IRF IR2125Z

PD - 60024C
IR2125Z
CURRENT LIMITING SINGLE CHANNEL DRIVER
Features
n Floating channel designed for bootstrap
operation
Fully operational to +400V
Tolerant to negative transient voltage
dV/dt immune
n Gate drive supply range from 12 to 18V
n Undervoltage lockout
n Current detection and limiting loop to limit driven
power transistor current
n Error lead indicates fault conditions and pro
grams shutdown time
n Output in phase with input
Product Summary
VOFFSET
IO+/VOUT
VCSth
ton/off (typ.)
400V max.
1A / 2A
12 - 18V
230 mv
150 & 150 ns
Description
The IR2125Z is a high voltage, high speed power
MOSFET and IGBT driver with over-current limiting
protection circuitry. Proprietary GVIC and latch immune
CMOS technologies enable ruggedized minilithic
consturction. Logic inputs are compatible with standard
CMOS or LSTTL outputs. the ouput driver features a high
pulse current buffer stage designed for minimum driver
cross-conduction.
The protection circuitry detects over-current in the driven
power transistor and limits the gate drive voltage. Cycle
by cycle shutdown is programmed by an external
capacitor which directly controls the time interval
between detection of the over-current limiting conditions
and latched shutdown. The floating channel can be used
to drive an N-channel power MOSFET or IGBT in the high
or low side configuration which operates up to 400 volts.
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage
parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings
are measured under board mounted and still air conditions.
Symbol
VB
VS
V HO
V CC
V ERR
V CS
V IN
dV s/dt
PD
RqJA
TJ
TS
TL
Parameter
High Side Floating Supply Voltage
High Side Floating Supply Offset Voltage
High Side Floating Output Voltage
Logic Supply Voltage
Error Signal Voltage
Current Sense Voltage
Logic Input Voltage
Allowable Offset Supply Voltage Transient
Package Power Dissipation @ TA £ +25°C
Thermal Resistance, Junction to Ambient
Junction Temperature
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
www.irf.com
Min.
Max.
-0.3
-5
VS - 0.3
-0.3
-0.3
VS - 0.3
-0.3
—
—
—
-55
-55
—
VS + 20
400
VB + 0.3
20
VCC + 0.3
VB + 0.3
VCC + 0.3
50
1.0
100
125
150
300
Units
V
V/ns
W
°C/W
°C
1
5/16/01
IR2125Z
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be
used within the recommended conditions. The VS offset ratings are tested with all supplies biased at
15V differential.
Symbol
Parameter
Min.
Max.
Units
VB
VS
VHO
VCC
VIN
VERR
VCS
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
High Side Floating Output Voltage
Low Side Fixed Supply Voltage
Logic Input Voltage
Error Signal Voltage
Current Sense Signal Voltage
VS + 12
-5
VS
12
VSS
VSS
VS
VS + 18
400
VB
18
VCC
VCC
VB
V
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, and CL = 3300 PF and Ta = 25°C unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3 through 6.
Tj = 25°C
Symbol
Parameter
ton
Turn-On Propagation Delay
toff
Min.
Typ.
Tj =
-55 to 125°C
Max. Min. Max. Units
—
150
200
—
270
Turn-Off Propagation Delay
—
150
300
—
330
tr
Turn-On Rise Time
—
43
60
—
80
tf
Turn-Off Fall Time
—
26
35
—
50
CS to output shutdown propagation
—
0.7
1.2
—
1.4
t cs
ns
Test Conditions
VS = 0V to 400V
CL = 3300pf
delay
tsd
Shutdown Propagation Delay
—
1.7
2.2
—
2.5
terr
CS to ERR pull-up propagation time
—
9
22
—
25
µs
VS = 0V TO 400V
Cerr= 270pf
Typical Connection
up to 400V
V CC
IN
2
V CC
IN
VB
OUT
ERR
CS
COM
VS
TO
LOAD
www.irf.com
IR2125Z
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and Ta = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are
referenced to COM . VO and IO parameters are referenced to VS.
Tj = 25°C
Tj =
-55 to 125°C
Symbol
Parameter
Min. Typ. Max. Min. Max. Units Test Conditions
ILK
Offset Supply Leakage Current
—
—
50
—
250
VB = VS = 400V
IQBS
Quiescent VBS Supply Current
—
400
1000
—
1300
IN = CS = 0V, or 5V
IQCC
Quiescent VCC Supply Current
—
700
1200
—
1500
IN = CS = 0V, or 5V
IIN+
Logic “1” Input Bias Current
—
4
25
—
30
IINICS+
ICS-
Logic “0” Input Bias Current
—
—
1.0
—
1.0
IN = 0V
“High” CS Bias Current
—
6
15
—
30
CS = 3V
“Low” CS Bias Current
—
—
1.0
—
1.0
CS = 0V
V IH
Logic “1” Input Voltage
—
—
—
3.0
—
V IL
Logic “0” Input Voltage
—
—
—
—
0.8
+
Logic “1” ERR Input Voltage
—
—
—
2.2
—
V ERR -
Logic “0” ERR Input Voltage
—
—
—
—
0.8
VERR
VCSTH+
CS Input Positive Going Threshold
150
230
320
—
—
-
CS Input Positive Going Threshold
130
200
300
—
—
VBS Supply Overvoltage Positive
8.5
9.3
10
—
—
VBS Supply Undervoltage Negative
7.7
8.5
9.0
—
—
Going Threshold
VBS Supply Overvoltage Positive
19.8
21.5
23
—
—
19.1
20.8
22.4
—
—
8.3
8.8
9.6
—
—
7.3
8.1
8.7
—
—
20
21.2
23
—
—
19.3
20.7
22.5
—
—
40
100
130
—
—
8.0
15
—
—
—
VCSTH
VBSUV+
µA
IN = 5V
VCC = 10 TO 20V
V
mV
10V < VCC < 20V
10V < VCC < 20V
Going Threshold
VBSUV
-
VBSOV+
Going Threshold
VBSOV-
IERR
VBS Supply Undervoltage Negative
Going Threshold
VCC Supply Overvoltage Positive
Going Threshold
VCC Supply Undervoltage Negative
Going Threshold
VCC Supply Overvoltage Positive
Going Threshold
VCC Supply Undervoltage Negative
Going Threshold
ERR Timing Charge Current
IERR+
ERR Pull-up Current
VCCUV+
VCCUV VCCOV+
VCCOV -
V
µA
mA
IERRV OH
VOL
Ron,ON
ERR Pull-down Current
High Level Output Voltage
Low Level Output Voltage
Output High on Resistance
16
VB-0.1
—
—
30
—
—
9
Ron,OFF
Output Low on Resistance
—
3
www.irf.com
—
—
—
— VB -0.1 —
VS+0.1 —
VS+0.1
—
—
—
—
—
—
V
IN = 5V, CS = 3V
+
ERR < VERR
IN = 5V, CS = 3V
+
ERR > VERR
IN = 0V
IN = 5V, IO = 0A
IN = 0V, IO = 0A
Ω
3
IR2125Z
HV = 10 to 400 V
IN
CS
< 50 V/ns
ERR
"
HO
Figure 2. Floating Supply Voltage Transient Test Circuit
Figure 1. Input/Output Timing Diagram
50%
50%
50%
CS
IN
t cs
ton
toff
tr
90%
HO
tf
OUT
90%
90%
10%
10%
Figure 3. Switching Time Waveform Definitions
Figure 4. ERR Shutdown Waveform Definitions
50%
CS
terr
50%
CS
50%
tcs
HO
1.8V
ERR
90%
dt
dt = C ×
Figure 5. CS Shutdown Waveform Definitions
4
dV
1.8V
=C×
IERR
100 uA
Figure 6. CS to ERR Waveform Definitions
www.irf.com
500
500
400
400
Turn-On Time (ns)
Turn-On Delay Time (ns)
IR2125Z
300
200
Max.
300
Max.
200
Typ.
Typ.
100
100
0
0
-50
-25
0
25
50
75
100
125
10
12
Figure 7A. Turn-On Time vs. Temperature
16
18
20
Figure 7B. Turn-On Time vs. Voltage
500
500
400
400
Turn-Off Time (ns)
Turn-Off Delay Time (ns)
14
VBIAS Supply Voltage (V)
Temperature (°C)
300
200
300
Max.
200
Typ.
Max.
Typ.
100
100
0
0
-50
-25
0
25
50
75
100
125
10
12
Figure 8A. Turn-Off Time vs. Temperature
18
20
5.00
ERR to Output Shutdown Delay Time (µs)
ERR to Output Shutdown Delay Time (µs)
16
Figure 8B. Turn-Off Time vs. Voltage
5.00
4.00
3.00
Max.
2.00
14
VBIAS Supply Voltage (V)
Temperature (°C)
Typ.
1.00
0.00
4.00
3.00
2.00
1.00
Max.
Typ.
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 9A. ERR to Output Shutdown vs. Temperature
www.irf.com
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 9B. ERR to Output Shutdown vs. Voltage
5
IR2125Z
80
80
Turn-On Rise Time (ns)
100
Turn-On Rise Time (ns)
100
60
40
Max.
60
Max.
40
Typ.
Typ.
20
20
0
0
-50
-25
0
25
50
75
100
10
125
12
16
18
20
Figure 10B. Turn-On Rise Time vs. Voltage
Figure 10A. Turn-On Rise Time vs. Temperature
50
80
40
Turn-Off Fall Time (ns)
100
Turn-Off Fall Time (ns)
14
VBIAS Supply Voltage (V)
Temperature (°C)
60
40
Max.
30
20
Max.
Typ.
20
10
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
15.0
12.0
12.0
Logic "1" Input Threshold (V)
15.0
Logic "1" Input Threshold (V)
16
18
20
Figure 11B. Turn-Off Fall Time vs. Voltage
Figure 11A. Turn-Off Fall Time vs. Temperature
Min.
9.0
6.0
3.0
9.0
6.0
Min.
3.0
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 12A. Logic “1” Input Threshold vs. Temperature
6
14
VBIAS Supply Voltage (V)
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 12B. Logic “1” Input Threshold vs. Voltage
www.irf.com
IR2125Z
20.0
CS to ERR Pull-Up Delay Time (µs)
CS to ERR Pull-Up Delay Time (µs)
20.0
16.0
Max.
12.0
Typ.
8.0
4.0
16.0
12.0
Max.
T yp.
8.0
4.0
0.0
0.0
-50
-25
0
25
50
75
100
10
125
12
5.00
5.00
4.00
4.00
3.00
Min.
2.00
1.00
18
20
3.00
Min.
2.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Logic Supply Voltage (V)
Figure 14A. Logic “1” Input Threshold vs. Temperature
Figure 14B. Logic “1” Input Threshold vs. Voltage
5.00
5.00
4.00
4.00
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
16
Figure 13B. CS to ERR Pull-Up vs. Voltage
Logic "1" Input Threshold (V)
Logic "1" Input Threshold (V)
Figure 13A. CS to ERR Pull-Up vs. Temperature
3.00
2.00
1.00
14
VBIAS Supply Voltage (V)
Temperature (°C)
3.00
2.00
1.00
Max.
0.00
Max.
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 15A. Logic “0” Input Threshold vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Logic Supply Voltage (V)
Figure 15B. Logic “0” Input Threshold vs. Voltage
7
IR2125Z
500
CS Input Positive Going Threshold (mV)
CS Input Positive Going Threshold (mV)
500
400
Max.
300
Typ.
200
Min.
100
400
Max.
300
Typ.
200
Min.
100
0
0
-50
-25
0
25
50
75
100
10
125
12
Figure 16A. CS Input Threshold (+) vs. Temperature
CS Input Negative Going Threshold (mV)
CS Input Negative Going Threshold (mV)
18
20
500
400
300
Max.
Typ.
200
Min.
100
400
300
Max.
Typ.
200
Min.
100
0
0
-50
-25
0
25
50
75
100
10
125
12
14
16
18
20
VBS Floating Supply Voltage (V)
Temperature (°C)
Figure 17B. CS Input Threshold (-) vs. Voltage
Figure 17A. CS Input Threshold (-) vs. Temperature
1.00
1.00
0.80
0.80
High Level Output Voltage (V)
High Level Output Voltage (V)
16
Figure 16B. CS Input Threshold (+) vs. Voltage
500
0.60
0.40
0.60
0.40
0.20
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 18A. High Level Output vs. Temperature
8
14
VBS Floating Supply Voltage (V)
Temperature (°C)
125
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 18B. High Level Output vs. Voltage
www.irf.com
1.00
1.00
0.80
0.80
Low Level Output Voltage (V)
Low Level Output Voltage (V)
IR2125Z
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Temperature (°C)
Figure 19B. Low Level Output vs. Voltage
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
Figure 19A. Low Level Output vs. Temperature
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
125
0
100
Temperature (°C)
200
300
400
500
VB Boost Voltage (V)
Figure 20B. Offset Supply Current vs. Voltage
2.00
2.00
1.60
1.60
VBS Supply Current (mA)
VBS Supply Current (mA)
Figure 20A. Offset Supply Current vs. Temperature
1.20
Max.
0.80
0.40
1.20
0.80
0.40
Typ.
Max.
Typ.
0.00
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 21A. VBS Supply Current vs. Temperature
www.irf.com
125
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 21B. VBS Supply Current vs. Voltage
9
2.00
2.00
1.60
1.60
VCC Supply Current (mA)
VCC Supply Current (mA)
IR2125Z
Max.
1.20
0.80
Typ.
1.20
Max.
0.80
Typ.
0.40
0.40
0.00
0.00
-50
-25
0
25
50
75
100
10
125
12
16
18
20
Figure 22B. VCC Supply Current vs. Voltage
Figure 22A. VCC Supply Current vs. Temperature
25
25
20
20
Logic "1" Input Bias Current (µA)
Logic "1" Input Bias Current (µA)
14
VCC Logic Supply Voltage (V)
Temperature (°C)
15
10
Max.
5
15
Max.
10
Typ.
5
Typ.
0
0
-50
-25
0
25
50
75
100
125
10
12
5.00
5.00
4.00
4.00
3.00
2.00
Max.
18
20
3.00
2.00
1.00
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 24A. Logic “0” Input Current vs. Temperature
10
16
Figure 23B. Logic “1” Input Current vs. Voltage
Logic "0" Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
Figure 23A. Logic “1” Input Current vs. Temperature
1.00
14
VCC Logic Supply Voltage (V)
Temperature (°C)
10
12
14
16
18
20
VCC Logic Supply Voltage (V)
Figure 24B. Logic “0” Input Current vs. Voltage
www.irf.com
25.0
25.0
20.0
20.0
"High" CS Bias Current (µA)
"High" CS Bias Current (µA)
IR2125Z
15.0
10.0
Max.
5.0
Typ.
15.0
10.0
Max.
Typ.
5.0
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
5.00
5.00
4.00
4.00
3.00
2.00
Max.
18
20
3.00
2.00
1.00
1.00
Max.
0.00
0.00
-50
-25
0
25
50
75
100
10
125
12
14
16
18
20
VBS Floating Supply Voltage (V)
Temperature (°C)
Figure 26A. “Low” CS Bias Current vs. Temperature
Figure 26B. “Low” CS Bias Current vs. Voltage
11.0
11.0
Max.
VBS Undervoltage Lockout - (V)
VBS Undervoltage Lockout + (V)
16
Figure 25B. “High” CS Bias Current vs. Voltage
"Low" CS Bias Current (µA)
"Low" CS Bias Current (µA)
Figure 25A. “High” CS Bias Current vs. Temperature
10.0
14
VBS Floating Supply Voltage (V)
Temperature (°C)
Typ.
9.0
Min.
8.0
10.0
9.0
Max.
Typ.
8.0
Min.
7.0
7.0
6.0
6.0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 27. VBS Undervoltage (+) vs. Temperature
www.irf.com
125
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 28. VBS Undervoltage (-) vs. Temperature
11
IR2125Z
11.0
10.0
10.0
VCC Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
11.0
Max.
9.0
Typ.
Min.
8.0
9.0
Max.
Typ.
8.0
Min.
7.0
7.0
6.0
6.0
-50
-25
0
25
50
75
100
-50
125
-25
0
250
250
200
200
150
Max.
Typ.
Min.
50
75
100
125
150
Max.
Typ.
100
Min.
50
0
0
-50
-25
0
25
50
75
100
10
125
12
Figure 31A. ERR Timing Charge Current vs. Temperature
16
18
20
Figure 31B. ERR Timing Charge Current vs. Voltage
25.0
25.0
20.0
20.0
ERR Pull-Up Current (µA)
Typ.
15.0
10.0
14
VCC Logic Supply Voltage (V)
Temperature (°C)
ERR Pull-Up Current (µA)
50
Figure 30. VCC Undervoltage (-) vs. Temperature
ERR Timing Charge Current (µA)
ERR Timing Charge Current (µA)
Figure 29. VCC Undervoltage (+) vs. Temperature
100
25
Temperature (°C)
Temperature (°C)
Min.
15.0
Typ.
10.0
Min.
5.0
5.0
0.0
0.0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 32A. ERR Pull-Up Current vs. Temperature
12
125
10
12
14
16
18
20
VCC Logic Supply Voltage (V)
Figure 32B. ERR Pull-Up Current vs. Voltage
www.irf.com
IR2125Z
50
50
40
ERR Pull-Down Current (µA)
ERR Pull-Down Current (µA)
40
Typ.
30
Min.
20
10
30
Typ.
20
Max.
10
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 33A. ERR Pull-Down Current
vs.Temperature
Output Source Current (A)
Output Source Current (A)
20
2.00
Typ.
Min.
1.00
0.50
1.50
1.00
Typ.
Min.
0.50
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 34A. Output Source Current
vs.Temperature
Figure 34B. Output Source Current vs. Voltage
5.00
5.00
4.00
Typ.
Output Sink Current (A)
Output Sink Current (A)
18
2.50
1.50
4.00
16
Figure 33B. ERR Pull-Down Current vs. Voltage
2.50
2.00
14
VCC Logic Supply Voltage (V)
3.00
Min.
2.00
3.00
Typ.
2.00
Min.
1.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 35A. Output Sink Current vs.Temperature
www.irf.com
125
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 35B. Output Sink Current vs. Voltage
13
IR2125Z
500
500
VCC = 15V
VCC = 15V
400
Turn-Off Time (ns)
Turn-On Time (ns)
400
300
200
Typ.
100
300
200
Typ.
100
0
0
5
7.5
10
12.5
15
5
7.5
Input Voltage (V)
10
12.5
15
Input Voltage (V)
Figure 36A. Turn-On Time vs. Input Voltage
Figure 36B. Turn-Off Time vs. Input Voltage
0.00
VS Offset Supply Voltage (V)
-3.00
Typ.
-6.00
-9.00
-12.00
-15.00
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 37. Maximum VS Negative Offset vs. Supply
Voltage
14
www.irf.com
IR2125Z
Functional Block Diagram
V
V
B
CC
UV
DETECT
UV
DETECT
UP
SHIFTERS
HV
LEVEL
SHIFT
R
PULSE
FILTER
IN
LATCHED
SHUTDOWN
1.8V
PULSE
GEN
Q
PRE
DRIVER
BUFFER
R
HO
S
VB
V
S
0.23V
ERR
Q
1.8V
-
PULSE
GEN
ERROR
TIMING
R
S
+
CS
AMPLIFER
PULSE
FILTER
HV
LEVEL
SHIFT
DOWN
SHIFTERS
500ns
BLANK
COMPARAT OR
COM
Lead Definitions
Symbol Description
VCC
IN
ERR
COM
VB
HO
VS
CS
Logic and gate drive supply
Logic input for gate driver output (HO), in phase with HO
Serves multiple functions; status reporting, linear mode timing and cycle by cycle logic
shutdown
Logic ground
High side floating supply
High side gate drive output
High side floating supply return
Current sense input to current sense comparator
www.irf.com
15
IR2125Z
Case Outline and Dimensions- MO-036AA
IR2125Z
IR2153Z
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 05/01
16
www.irf.com