PD-96958 RADIATION HARDENED POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA) IRHMS67164 150V, N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) ID IRHMS67164 100K Rads (Si) 0.019Ω 45A* IRHMS63164 300K Rads (Si) 0.019Ω 45A* International Rectifier’s R6TM technology provides superior power MOSFETs for space applications. These devices have improved immunity to Single Event Effect (SEE) and have been characterized for useful performance with Linear Energy Transfer (LET) up to 90MeV/(mg/cm2). Their combination of very low RDS(on) and faster switching times reduces power loss and increases power density in today’s high speed switching applications such as DC-DC converters and motor controllers. These devices retain all of the well established advantages of MOSFETs such as voltage control, ease of paralleling and temperature stability of electrical parameters. Low-Ohmic TO-254AA Features: n n n n n n n n n n Low RDS(on) Fast Switching Single Event Effect (SEE) Hardened Low Total Gate Charge Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Eyelets Electrically Isolated Light Weight Absolute Maximum Ratings Pre-Irradiation Parameter ID @ VGS = 12V, TC = 25°C ID @ VGS = 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current À Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Á Avalanche Current À Repetitive Avalanche Energy À Peak Diode Recovery dv/dt  Operating Junction Storage Temperature Range Lead Temperature Weight Units 45* 44 180 208 1.67 ±20 353 45 20.8 8.2 -55 to 150 A W W/°C V mJ A mJ V/ns o C 300 (0.063 in. /1.6 mm from case for 10s) 9.3 (Typical) g * Current is limited by package For footnotes refer to the last page www.irf.com 1 12/22/05 IRHMS67164 Pre-Irradiation Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) Parameter Min Drain-to-Source Breakdown Voltage 150 — — V VGS = 0V, ID = 1.0mA — 0.18 — V/°C Reference to 25°C, ID = 1.0mA — — 0.019 Ω VGS = 12V, ID = 44A à 2.0 49 — — — — — — 4.0 — 10 25 V S( ) — — — — — — — — — — — — — — — — — — — 6.8 100 -100 230 55 90 35 120 85 25 — nC VDS = VGS, ID = 1.0mA VDS = 15V, IDS = 44A à VDS = 120V ,VGS = 0V VDS = 120V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VGS =12V, ID = 45A VDS = 75V ns VDD = 75V, ID = 45A VGS =12V, RG = 2.35Ω ∆BV DSS /∆T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance Typ Max Units Ω BVDSS µA nA Test Conditions nH Measured from Drain lead (6mm /0.25in. from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad Ciss Coss Crss Rg Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Gate Resistance — — — — 7380 1140 28 0.52 — — — — pF Ω VGS = 0V, VDS = 25V f = 1.0MHz f = 1.0MHz, open drain Source-Drain Diode Ratings and Characteristics Parameter Min Typ Max Units IS ISM VSD trr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) À Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — 45* 180 1.2 370 3.8 Test Conditions A V ns µC Tj = 25°C, IS = 45A, VGS = 0V à Tj = 25°C, IF = 45A, di/dt ≤ 100A/µs VDD ≤ 50V à Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. * Current is limited by package Thermal Resistance Parameter RthJC RthCS RthJA Junction-to-Case Case-to-Sink Junction-to-Ambient Min Typ Max Units — — — — 0.60 0.21 — — 48 Test Conditions °C/W Typical socket mount Note: Corresponding Spice and Saber models are available on International Rectifier Web site. For footnotes refer to the last page 2 www.irf.com Radiation Characteristics Pre-Irradiation IRHMS67164 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD Up to 300K Rads (Si) Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source On-State Resistance (TO-3) Static Drain-to-Sourcee On-State Resistance (Low Ohmic TO-254AA) Diode Forward Voltage Units Test Conditions Min Max 150 2.0 — — — — 4.0 100 -100 10 µA VGS = 0V, ID = 1.0mA V GS = VDS, ID = 1.0mA VGS = 20V VGS = -20V VDS= 120V, VGS= 0V — 0.019 Ω VGS = 12V, ID = 44A — 0.019 Ω VGS = 12V, ID = 44A — 1.2 V VGS = 0V, ID = 45A V nA Part numbers IRHMS67164 and IRHMS63164 International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Tables. Tables for Single Event Effect Safe Operating Area Ion Kr Ion Xe Ion Au LET = 39 MeV/(mg/cm2) Energy = 312 MeV Range = 39 µm VGS Bias VDS Bias (Volts) (Volts) 0 150 -5 150 -10 150 -15 150 -20 150 LET = 59 MeV/(mg/cm2) Energy = 825 MeV Range = 66 µm VGS Bias VDS Bias (Volts) (Volts) 0 150 -5 150 -9 150 -10 140 -11 50 -15 40 LET = 90 MeV/(mg/cm2) Energy = 1480 MeV Range = 80 µm VGS Bias VDS Bias (Volts) (Volts) 0 50 -5 50 -10 30 180 150 VDS 120 Kr 90 Xe Au 60 30 0 0 -5 -10 -15 -20 VGS Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRHMS67164 1000 Pre-Irradiation 1000 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V 100 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 5.0V 60µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 5.0V 10 60µs PULSE WIDTH Tj = 150°C 1 100 0.1 VDS, Drain-to-Source Voltage (V) 100 Fig 2. Typical Output Characteristics 1000 3.0 RDS(on) , Drain-to-Source On Resistance T J = 150°C 100 (Normalized) ID, Drain-to-Source Current (A) 10 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics T J = 25°C 10 VDS = 50V 15 60µs PULSE WIDTH 1 ID = 45A 2.5 2.0 1.5 1.0 0.5 VGS = 12V 0.0 5 5.5 6 6.5 7 7.5 8 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com Pre-Irradiation 14000 20 100KHz VGS = 0V, f = 1 MHz C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 10000 Ciss 8000 Coss 6000 4000 Crss 2000 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 10 100 0 40 VDS, Drain-to-Source Voltage (V) 80 120 160 200 240 280 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) VDS = 120V VDS = 75V VDS = 30V ID = 45A VGS, Gate-to-Source Voltage (V) 12000 C, Capacitance (pF) IRHMS67164 100 T J = 150°C T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µs 10 1ms 1 0.1 1.0 0.0 0.5 1.0 1.5 2.0 2.5 VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 3.0 10ms Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 5 IRHMS67164 Pre-Irradiation 70 LIMITED BY PACKAGE VGS 60 ID , Drain Current (A) RD VDS D.U.T. RG + -V DD 50 VGS 40 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 30 Fig 10a. Switching Time Test Circuit 20 VDS 10 0 90% 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS td(on) Fig 9. Maximum Drain Current Vs. Case Temperature tr t d(off) tf Fig 10b. Switching Time Waveforms 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 P DM t1 SINGLE PULSE ( THERMAL RESPONSE ) t2 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com Pre-Irradiation IRHMS67164 15V L VDS D.U.T. RG VGS 20V IAS DRIVER + - VDD 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit A EAS , Single Pulse Avalanche Energy (mJ) 700 600 TOP 500 BOTTOM ID 20A 28.5A 45A 400 300 200 100 0 25 V(BR)DSS 50 75 100 125 150 Starting T J , Junction Temperature (°C) tp Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Current Regulator Same Type as D.U.T. Fig 12b. Unclamped Inductive Waveforms 50KΩ QG 12 V QGS .3µF D.U.T. QGD + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com 12V .2µF IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 7 IRHMS67164 Pre-Irradiation Footnotes: À Repetitive Rating; Pulse width limited by à Pulse width ≤ 300 µs; Duty Cycle ≤ 2% Ä Total Dose Irradiation with VGS Bias. maximum junction temperature. Á VDD = 25V, starting TJ = 25°C, L= 0.35 mH Peak IL = 45A, VGS =12V  ISD ≤ 45A, di/dt ≤ 940A/µs, VDD ≤ 150V, TJ ≤ 150°C 12 volt VGS applied and V DS = 0 during irradiation per MIL-STD-750, method 1019, condition A. Å Total Dose Irradiation with VDS Bias. 120 volt V DS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. Case Outline and Dimensions — Low-Ohmic TO-254AA 0.12 [.005] 13.84 [.545] 13.59 [.535] 3.78 [.149] 3.53 [.139] 6.60 [.260] 6.32 [.249] A 20.32 [.800] 20.07 [.790] 17.40 [.685] 16.89 [.665] 1 C 2 2X B 3 14.48 [.570] 12.95 [.510] 3X 3.81 [.150] 13.84 [.545] 13.59 [.535] 1.27 [.050] 1.02 [.040] 0.84 [.033] MAX. 1.14 [.045] 0.89 [.035] 0.36 [.014] 3.81 [.150] B A NOT ES: 1. 2. 3. 4. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. CONTROLLING DIMENSION: INCH. CONFORMS TO JEDEC OUTLINE TO-254AA. PIN ASSIGNMENTS 1 = DRAIN 2 = SOURCE 3 = GATE CAUTION BERYLLIA WARNING PER MIL-PRF-19500 Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/2005 8 www.irf.com