, IO = 0A IN = 0V, IO = 0A Ω 3 IR2125Z HV = 10 to 400 V IN CS < 50 V/ns ERR " HO Figure 2. Floating Supply Voltage Transient Test Circuit Figure 1. Input/Output Timing Diagram 50% 50% 50% CS IN t cs ton toff tr 90% HO tf OUT 90% 90% 10% 10% Figure 3. Switching Time Waveform Definitions Figure 4. ERR Shutdown Waveform Definitions 50% CS terr 50% CS 50% tcs HO 1.8V ERR 90% dt dt = C × Figure 5. CS Shutdown Waveform Definitions 4 dV 1.8V =C× IERR 100 uA Figure 6. CS to ERR Waveform Definitions www.irf.com 500 500 400 400 Turn-On Time (ns) Turn-On Delay Time (ns) IR2125Z 300 200 Max. 300 Max. 200 Typ. Typ. 100 100 0 0 -50 -25 0 25 50 75 100 125 10 12 Figure 7A. Turn-On Time vs. Temperature 16 18 20 Figure 7B. Turn-On Time vs. Voltage 500 500 400 400 Turn-Off Time (ns) Turn-Off Delay Time (ns) 14 VBIAS Supply Voltage (V) Temperature (°C) 300 200 300 Max. 200 Typ. Max. Typ. 100 100 0 0 -50 -25 0 25 50 75 100 125 10 12 Figure 8A. Turn-Off Time vs. Temperature 18 20 5.00 ERR to Output Shutdown Delay Time (µs) ERR to Output Shutdown Delay Time (µs) 16 Figure 8B. Turn-Off Time vs. Voltage 5.00 4.00 3.00 Max. 2.00 14 VBIAS Supply Voltage (V) Temperature (°C) Typ. 1.00 0.00 4.00 3.00 2.00 1.00 Max. Typ. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 9A. ERR to Output Shutdown vs. Temperature www.irf.com 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. ERR to Output Shutdown vs. Voltage 5 IR2125Z 80 80 Turn-On Rise Time (ns) 100 Turn-On Rise Time (ns) 100 60 40 Max. 60 Max. 40 Typ. Typ. 20 20 0 0 -50 -25 0 25 50 75 100 10 125 12 16 18 20 Figure 10B. Turn-On Rise Time vs. Voltage Figure 10A. Turn-On Rise Time vs. Temperature 50 80 40 Turn-Off Fall Time (ns) 100 Turn-Off Fall Time (ns) 14 VBIAS Supply Voltage (V) Temperature (°C) 60 40 Max. 30 20 Max. Typ. 20 10 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 15.0 12.0 12.0 Logic "1" Input Threshold (V) 15.0 Logic "1" Input Threshold (V) 16 18 20 Figure 11B. Turn-Off Fall Time vs. Voltage Figure 11A. Turn-Off Fall Time vs. Temperature Min. 9.0 6.0 3.0 9.0 6.0 Min. 3.0 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 12A. Logic “1” Input Threshold vs. Temperature 6 14 VBIAS Supply Voltage (V) 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 12B. Logic “1” Input Threshold vs. Voltage www.irf.com IR2125Z 20.0 CS to ERR Pull-Up Delay Time (µs) CS to ERR Pull-Up Delay Time (µs) 20.0 16.0 Max. 12.0 Typ. 8.0 4.0 16.0 12.0 Max. T yp. 8.0 4.0 0.0 0.0 -50 -25 0 25 50 75 100 10 125 12 5.00 5.00 4.00 4.00 3.00 Min. 2.00 1.00 18 20 3.00 Min. 2.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Logic Supply Voltage (V) Figure 14A. Logic “1” Input Threshold vs. Temperature Figure 14B. Logic “1” Input Threshold vs. Voltage 5.00 5.00 4.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) 16 Figure 13B. CS to ERR Pull-Up vs. Voltage Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) Figure 13A. CS to ERR Pull-Up vs. Temperature 3.00 2.00 1.00 14 VBIAS Supply Voltage (V) Temperature (°C) 3.00 2.00 1.00 Max. 0.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 15A. Logic “0” Input Threshold vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 15B. Logic “0” Input Threshold vs. Voltage 7 IR2125Z 500 CS Input Positive Going Threshold (mV) CS Input Positive Going Threshold (mV) 500 400 Max. 300 Typ. 200 Min. 100 400 Max. 300 Typ. 200 Min. 100 0 0 -50 -25 0 25 50 75 100 10 125 12 Figure 16A. CS Input Threshold (+) vs. Temperature CS Input Negative Going Threshold (mV) CS Input Negative Going Threshold (mV) 18 20 500 400 300 Max. Typ. 200 Min. 100 400 300 Max. Typ. 200 Min. 100 0 0 -50 -25 0 25 50 75 100 10 125 12 14 16 18 20 VBS Floating Supply Voltage (V) Temperature (°C) Figure 17B. CS Input Threshold (-) vs. Voltage Figure 17A. CS Input Threshold (-) vs. Temperature 1.00 1.00 0.80 0.80 High Level Output Voltage (V) High Level Output Voltage (V) 16 Figure 16B. CS Input Threshold (+) vs. Voltage 500 0.60 0.40 0.60 0.40 0.20 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 18A. High Level Output vs. Temperature 8 14 VBS Floating Supply Voltage (V) Temperature (°C) 125 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 18B. High Level Output vs. Voltage www.irf.com 1.00 1.00 0.80 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) IR2125Z 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Temperature (°C) Figure 19B. Low Level Output vs. Voltage 500 500 400 400 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) Figure 19A. Low Level Output vs. Temperature 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 125 0 100 Temperature (°C) 200 300 400 500 VB Boost Voltage (V) Figure 20B. Offset Supply Current vs. Voltage 2.00 2.00 1.60 1.60 VBS Supply Current (mA) VBS Supply Current (mA) Figure 20A. Offset Supply Current vs. Temperature 1.20 Max. 0.80 0.40 1.20 0.80 0.40 Typ. Max. Typ. 0.00 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 21A. VBS Supply Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 21B. VBS Supply Current vs. Voltage 9 2.00 2.00 1.60 1.60 VCC Supply Current (mA) VCC Supply Current (mA) IR2125Z Max. 1.20 0.80 Typ. 1.20 Max. 0.80 Typ. 0.40 0.40 0.00 0.00 -50 -25 0 25 50 75 100 10 125 12 16 18 20 Figure 22B. VCC Supply Current vs. Voltage Figure 22A. VCC Supply Current vs. Temperature 25 25 20 20 Logic "1" Input Bias Current (µA) Logic "1" Input Bias Current (µA) 14 VCC Logic Supply Voltage (V) Temperature (°C) 15 10 Max. 5 15 Max. 10 Typ. 5 Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 5.00 5.00 4.00 4.00 3.00 2.00 Max. 18 20 3.00 2.00 1.00 Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 24A. Logic “0” Input Current vs. Temperature 10 16 Figure 23B. Logic “1” Input Current vs. Voltage Logic "0" Input Bias Current (µA) Logic "0" Input Bias Current (µA) Figure 23A. Logic “1” Input Current vs. Temperature 1.00 14 VCC Logic Supply Voltage (V) Temperature (°C) 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 24B. Logic “0” Input Current vs. Voltage www.irf.com 25.0 25.0 20.0 20.0 "High" CS Bias Current (µA) "High" CS Bias Current (µA) IR2125Z 15.0 10.0 Max. 5.0 Typ. 15.0 10.0 Max. Typ. 5.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 5.00 5.00 4.00 4.00 3.00 2.00 Max. 18 20 3.00 2.00 1.00 1.00 Max. 0.00 0.00 -50 -25 0 25 50 75 100 10 125 12 14 16 18 20 VBS Floating Supply Voltage (V) Temperature (°C) Figure 26A. “Low” CS Bias Current vs. Temperature Figure 26B. “Low” CS Bias Current vs. Voltage 11.0 11.0 Max. VBS Undervoltage Lockout - (V) VBS Undervoltage Lockout + (V) 16 Figure 25B. “High” CS Bias Current vs. Voltage "Low" CS Bias Current (µA) "Low" CS Bias Current (µA) Figure 25A. “High” CS Bias Current vs. Temperature 10.0 14 VBS Floating Supply Voltage (V) Temperature (°C) Typ. 9.0 Min. 8.0 10.0 9.0 Max. Typ. 8.0 Min. 7.0 7.0 6.0 6.0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 27. VBS Undervoltage (+) vs. Temperature www.irf.com 125 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 28. VBS Undervoltage (-) vs. Temperature 11 IR2125Z 11.0 10.0 10.0 VCC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) 11.0 Max. 9.0 Typ. Min. 8.0 9.0 Max. Typ. 8.0 Min. 7.0 7.0 6.0 6.0 -50 -25 0 25 50 75 100 -50 125 -25 0 250 250 200 200 150 Max. Typ. Min. 50 75 100 125 150 Max. Typ. 100 Min. 50 0 0 -50 -25 0 25 50 75 100 10 125 12 Figure 31A. ERR Timing Charge Current vs. Temperature 16 18 20 Figure 31B. ERR Timing Charge Current vs. Voltage 25.0 25.0 20.0 20.0 ERR Pull-Up Current (µA) Typ. 15.0 10.0 14 VCC Logic Supply Voltage (V) Temperature (°C) ERR Pull-Up Current (µA) 50 Figure 30. VCC Undervoltage (-) vs. Temperature ERR Timing Charge Current (µA) ERR Timing Charge Current (µA) Figure 29. VCC Undervoltage (+) vs. Temperature 100 25 Temperature (°C) Temperature (°C) Min. 15.0 Typ. 10.0 Min. 5.0 5.0 0.0 0.0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 32A. ERR Pull-Up Current vs. Temperature 12 125 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 32B. ERR Pull-Up Current vs. Voltage www.irf.com IR2125Z 50 50 40 ERR Pull-Down Current (µA) ERR Pull-Down Current (µA) 40 Typ. 30 Min. 20 10 30 Typ. 20 Max. 10 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 33A. ERR Pull-Down Current vs.Temperature Output Source Current (A) Output Source Current (A) 20 2.00 Typ. Min. 1.00 0.50 1.50 1.00 Typ. Min. 0.50 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBS Floating Supply Voltage (V) Figure 34A. Output Source Current vs.Temperature Figure 34B. Output Source Current vs. Voltage 5.00 5.00 4.00 Typ. Output Sink Current (A) Output Sink Current (A) 18 2.50 1.50 4.00 16 Figure 33B. ERR Pull-Down Current vs. Voltage 2.50 2.00 14 VCC Logic Supply Voltage (V) 3.00 Min. 2.00 3.00 Typ. 2.00 Min. 1.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 35A. Output Sink Current vs.Temperature www.irf.com 125 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 35B. Output Sink Current vs. Voltage 13 IR2125Z 500 500 VCC = 15V VCC = 15V 400 Turn-Off Time (ns) Turn-On Time (ns) 400 300 200 Typ. 100 300 200 Typ. 100 0 0 5 7.5 10 12.5 15 5 7.5 Input Voltage (V) 10 12.5 15 Input Voltage (V) Figure 36A. Turn-On Time vs. Input Voltage Figure 36B. Turn-Off Time vs. Input Voltage 0.00 VS Offset Supply Voltage (V) -3.00 Typ. -6.00 -9.00 -12.00 -15.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 37. Maximum VS Negative Offset vs. Supply Voltage 14 www.irf.com IR2125Z Functional Block Diagram V V B CC UV DETECT UV DETECT UP SHIFTERS HV LEVEL SHIFT R PULSE FILTER IN LATCHED SHUTDOWN 1.8V PULSE GEN Q PRE DRIVER BUFFER R HO S VB V S 0.23V ERR Q 1.8V - PULSE GEN ERROR TIMING R S + CS AMPLIFER PULSE FILTER HV LEVEL SHIFT DOWN SHIFTERS 500ns BLANK COMPARAT OR COM Lead Definitions Symbol Description VCC IN ERR COM VB HO VS CS Logic and gate drive supply Logic input for gate driver output (HO), in phase with HO Serves multiple functions; status reporting, linear mode timing and cycle by cycle logic shutdown Logic ground High side floating supply High side gate drive output High side floating supply return Current sense input to current sense comparator www.irf.com 15 IR2125Z Case Outline and Dimensions- MO-036AA IR2125Z IR2153Z IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/01 16 www.irf.com