TA2151FN TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA2151FN RF Amplifier for Digital Servo CD System TA2151FN is a 3-beam type PUH compatible RF Amplifier for Digital Servo to be used in the CD system. In combination with a CMOS single chip processor TC9462F/TC9495F, a CD system can be composed very simply. Features · Built-in amplifier for reference (VRO, 2VRO) supply. · Built-in Auto Laser Power Control circuit. · Built-in RF amplifier. · Built-in AGC amplifier. · Built-in focus error amp and tracking error amp. · Built-in gain change circuit for CD-RW. · Capable of tracking balance control with TC9462F/TC9495F. · Built-in signal amplifier for track counter. · Capable of 4 times speed operation. · 30 pin mini flat package. Weight: 0.17 g (typ.) 1 2003-01-16 TA2151FN Block Diagram 56.4 k9 56.4 k9 10 pF 60 k9 20 k9 20 k9 BOTTOM DETECTION 15 RFDC 3 pF 40 pF 10 k9 FEN 17 30 k9 14 TEO 150 k9 3 pF SEB 18 30 k9 10 k9 20 k9 10 pF FEO 16 40 pF 150 k9 0.5 pF 13 TEN 12 2VRO 20 k9 21.82 k9 VRO 19 20 k9 RFRP 20 100 k9 100 k9 RFCT 22 12 k9 100 9 20 k9 11 k9 BTC 21 12 k9 20 k9 48 k9 83 k9 10 SEL 1 k9 2.9 k9 9 LDO 1.4 k9 189 k9 PKC 23 11 k9 13 k9 2.26 k9 8 MDI 15 pF BOTTOM PEAK 20 k9 RFRPIN 24 11 TEB 3 STATE DET. I-I 7 TNI I-I 6 TPI 189 k9 RFGO 25 15 pF 60 k9 3 k9 GVSW 26 5 FPI 60 k9 3 k9 AGC Amp. AGCIN 27 4 FNI RFO 28 3 VRIN GND 29 2 RFGC 12.8 k9 12.8 k9 RFN2 30 LDC SEL GND SW1 SW2 SW3 ON OFF OFF OFF ON ON 1 VCC RFRP Detect Frequency Mode SEB GND CD-RW GND Bottom Detect Peak Detect ON Low HiZ VCC GVSW HiZ VCC Normal ON HiZ VCC OFF High 2 2003-01-16 TA2151FN Pin Function Pin No. 1 Symbol VCC I/O ¾ Functional Description Remarks Power supply input terminal. ¾ ¾ 2 RFGC I RF amplitude adjustment control signal input terminal. Controlled by 3-PWM signals. (PWM carrier = 88.2 kHz) RFGC input voltage: VRO ± 1.5 V AGC amplifier voltage again: ´0.7~1.5 (typ.) 3 VRIN I AGC amp. Reference voltage input terminal. Connected to VRO 4 FNI I Main beam I-V amp input terminal. Connected to pin diode output B + D (through resistor). 5 FPI I Main beam I-V amp input terminal. Connected to pin diode output A + C (through resistor). 6 TPI I Sub beam I-V amp input terminal. Connected to pin diode output F. 7 TNI I Sub beam I-V amp input terminal. Connected to pin diode output E. 8 MDI I Monitor photo diode amp input terminal. Connected to monitor photo diode. 9 LDO O Laser diode amp input terminal. Connected to laser diode control circuit. Laser diode control signal input terminal and APC circuit ON/OFF control signal terminal. 10 SEL I SEL Level APC Circuit LDO Detect Frequency GND OFF Connected to VCC through resister (1 kW) ON Control signal output Low 3 signals input. (VCC, HiZ, GND) HiZ VCC High 11 TEB I Tracking error balance adjustment signal input terminal. Controlled by 3-PWM signal. (PWM carrier = 88.2 kHz) 12 2VRO O Reference voltage (2VRO) output terminal. 2VRO = 4.2 V when VCC = 5 V 13 TEN I TE amp negative input terminal. 14 TEO O TE error signal output terminal. ¾ 15 RFDC O RF signal peak detect output terminal. ¾ 16 FEO O Focus error signal output terminal. ¾ 17 FEN I FE amp negative input terminal. 3 signals input. (2VRO, VRO, GND) ¾ Connected to TEO through feedback resistor. Connected to FEO through feedback resistor. RFRP output circuit switching terminal. 18 SEB SEB Level Bottom Detection GND ON VCC OFF I Peak Detection Reference voltage (VRO) output terminal. 19 VRO O VRO = 2.1 V when VCC = 5 V 3 Low (GND) is for normal use. ON ¾ 2003-01-16 TA2151FN Pin No. Symbol I/O Functional Description Remarks ¾ 20 RFRP O Track count signal output terminal. 21 BTC I Time constant adjustment terminal for bottom detection. 22 RFCT O RFRP signal center level output terminal. 23 PKC I Time constant adjustment terminal for peak detection. 24 RFRPIN I Input terminal for track count signal output amp. ¾ 25 RFGO O Output terminal for RF signal amplitude adjustment amp. ¾ Adjusted by capacitance. ¾ Adjusted by capacitance. Amp (FE, TE) gain switching terminal. 26 GVSW I GVSW Mode GND CD-RW Low (GND) is for 5 times gain. HiZ Normal VCC Connected to RFO through capacitance. 27 AGCIN I Input terminal for RF signal amplitude adjustment amp. 28 RFO O Output terminal for RF signal amp. ¾ 29 GND ¾ Ground terminal. ¾ 30 RFN2 I Input terminal for RF signal amp. ¾ Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit VCC 8 V Power dissipation PD 500 mW Operating temperature Topr -40~85 °C Storage temperature Tstg -55~150 °C Power supply voltage 4 2003-01-16 TA2151FN Electrical Characteristics (unless otherwise specified, VCC = 5 V, Ta = 25°C, RFGC = VCC, GVSW = VCC) Symbol Test Circuit Test Condition Min Typ. Max Unit Assured power supply voltage VCC ¾ ¾ 4.5 5.0 5.5 V Power supply current 1 (normal mode) ICC1 23 33 43 mA Power supply current 2 (CD-RW mode) ICC2 4.0 4.2 4.4 V DV = -0.2 V 2.0 ¾ ¾ DV = +0.1 V 0.1 ¾ ¾ 2.0 2.1 2.2 V 2 ´ VR/2VR - 1 -3.0 0.0 ¾ % DV = -0.2 V 5.0 ¾ ¾ DV = +0.1 V 5.0 ¾ ¾ GVSW = VCC 153 180 207 GVSW = GND 690 812 934 GVSW = VCC ¾ 8 ¾ Characteristics Power supply Reference voltage Reference voltage Output current (2VRO) Input current Reference voltage Reference Reference voltage limit voltage Output current (VRO) RF1 RF2 (AGC) ¾ 2VR IOH2 IOL2 ¾ ¾ VR ¾ DVR ¾ IOH1 Input current IOL1 Transfer resistance1 (normal mode) RT1 Transfer resistance2 (CD-RW mode) RT2 Frequency band width1 (normal mode) fc1 ¾ ¾ ¾ Frequency band width2 (CD-RW mode) fc2 Output slew rate SR Output offset voltage 1 (normal mode) VOS1 Output offset voltage 2 (CD-RW mode) VOS2 Upper limit output voltage VOH Lower limit output voltage VOL Permissive load resistance RLM Lower limit voltage gain GVL Upper limit voltage gain GVH GVSW = GVD ¾ ¾ f = 100 kHz Rf = 20 kW CRFO = 20 pF ¾ VR Reference Rf = 20 kW Input: Open GVSW = GND ¾ 8 ¾ ¾ 20 ¾ GVSW = VCC ¾ -50 ¾ GVSW = GND ¾ -100 ¾ 3.8 ¾ ¾ ¾ ¾ 0.9 10 ¾ ¾ f = 100 kHz RFGC = 0.6 V 0.6 0.7 0.8 RFGC = 3.6 V 1.3 1.5 1.7 V/ms mV ¾ ¾ mA MHz GND Reference ¾ mA kW -3dB point Rf = 20 kW ¾ ¾ GVSW = VCC SEL = HiZ REGC = HiZ V kW V/V Frequency band width fc ¾ -3dB point ¾ 20 ¾ MHz Output slew rate SR ¾ CRFO = 20 pF ¾ 20 ¾ V/ms Output offset voltage VOS ¾ VR Reference, Input: Open ¾ 100 ¾ mV Upper limit output voltage VOH ¾ 3.8 GND Reference ¾ ¾ ¾ ¾ 0.9 10 ¾ ¾ kW ¾ 200 ¾ V/V V Lower limit output voltage VOL Permissive load resistance RLM ¾ Gv ¾ f = 1 kHz VMDI ¾ VLDO = 3.5 VDC 170 178 192 mV VLDOP ¾ SEL = GND, VCC Reference -0.7 ¾ ¾ V II ¾ MDI = 178 mV -200 ¾ 200 nA Voltage gain Operation ref. Voltage APC LD off voltage Input bias current ¾ 5 2003-01-16 TA2151FN Characteristics FE TE Transfer resistance 1 (normal mode) RT1 Transfer resistance 2 (CD-RW mode) RT2 Gain balance 1 (normal mode) GB1 Gain balance 2 (CD-RW mode) GB2 FNI (FPI) ® RFDC ¾ fc1 Frequency band width2 (CD-RW mode) fc2 Output offset voltage 1 (normal mode) VOS1 Output offset voltage 2 (CD-RW mode) VOS2 Upper limit output voltage VOH ¾ ¾ Lower limit output voltage VOL Permissive load resistance RLM Transfer resistance 1 (normal mode) RT1 ¾ RT2 max voltage Voltage ratio gain adjustable min voltage range ratio DGv Gain balance 1 (normal mode) GB1 Gain balance 2 (CD-RW mode) GB2 ¾ ¾ fc1 ¾ Frequency band width2 (CD-RW mode) fc2 Output offset voltage 1 (normal mode) VOS1 Output offset voltage 2 (CD-RW mode) VOS2 Upper limit output voltage VOH Test Condition ¾ ¾ Min Typ. Max Unit GVSW = VCC 197 232 267 kW GVSW = GND 0.89 1.05 1.20 MW GVSW = VCC -1.0 ¾ 1.0 GVSW = GND -1.0 ¾ 1.0 GVSW = VCC ¾ 26.5 ¾ GVSW = GND ¾ 26.5 ¾ GVSW = VCC -20 ¾ 20 GVSW = GND -50 ¾ 50 3.8 ¾ ¾ ¾ ¾ 0.5 10 ¾ ¾ 1.81 2.13 2.45 f = 1 kHz RNF = 91 kW f = 1 kHz RNF = 91 kW dB -3dB point RNF = 91 kW kHz RNF = 91 kW VR Reference mV GND Reference ¾ ¾ Transfer resistance 2 (CD-RW mode) Frequency band width1 (normal mode) Test Circuit ¾ Frequency band width1 (normal mode) ¾ GVSW = VCC f = 1 kHz RNF = 75 kW TEB = HiZ V kW MW GVSW = GND TNI input RNF = 75 kW TEB = VR Reference TEB = GND f = 1 kHz RNF = 75 kW TEB = VR 8.15 9.59 11.02 ¾ 45 ¾ % TEB = 2VR ¾ -45 ¾ GVSW = VCC -1.0 ¾ 1.0 GVSW = GND -1.0 ¾ 1.0 GVSW = VCC ¾ 44 ¾ dB -3dB point RNF = 75 kW kHz GVSW = GND ¾ 44 ¾ GVSW = VCC -80 ¾ 80 GVSW = GND -300 ¾ 300 3.8 ¾ ¾ ¾ ¾ 0.5 RNF = 75 kW VR Reference mV GND Reference V Lower limit output voltage VOL Permissive load resistance RLM ¾ ¾ 10 ¾ ¾ kW fC ¾ ¾ ¾ 40 ¾ kHz 3.3 ¾ ¾ ¾ ¾ 0.9 10 ¾ ¾ Detection frequency RFDC Symbol Upper limit output voltage VOH Lower limit output voltage VOL Permissive load resistance RLM ¾ GND Reference ¾ ¾ 6 V kW 2003-01-16 TA2151FN RFRP RFCT RFRP ®RFCT Note: Characteristics Symbol Test Circuit Test Condition Min Typ. Max Unit Voltage gain Gv ¾ ¾ ¾ 1.7 ¾ V/V Detection frequency characteristic 1 fc1 SEL = HiZ ¾ 100 ¾ Detection frequency characteristic 2 fc2 SEL = VCC ¾ 200 ¾ Operation reference voltage 1 VOPR1 VR Reference No Input -1.1 -1.0 -0.9 Operation reference voltage 2 VOPR2 VR Reference 700 kHz, 1.2 Vp-p 0.7 0.8 0.9 10 ¾ ¾ CBTC = 0.22 mF ¾ 70 ¾ CPKC = 0.22 mF ¾ 70 ¾ -50 ¾ 50 ¾ ¾ Permissive load resistance RLM Detection frequency characteristic 1 fc1 Detection frequency characteristic 2 fc2 Output offset voltage VOS kHz V ¾ ¾ ¾ ¾ kW Hz RFRP Reference, RFCT mV If the IC is used abnormally (ex. wrongly mounted), it may be dameged or destroyed. 7 2003-01-16 TA2151FN 75 kW 3 pF 30 kW 18 20 kW TEO 9.1 kW 14 150 kW RFDC 9.1 kW 30 kW 10 pF 10 kW 10 kW SEB 15 3 pF 40 pF 17 FEN 20 kW 20 kW BOTTOM DETECTION 56.4 kW 56.4 kW 60 kW 10 pF 91 kW 9.1 kW 16 0.5 pF 40 pF FEO 150 kW Test Circuit 13 TEN RFRPIN 24 47 mF 11 TEB 10 SEL 9 LDO 1.4 kW 11 kW 13 kW 2.26 kW 8 15 pF BOTTOM PEAK I-I 7 2.4 kW 20 kW 1 kW 2.9 kW 189 kW 0.1 mF 21.82 kW 12 kW 3 STATE DET. 83 kW MDI TNI 180 kW 189 kW 25 9.1 kW 48 kW 0.1 mF 22 PKC 23 0.22 mF 100 W 12 kW 11 kW 100 kW 100 kW RFCT 20 kW 20 kW 0.1 mF BTC 21 0.22 mF RFGO 20 kW 20 20 kW RFRP 2VRO 12 20 kW 9.1 kW 47 mF 19 100 mF VRO I-I 15 pF 6 TPI 180 kW 60 kW GVSW 3 kW 26 FPI 5 47 kW 60 kW AGCIN 27 3 kW AGC Amp. FNI 4 9.1 kW 47 kW RFO 28 3 GND 29 RFGC 2 12.8 kW 12.8 kW 1 8 VCC 100 mF 30 RFN2 0.1 mF 20 kW VRIN 2003-01-16 TA2151FN Package Dimensions Weight: 0.17 g (typ.) 9 2003-01-16 TA2151FN RESTRICTIONS ON PRODUCT USE 000707EBA · TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · The products described in this document are subject to the foreign exchange and foreign trade laws. · The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice. 10 2003-01-16