Features • • • • • • • • • • Single Supply for Read and Write: 2.7 to 3.6V Fast Read Access Time – 70 ns Internal Program Control and Timer Sector Architecture – One 16K Bytes Boot Block with Programming Lockout – Two 8K Bytes Parameter Blocks – Eight Main Memory Blocks (One 32K Bytes, Seven 64K Bytes) Fast Erase Cycle Time – 7 Seconds Byte-by-Byte Programming – 30 µs/Byte Typical Hardware Data Protection DATA Polling for End of Program Detection Low Power Dissipation – 15 mA Active Current – 50 µA CMOS Standby Current Typical 10,000 Write Cycles 4-megabit (512K x 8) Single 2.7-volt Battery-Voltage™ Description The AT49BV040A is a 2.7-volt-only in-system reprogrammable Flash Memory. Its 4 megabits of memory is organized as 524,288 words by 8 bits. Manufactured with Atmel’s advanced nonvolatile CMOS technology, the device offers access times to 70 ns with power dissipation of just 54 mW over the commercial temperature range. Pin Name Function A0 - A18 Addresses CE Chip Enable OE Output Enable WE Write Enable I/O0 - I/O7 Data Inputs/Outputs 4 3 2 1 32 31 30 A12 A15 A16 A18 VCC WE A17 PLCC Top View 29 28 27 26 25 24 23 22 21 A11 A9 A8 A13 A14 A17 WE VCC A18 A16 A15 A12 A7 A6 A5 A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 OE A10 CE I/O7 I/O6 I/O5 I/O4 I/O3 GND I/O2 I/O1 I/O0 A0 A1 A2 A3 A14 A13 A8 A9 A11 OE A10 CE I/O7 I/O1 I/O2 GND I/O3 I/O4 I/O5 I/O6 14 15 16 17 18 19 20 5 6 7 8 9 10 11 12 13 AT49BV040A VSOP Top View (8 x 14 mm) or TSOP Top View (8 x 20 mm) Type 1 Pin Configurations A7 A6 A5 A4 A3 A2 A1 A0 I/O0 Flash Memory Rev. 3358A–FLASH–6/03 1 When the device is deselected, the CMOS standby current is less than 50 µA. To allow for simple in-system reprogrammability, the AT49BV040A does not require high input voltages for programming. Three-volt-only commands determine the read and programming operation of the device. Reading data out of the device is similar to reading from an EPROM; it has standard CE, OE, and WE inputs to avoid bus contention. Reprogramming the AT49BV040A is performed by erasing a block of data and then programming on a byte by byte basis. The byte programming time is a fast 30 µs. The end of a program cycle can be optionally detected by the DATA polling feature. Once the end of a byte program cycle has been detected, a new access for a read or program can begin. The typical number of program and erase cycles is in excess of 10,000 cycles. The device is erased by executing the erase command sequence; the device internally controls the erase operations. There are two 8K byte parameter block sections, eight main memory blocks, and one boot block. The device has the capability to protect the data in the boot block; this feature is enabled by a command sequence. The 16K-byte boot block section includes a reprogramming lock out feature to provide data integrity. The boot sector is designed to contain user secure code, and when the feature is enabled, the boot sector is permanently protected from being reprogrammed. Block Diagram AT49BV040A DATA INPUTS/OUTPUTS I/O7 - I/O0 VCC GND OE WE CE RESET ADDRESS INPUTS 8 CONTROL LOGIC INPUT/OUTPUT BUFFERS PROGRAM DATA LATCHES Y DECODER Y-GATING X DECODER MAIN MEMORY BLOCK 8 (64K BYTES) MAIN MEMORY BLOCK 7 (64K BYTES) MAIN MEMORY BLOCK 6 (64K BYTES) MAIN MEMORY BLOCK 5 (64K BYTES) MAIN MEMORY BLOCK 4 (64K BYTES) MAIN MEMORY BLOCK 3 (64K BYTES) MAIN MEMORY BLOCK 2 (64K BYTES) MAIN MEMORY BLOCK 1 (32K BYTES) PARAMETER BLOCK 2 (8K BYTES) PARAMETER BLOCK 1 (8K BYTES) BOOT BLOCK (16K BYTES) 2 7FFFF 70000 6FFFF 60000 5FFFF 50000 4FFFF 40000 3FFFF 30000 2FFFF 20000 1FFFF 10000 0FFFF 08000 07FFF 06000 05FFF 04000 03FFF 00000 AT49BV040A 3358A–FLASH–6/03 AT49BV040A Device Operation READ: The AT49BV040A is accessed like an EPROM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever CE or OE is high. This dual-line control gives designers flexibility in preventing bus contention. COMMAND SEQUENCES: When the device is first powered on it will be reset to the read or standby mode depending upon the state of the control line inputs. In order to perform other device functions, a series of command sequences are entered into the device. The command sequences are shown in the Command Definitions table. The command sequences are written by applying a low pulse on the WE or CE input with CE or WE low (respectively) and OE high. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE. Standard microprocessor write timings are used. The address locations used in the command sequences are not affected by entering the command sequences. ERASURE: Before a byte can be reprogrammed, the main memory blocks or parameter blocks which contains the byte must be erased. The erased state of the memory bits is a logical “1”. The entire device can be erased at one time by using a 6-byte software code. The software chip erase code consists of 6-byte load commands to specific address locations with a specific data pattern (please refer to the Chip Erase Cycle Waveforms). After the software chip erase has been initiated, the device will internally time the erase operation so that no external clocks are required. The maximum time needed to erase the whole chip is tEC. If the boot block lockout feature has been enabled, the data in the boot sector will not be erased. CHIP ERASE: If the boot block lockout has been enabled, the Chip Erase function will erase Parameter Block 1, Parameter Block 2, Main Memory Block 1 - 8, but not the boot block. If the Boot Block Lockout has not been enabled, the Chip Erase function will erase the entire chip. After the full chip erase the device will return back to read mode. Any command during chip erase will be ignored. SECTOR ERASE: As an alternative to a full chip erase, the device is organized into sectors that can be individually erased. There are two 8K-byte parameter block sections and eight main memory blocks. The 8K-byte parameter block sections and the eight main memory blocks can be independently erased and reprogrammed. The Sector Erase command is a six bus cycle operation. The sector address is latched on the falling WE edge of the sixth cycle while the 30H data input command is latched at the rising edge of WE. The sector erase starts after the rising edge of WE of the sixth cycle. The erase operation is internally controlled; it will automatically time to completion. BYTE PROGRAMMING: Once the memory array is erased, the device is programmed (to a logical “0”) on a byte-by-byte basis. Please note that a data “0” cannot be programmed back to a “1”; only erase operations can convert “0”s to “1”s. Programming is accomplished via the internal device command register and is a 4 bus cycle operation (please refer to the Command Definitions table). The device will automatically generate the required internal program pulses. The program cycle has addresses latched on the falling edge of WE or CE, whichever occurs last, and the data latched on the rising edge of WE or CE, whichever occurs first. Programming is completed after the specified tBP cycle time. The DATA polling feature may also be used to indicate the end of a program cycle. BOOT BLOCK PROGRAMMING LOCKOUT: The device has one designated block that has a programming lockout feature. This feature prevents programming of data in the designated block once the feature has been enabled. The size of the block is 16K bytes. This block, referred to as the boot block, can contain secure code that is used to bring up the system. Enabling the lockout feature will allow the boot code to stay in the device while data in the rest 3 3358A–FLASH–6/03 of the device is updated. This feature does not have to be activated; the boot block’s usage as a write protected region is optional to the user. The address range of the boot block is 00000 to 03FFF. Once the feature is enabled, the data in the boot block can no longer be erased or programmed. Data in the main memory block can still be changed through the regular programming method. To activate the lockout feature, a series of six program commands to specific addresses with specific data must be performed. Please refer to the Command Definitions table. BOOT BLOCK LOCKOUT DETECTION: A software method is available to determine if programming of the boot block section is locked out. When the device is in the software product identification mode (see Software Product Identification Entry and Exit sections) a read from address location 00002H will show if programming the boot block is locked out. If the data on I/O0 is low, the boot block can be programmed; if the data on I/O0 is high, the program lockout feature has been activated and the block cannot be programmed. The software product identification code should be used to return to standard operation. PRODUCT IDENTIFICATION: The product identification mode identifies the device and manufacturer as Atmel. It may be accessed by hardware or software operation. The hardware operation mode can be used by an external programmer to identify the correct programming algorithm for the Atmel product. For details, see Operating Modes (for hardware operation) or Software Product Identification. The manufacturer and device code is the same for both modes. DATA POLLING: The AT49BV040A features DATA polling to indicate the end of a program cycle. During a program cycle an attempted read of the last byte loaded will result in the complement of the loaded data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and the next cycle may begin. DATA polling may begin at any time during the program cycle. TOGGLE BIT: In addition to DATA polling the AT49BV040A provides another method for determining the end of a program or erase cycle. During a program or erase operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the program cycle has completed, I/O6 will stop toggling and valid data will be read. Examining the toggle bit may begin at any time during a program cycle. HARDWARE DATA PROTECTION: Hardware features protect against inadvertent programs to the AT49BV040A in the following ways: (a) VCC sense: if VCC is below 1.8V (typical), the program function is inhibited. (b) Program inhibit: holding any one of OE low, CE high or WE high inhibits program cycles. (c) Noise filter: pulses of less than 15 ns (typical) on the WE or CE inputs will not initiate a program cycle. 4 AT49BV040A 3358A–FLASH–6/03 AT49BV040A Command Definition (in Hex)(1) Command Sequence 1st Bus Cycle Bus Cycles Addr Data Read 1 Addr DOUT Chip Erase 6 555 AA 2nd Bus Cycle 3rd Bus Cycle 4th Bus Cycle Data Addr Data Addr Data Addr Data Addr Data AAA(2) 55 555 80 555 AA AAA 55 555 10 6 555 AA AAA 55 555 80 555 AA Byte Program 4 555 AA AAA 55 555 A0 Addr DIN Boot Block Lockout(3) 6 555 AA AAA 55 555 80 555 AA Product ID Entry 3 555 AA AAA 55 555 90 (4) 3 555 AA AAA 55 555 F0 (4) 1 XXX F0 Product ID Exit Notes: 6th Bus Cycle Addr Sector Erase Product ID Exit 5th Bus Cycle (5) AAA 55 SA 30 AAA 55 555 40 1. The DATA FORMAT in each bus cycle is as follows: I/O7 - I/O0 (Hex). The address format in each bus cycle is as follows: A11 - A0 (Hex); A11 - A18 (don’t care). 2. Since A11 is don’t care, AAA can be replaced with 2AA. 3. The 16K byte boot sector has the address range 00000H to 03FFFH. 4. Either one of the Product ID Exit commands can be used. 5. SA = sector addresses: SA = 00000 to 03FFF for BOOT BLOCK SA = 04000 to 05FFF for PARAMETER BLOCK 1 SA = 06000 to 07FFF for PARAMETER BLOCK 2 SA = 08000 to FFFF for MAIN MEMORY ARRAY BLOCK 1 SA = 10000 to 1FFFF for MAIN MEMORY ARRAY BLOCK 2 SA = 20000 to 2FFFF for MAIN MEMORY ARRAY BLOCK 3 SA = 30000 to 3FFFF for MAIN MEMORY ARRAY BLOCK 4 SA = 40000 to 4FFFF for MAIN MEMORY ARRAY BLOCK 5 SA = 50000 to 5FFFF for MAIN MEMORY ARRAY BLOCK 6 SA = 60000 to 6FFFF for MAIN MEMORY ARRAY BLOCK 7 SA = 70000 to 7FFFF for MAIN MEMORY ARRAY BLOCK 8 Absolute Maximum Ratings Temperature Under Bias................................ -55°C to +125°C Storage Temperature ..................................... -65°C to +150°C All Input Voltages (including NC Pins) with Respect to Ground ...................................-0.6V to +6.25V *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. All Output Voltages with Respect to Ground .............................-0.6V to VCC + 0.6V Voltage on OE with Respect to Ground ...................................-0.6V to +13.5V 5 3358A–FLASH–6/03 DC and AC Operating Range AT49BV040A-70 Operating Temperature (Case) Ind. -40°C - 85°C VCC Power Supply 2.7V - 3.6V Operating Modes Mode CE OE WE Ai I/O VIL VIL VIH Ai DOUT Program/Erase VIL VIH VIL Ai DIN Standby/Write Inhibit VIH X(1) X X High Z Program Inhibit X X VIH Program Inhibit X VIL X Output Disable X VIH X Reset X X X Read (2) High Z X High Z Product Identification Hardware VIL VIL VIH A1 - A18 = VIL, A9 = VH,(3), A0 = VIL Manufacturer Code(4) A1 - A18 = VIL, A9 = VH,(3), A0 = VIH Device Code(4) Software(5) Notes: 1. 2. 3. 4. 5. A0 = VIL, A1 - A18 = VIL Manufacturer Code(4) A0 = VIH, A1 - A18 = VIL Device Code(4) X can be VIL or VIH. Refer to AC Programming Waveforms. VH = 12.0V ± 0.5V. Manufacturer Code: 1FH, Device Code: 13H. See details under Software Product Identification Entry/Exit. DC Characteristics Symbol Parameter Condition ILI Input Load Current ILO Max Units VIN = 0V to VCC 10 µA Output Leakage Current VI/O = 0V to VCC 10 µA ISB1 VCC Standby Current CMOS CE = VCC - 0.3V to VCC 50 µA ISB2 VCC Standby Current TTL CE = 2.0V to VCC 1 mA VCC Active Current f = 5 MHz; IOUT = 0 mA 15 mA 0.6 V ICC (1) VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage IOL = 2.1 mA VOH Output High Voltage IOH = -400 µA Note: 6 Min 2.0 V 0.45 2.4 V V 1. In the erase mode, ICC is 70 mA. AT49BV040A 3358A–FLASH–6/03 AT49BV040A AC Read Characteristics AT49BV040A-70 Symbol Parameter tACC Min Max Units Address to Output Delay 70 ns (1) CE to Output Delay 70 ns (2) OE to Output Delay 0 35 ns tDF(3)(4) CE or OE to Output Float 0 25 ns tOH Output Hold from OE, CE or Address, whichever occurred first 0 tCE tOE ns AC Read Waveforms (1)(2)(3)(4) ADDRESS ADDRESS VALID CE OE tCE tOE t DF tACC OUTPUT Notes: HIGH Z tOH OUTPUT VALID 1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC. 2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change without impact on tACC. 3. tDF is specified from OE or CE whichever occurs first (CL = 5 pF). 4. This parameter is characterized and is not 100% tested. 7 3358A–FLASH–6/03 Input Test Waveform and Measurement Level 2.4V AC DRIVING LEVELS AC MEASUREMENT LEVEL 1.5V 0.4V tR, tF < 5 ns Output Load Test 3.0V 1.8K OUTPUT PIN 1.3K 30 pF Pin Capacitance f = 1 MHz, T = 25°C(1) Symbol Typ Max Units Conditions CIN 4 6 pF VIN = 0V COUT 8 12 pF VOUT = 0V Note: 8 1. This parameter is characterized and is not 100% tested. AT49BV040A 3358A–FLASH–6/03 AT49BV040A AC Byte Load Characteristics Symbol Parameter Min Max Units tAS, tOES Address, OE Set-up Time 0 ns tAH Address Hold Time 40 ns tCS Chip Select Set-up Time 0 ns tCH Chip Select Hold Time 0 ns tWP Write Pulse Width (WE or CE) 30 ns tDS Data Set-up Time 40 ns tDH, tOEH Data, OE Hold Time 0 ns tWPH Write Pulse Width High 30 ns AC Byte Load Waveforms WE Controlled OE tOES tOEH ADDRESS CE WE tAS tAH tCH tCS tWPH tWP tDH tDS DATA IN CE Controlled OE tOES tOEH ADDRESS tAS tAH tCH WE tCS CE tWPH tWP tDS tDH DATA IN 9 3358A–FLASH–6/03 Program Cycle Characteristics Symbol Parameter Min Typ Max Units tBP Byte Programming Time 30 50 µs tAS Address Set-up Time 0 ns tAH Address Hold Time 40 ns tDS Data Set-up Time 40 ns tDH Data Hold Time 0 ns tWP Write Pulse Width 30 ns tWPH Write Pulse Width High 30 ns tEC Erase Cycle Time 7 8 seconds Program Cycle Waveforms A0 - A18 Sector or Chip Erase Cycle Waveforms OE (1) CE tWP tWPH WE tAS A0 - A18 tAH tDH 555 555 555 AAA Note 2 AAA tEC tDS DATA AA BYTE 0 Notes: 10 55 BYTE 1 80 BYTE 2 AA BYTE 3 55 BYTE 4 Note 3 BYTE 5 1. OE must be high only when WE and CE are both low. 2. For chip erase, the address should be 555. For sector erase, the address depends on what sector is to be erased. (See note 4 under command definitions.) 3. For chip erase, the data should be 10H, and for sector erase, the data should be 30H. AT49BV040A 3358A–FLASH–6/03 AT49BV040A Data Polling Characteristics Symbol Parameter Min tDH Data Hold Time 10 ns tOEH OE Hold Time 10 ns tOE OE to Output Delay(2) tWR Write Recovery Time Notes: Typ Max Units ns 0 ns 1. These parameters are characterized and not 100% tested. 2. See tOE spec in AC Read Characteristics. Data Polling Waveforms WE CE tOEH OE tDH tOE I/O7 An A0-A18 tWR HIGH Z An An An An Toggle Bit Characteristics Symbol Parameter Min Typ tDH Data Hold Time 10 ns tOEH OE Hold Time 10 ns (2) Max Units tOE OE to Output Delay tOEHP OE High Pulse 50 ns tWR Write Recovery Time 0 ns Notes: ns 1. These parameters are characterized and not 100% tested. 2. See tOE spec in AC Read Characteristics. Toggle Bit Waveforms(1)(2)(3) WE CE tOEH tOEHP OE tDH I/O6 Notes: tOE HIGH Z tWR 1. Toggling either OE or CE or both OE and CE will operate toggle bit. The tOEHP specification must be met by the toggling input(s). 2. Beginning and ending state of I/O6 will vary. 3. Any address location may be used but the address should not vary. 11 3358A–FLASH–6/03 Software Product Identification Entry(1) LOAD DATA AA TO ADDRESS 555 Boot Block Lockout Feature Enable Algorithm(1) LOAD DATA AA TO ADDRESS 555 LOAD DATA 55 TO ADDRESS AAA LOAD DATA 55 TO ADDRESS AAA LOAD DATA 90 TO ADDRESS 555 LOAD DATA 80 TO ADDRESS 555 ENTER PRODUCT IDENTIFICATION MODE(2)(3)(5) LOAD DATA AA TO ADDRESS 555 LOAD DATA 55 TO ADDRESS AAA Software ProductIdentification Exit(1) LOAD DATA AA TO ADDRESS 555 OR LOAD DATA 55 TO ADDRESS AAA LOAD DATA 40 TO ADDRESS 555 LOAD DATA F0 TO ANY ADDRESS EXIT PRODUCT IDENTIFICATION MODE(4) PAUSE 1 second(2) Notes: LOAD DATA F0 TO ADDRESS 555 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A11 - A0 (Hex). 2. Boot block lockout feature enabled. EXIT PRODUCT IDENTIFICATION MODE(4) Notes: 12 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A11 - A0 (Hex). 2. A1 - A18 = VIL. Manufacture Code is read for A0 = VIL; Device Code is read for A0 = VIH. Additional Device Code is read for address 0003H 3. The device does not remain in identification mode if powered down. 4. The device returns to standard operation mode. 5. Manufacturer Code: 1FH Device Code: 13H. Additional Device Code: 0FH. AT49BV040A 3358A–FLASH–6/03 AT49BV040A AT49BV040A Ordering Information ICC (mA) tACC (ns) Active Standby 70 15 0.05 Ordering Code Package AT49BV040A-70JI AT49BV040A-70TI AT49BV040A-70VI 32J 32T 32V Operation Range Industrial (-40° to 85° C) Package Type 32J 32-Lead, Plastic, J-Leaded Chip Carrier Package (PLCC) 32T 32-Lead, Thin Small Outline Package (TSOP) 32V 32-Lead, Thin Small Outline Package (VSOP) (8 x 14 mm) 13 3358A–FLASH–6/03 Packaging Information 32J – PLCC 1.14(0.045) X 45˚ PIN NO. 1 IDENTIFIER 1.14(0.045) X 45˚ 0.318(0.0125) 0.191(0.0075) E1 E2 B1 E B e A2 D1 A1 D A 0.51(0.020)MAX 45˚ MAX (3X) COMMON DIMENSIONS (Unit of Measure = mm) D2 Notes: 1. This package conforms to JEDEC reference MS-016, Variation AE. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. 3. Lead coplanarity is 0.004" (0.102 mm) maximum. SYMBOL MIN NOM MAX A 3.175 – 3.556 A1 1.524 – 2.413 A2 0.381 – – D 12.319 – 12.573 D1 11.354 – 11.506 D2 9.906 – 10.922 E 14.859 – 15.113 E1 13.894 – 14.046 E2 12.471 – 13.487 B 0.660 – 0.813 B1 0.330 – 0.533 e NOTE Note 2 Note 2 1.270 TYP 10/04/01 R 14 2325 Orchard Parkway San Jose, CA 95131 TITLE 32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC) DRAWING NO. REV. 32J B AT49BV040A 3358A–FLASH–6/03 AT49BV040A 32T – TSOP PIN 1 0º ~ 8º c Pin 1 Identifier D1 D L b e L1 A2 E A GAGE PLANE SEATING PLANE COMMON DIMENSIONS (Unit of Measure = mm) A1 MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 19.80 20.00 20.20 D1 18.30 18.40 18.50 Note 2 E 7.90 8.00 8.10 Note 2 L 0.50 0.60 0.70 SYMBOL Notes: 1. This package conforms to JEDEC reference MO-142, Variation BD. 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side. 3. Lead coplanarity is 0.10 mm maximum. L1 0.25 BASIC b 0.17 0.22 0.27 c 0.10 – 0.21 e NOTE 0.50 BASIC 10/18/01 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 32T, 32-lead (8 x 20 mm Package) Plastic Thin Small Outline Package, Type I (TSOP) DRAWING NO. REV. 32T B 15 3358A–FLASH–6/03 32V – VSOP PIN 1 0º ~ 8º c Pin 1 Identifier D1 D L b e L1 A2 E A GAGE PLANE SEATING PLANE COMMON DIMENSIONS (Unit of Measure = mm) A1 MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 13.80 14.00 14.20 D1 12.30 12.40 12.50 Note 2 E 7.90 8.00 8.10 Note 2 L 0.50 0.60 0.70 SYMBOL Notes: 1. This package conforms to JEDEC reference MO-142, Variation BA. 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side. 3. Lead coplanarity is 0.10 mm maximum. L1 0.25 BASIC b 0.17 0.22 0.27 c 0.10 – 0.21 e NOTE 0.50 BASIC 10/18/01 R 16 2325 Orchard Parkway San Jose, CA 95131 TITLE 32V, 32-lead (8 x 14 mm Package) Plastic Thin Small Outline Package, Type I (VSOP) DRAWING NO. REV. 32V B AT49BV040A 3358A–FLASH–6/03 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 e-mail [email protected] Web Site http://www.atmel.com Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems. © Atmel Corporation 2003. All rights reserved. Atmel ® and combinations thereof are the registered trademarks, and Battery-Voltage ™ is the trademark of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others. Printed on recycled paper. 3358A–FLASH–6/03 /xM