FAIRCHILD KA9259D

www.fairchildsemi.com
KA9259D(KA9259ED)
5-Channel Motor Drive IC
Features
Description
•
•
•
•
•
•
The KA9259D is a monolithic integrated circuit, and
suitable for 5-CH motor driver which drives focus actuator,
tracking actuator, sled motor, spindle motor and loading
motor of CD system.
1-Phase, Full-Wave, Linear DC Motor Driver
Built-in TSD (Thermal Shutdown) Circuit
Built-in 5V Regulator (With An External PNP TR)
Built-in Mute Circuit
Built-in Loading Motor Speed Control Circuit
Wide Operating Supply Voltage Range: 6V~13.2V
28-SSOPH-375
Typical Applications
•
•
•
•
Compact Disk Player (CDP)
Video Compact Disk Player (VCD)
Automotive Compact Disk Player (CDP)
Other Compact Disk Media
Ordering Information
Device
Package
Operating Temp.
KA9259ED
28-SSOPH-375
-25°C ~ +75°C
KA9259EDTF 28-SSOPH-375
-25°C ~ +75°C
Rev. 1.0.2
©2002 Fairchild Semiconductor Corporation
2
1
2
3
4
5
6
7
DO1.1
DO1.2
DI1.1
DI1.2
REB
REO
MUTE
GND3
DO4.2
DO4.2
DI4.2
DI4.1
VREF
VCC2
28
27
26
25
24
23
22
LD CTL
DI3
DO3.2
DO3.1
DO5.2
DO5.1
20
19
18
17
16
15
8
9
10
11
12
13
14
DI2
DO2.1
DO2.2
GND2
DI5.2
FIN
(GND)
21
DI5.1
KA9259D
VCC1
FIN
(GND)
GND1
KA9259D(KA9259ED)
Pin Assignments
KA9259D(KA9259ED)
Pin Definitions
Pin Number
Pin Name
I/O
Pin Function Description
1
DO1.1
O
Focus Output 1(-)
2
DO1.2
O
Focus Output 2(+)
3
DI1.1
I
Focus Input 1
4
DI1.2
I
Focus Input 2 (Adjustable)
5
REB
O
Regulator Base
6
REO
O
Regulator Output, 5V
7
MUTE
I
Mute
8
GND1
-
Ground 1
9
DI5.1
I
Loading Input 1
10
DI2
I
Spindle Input 2
11
DO2.1
O
Spindle Output (+)
12
DO2.2
O
Spindle Output (-)
13
GND2
-
Ground 2
14
DI5.2
I
Loading Input 2
15
DO5.1
O
Loading Output 1(+)
16
DO5.2
O
Loading Output 2(-)
17
DO3.1
O
Sled Output (-)
18
DO3.2
O
Sled Output (+)
19
DI3
I
Sled Input
20
LD CTL
I
Loading Motor Speed Control
21
VCC1
-
Supply Voltage 1
22
VCC2
-
Supply Voltage 2
23
VREF
I
2.5V Bias
24
DI4.1
I
Tracking Input 1 (Adjustable)
25
DI4.2
I
Tracking Input 2
26
DO4.1
O
Tracking Output 1(+)
27
DO4.2
O
Tracking Output 2(-)
28
GND3
-
Ground 3
3
KA9259D(KA9259ED)
22
DO5.1
VCC2
23
DO5.2
VREF
24
DO3.1
DI4.1
25
DO3.2
DI4.2
26
DI3
DO4.1
27
LD CTL
DO4.2
28
FIN
(GND)
VCC1
GND3
Internal Block Diagram
21
20
19
18
17
16
15
10k
+
+
+
10k
10k
−
−
+
Level
shift
Level
shift
TSD
−
−
+
+
+
Level
shift
−
−
10k
−
Regulator
10k
10k
Mute
+
−
+
10k
10k
50k
Level
shift
−
−
+
2.5V
50k
+
COMP
−
Level
shift
+
−
10k
4
DO1.2
DI1.1
DI1.2
REB
REO
MUTE
FIN
(GND)
8
9
10
11
12
13
14
DI5.2
7
GND2
6
DO2.2
5
DO2.1
4
DI2
3
DI5.1
2
GND1
1
DO1.1
10k
KA9259D(KA9259ED)
Equivalent Circuits
Driver Input (Except For Loading Motor Driver)
Driver Output
10k
2.5V
1
2
11 12 15
16 17 18 27 26
10k
20k
0.58k
10 3
4
25 19
24
VREF1
Loading Motor Driver Input
Loading Motor Speed Control Input
14
9
50k
50k
50k
50k
50k
50k
50k
50k
50k
50k
50k
20
50k
50k
50k
Mute Input
Bias Input
50k
50k
23
7
50k
5
KA9259D(KA9259ED)
Absolute Maximum Ratings (Ta = 25°C)
Parameter
Symbol
Value
Unit
Maximum Supply Voltage
VCC MAX
18
V
Power Dissipation
1.7
PD
note
W
Operating Temperature
TOPR
-25 ~ +75
°C
Storage Temperature
TSTG
-55 ~ +150
°C
Maximum Current Output
IOMAX
1
A
Note:
1. When mounted on 76mm × 114mm × 1.57mm PCB (Phenolic resin material).
2. Power dissipation reduces 13.6mW / °C for using above Ta=25°C
3. Do not exceed Pd and SOA.
Power Dissipation Curve
Pd (mW)
3,000
2,000
1,000
0
0
25
50
75
100
125
150
175
Ambient temperature, Ta [°C]
Recommended Operating Condition (Ta = 25°C)
Parameter
Operating Supply Voltage
6
Symbol
Value
Unit
VCC
6 ~ 13.2
V
KA9259D(KA9259ED)
Electrical Characteristics
(Ta = 25°C, VCC = 8V, RL= 8Ω, f =1kHz, unless otherwise specified)
Parameter
Symbol
Conditions
Quiescent Circuit Current
ICCQ
Under no-load
Mute-on Current
IMUTE
Pin 7=GND
Min.
Typ.
Max.
Unit
2.5
6
10
mA
-
2.5
5
mA
Mute-on Voltage
VMON
-
-
-
0.5
V
Mute-off Voltage
VMOFF
-
2
-
-
V
REGULATOR PART
Output Voltage
VREG
IL=100mA
4.7
5.0
5.3
V
Load Regulation
∆VRL3
IL=0→200mA
-50
0
50
mV
Line Regulation
∆VCC
VCC=6→13V, IL=100mA
-20
0
80
mV
DRIVER PART (EXCEPT FOR LOADING MOTOR DRIVER)
Input Offset Voltage
Output Offset Voltage 1
VIO
-
-15
-
15
mV
VOO1
-
-40
-
40
mV
0.25
0.4
-
A
Maximum Sink Current 1
ISINK1
RL=8Ω→GND
0.25
0.4
-
A
Maximum Output Voltage 3
VOM3
VIN=0.7V, VCC=13V
2.5
3.3
4.6
V
Maximum Output Voltage 4
VOM4
VIN=7V, VCC=13V, VIN=8V
-
-5.8
-5.0
V
Closed-Loop Voltage Gain
AVF
VIN=8V, VCC=13V
5
6.5
8
dB
*Ripple Rejection Ratio
RR
VIN=0.1VRMS, f=120Hz
40
60
-
dB
*Slew Rate
SR
120Hz, VIN=1VRMS,
Square wave
1
2
-
V/µs
Maximum Source Current 1
ISOURCE1 RL=8Ω→VCC
LOADING MOTOR DRIVER PART (UNLESS OTHERWISE SPECIFIED, VCTL=OPENED)
Output Voltage 1
VO1
VPIN9=5V, VPIN14=0V, RL=45Ω
2.5
3.1
3.8
V
Output Voltage 2
VO2
VPIN9=0V, VPIN14=5V, RL=45Ω
2.5
3.1
3.8
V
Output Voltage Regulation 1
(CTL)
VOCTL1
VCTL=3.5→4.5V, VPIN9=5V
VPIN14=0V, RL=45Ω
0.5
1.0
1.5
V
Output Voltage Regulation 2
(CTL)
VOCTL2
VCTL=3.5→4.5V, VPIN9=0V
VPIN14=5V, RL=45Ω
0.5
1.0
1.5
V
Load Regulation 1
∆VRL1
IL=100→400mA, VPIN9=5V,
VPIN14=0V
-
300
700
mV
Load Regulation 2
∆VRL2
IL=100→400mA, VPIN9=0V,
VPIN14=5V
-
300
700
mV
Output Offset Voltage 2
VOO2
VPIN9=5V, VPIN14=5V
-40
-
40
mV
Output Offset Voltage 3
VOO3
VPIN9=0V, VPIN14=0V
-40
-
40
mV
* Guaranteed design value
7
KA9259D(KA9259ED)
Application Information
1. Mute
Output driver
bias
Pin #7
Mute circuit
High
Turn-off
Low
Turn-on
7
• When the mute pin #7 is open or the voltage of the mute pin #7 is below 0.5V, the mute circuit is activated so that the output
circuit will be muted.
• When the voltage of the mute pin is above 2V, the mute circuit is stopped and the output circuit is operated normally.
• If the chip temperature rises above 175°C, then the TSD (Thermal shutdown) circuit is activated and the output circuit is
muted.
2. Tsd (Thermal Shutdown)
VREF BG
Output driver
bias
R11
Q11
R12
• The VREF BG is the output voltage of the band-gap-referenced biasing circuit and acts as the input voltage of the TSD
circuit.
• The base-emitter voltage of the TR, Q11 is designed to turn-on at below voltage.
VBE = VREF BG × R12 / (R11+R12) = 400mV
• When the chip temperature rises up to 175°C, then the turn-on voltage of the Q11 would drop down to 400mV.
Hence, the Q11 would turn on so the output circuit will be muted.
3. Regulator
5
I
VREF BG
D1
KSB772
−
6
+
R2
VOUT
(5V)
+
R1
D2
8
R3
CE
100µF
KA9259D(KA9259ED)
• The VREF BG is the output voltage of the band-gap-referenced biasing circuit and is the reference voltage of the regulator.
• The external circuit is composed of the transistor, KSB772 and a capacitor, 100µF, and the capacitor is used as a ripple
eliminator and should have a good temperature characteristics.
• The output voltage, VOUT is decided as follows.
VOUT = VREF BG × 2 = 2.5 × 2 = 5V (R2 = R3)
R2 = R3
4. Loading Motor Driver
20
I
+∆V
+
+
14
−
−
R
COMP
9
Buffer
Q1
−∆V
+∆V
15
I
−∆V
Q2
M
VREF1
+
16
Q3
Buffer
Q4
−
R
VREF1
• The input voltages of (5V and 0V) or (0V and 5V) pairs are applied to the input pin #9 and #14 respectively.
• When the input voltages are applied to the input pin #9 and #14, then the output of the comparator is decided depends on the
input voltage status.
• As shown in the above diagram, the difference ∆V, [VREF1 + (I × R)] - [VREF1 -(I × R)], is applied to the both terminals of
the motor. The direction of the motor is decided by the voltage difference, +∆V and −∆V.
• The output characteristics is as follows,
- If pin # 9=5V and #14=0V, then pin # 15=+∆V and #16= −∆V, hence the motor turn in forward direction.
- If pin # 9=0V and #14=5V, then pin # 15= −∆V and #16=+∆V, hence the motor turn in reverse direction.
- If pin # 9=5V and #14=5V, then ∆V=0V, hence the motor stop.
- If pin # 9=0V and #14=0V, then ∆V=0V, hence the motor stop.
• When the rotation speed control of the loading motor is desired, refer to the follows.
5. Loading Motor Speed Control
VCC
VCC (8V)
50k
50k
R
20
R
20
4V
4V
50k
•
•
•
•
VCC
VCC (8V)
50k
D
If the torque of the loading motor is too low when it is used with the pin #20 open, then it should used as the above diagram.
The desired torque could be obtained by selecting the appropriate resistor R as shown in the left diagram.
If it is necessary, the zener diode can be used as in the right diagram.
The maximum torque is obtained when the applied voltage at pin #20 is about 6.8V (at VCC=8V).
9
KA9259D(KA9259ED)
6. Driver (Except For Loading Motor Driver)
VREF
(2.5V)
+
−
3
−∆I
AMP
Level
shift
+
Buffer
−
Q1
10k
24
10k
+∆I
100k
+∆V
Q2
M
19 25
4
−∆V
10
+
Q3
Buffer
−
1
2
11
12
17
18
27
26
Q4
• The voltage, VREF, is the reference voltage given by the bias voltage of the pin #23.
• The input signal through the pin #3 is amplified by 10k/10k times and then fed to the level shift.
• The level shift produces the current due to the difference between the input signal and the arbitrary reference signal. The
current produced as +∆I and −∆I is fed into the driver buffer.
• Driver Buffer operates the power Transistor of the output stage according to the state of the input signal.
• The output stage is the BTL Driver and the motor is rotating in forward direction by operating TR Q1 and TR Q4. On the
other hand, if TR Q2 and TR Q3 is operating, the motor is rotating in reverse direction.
• When the input voltage through the pin #3 is below the VREF, then the direction of the motor in forward direction.
• When the input voltage through the pin #3 is above the VREF, then the direction of the motor in reverse direction.
• If it is desired to change the gain, then the pin #4 or #24 can be used.
When the bias voltage of the pin #23 is below 1.4V, then the output circuit is muted.
Hence for the normal operation, the bias voltage should be used in 1.6V~6.5V.
7. Connect a by-pass capacitor, 0.1µf between the supply voltage source.
VCC2 22
VCC1 21
104
1. Radiation fin is connecting to the internal GND of the package.
2. Connect the fin to the external GND.
10
KA9259D(KA9259ED)
Typical Perfomance Charateristics
7
14
6
12
5
Icc[mA]
16
Imute [mA]
10
8
Imute[mA]
6
Vcc=vari
pin23=2.5
4
2
4
3
2
Vcc=vari
1
0
0
4
6
8
10
Vcc[v]
12
14
16
18
4
20
6
8
10
12
14
16
18
20
Vcc[V]
Figure 2. VCC vs. Imute
Figure 1. VCC vs. ICC
1000
6.0
900
5.5
800
Isink[mA]
Vreg[V]
5.0
4.5
Vcc=vari
pin23=2.5
RL=8Ω
4.0
3.5
700
600
Vcc=vari
pin23=2.5
RL=8Ω
500
400
300
3.0
3
5
7
Vcc[V]
9
11
13
4
15
6
8
Vcc[V]
10
12
14
16
Figure 4. VCC vs. ISink
Figure 3. VCC vs. Vreg
4.5
7.0
4.0
6.5
3.5
Vom[mA]
Avf[mA]
7.5
3.0
6.0
Vcc=vari
pin23=2.5
5.5
Vcc=vari
2.5
pin23=2.5
RL=8Ω
2.0
5.0
4
6
8
Vcc[V]
10
Figure 5. VCC vs. Avf
12
14
16
4
6
8
Vcc[V]
10
12
14
16
Figure 6. VCC vs. Vom
11
KA9259D(KA9259ED)
Test Circuits
SW13
3
2
8Ω
1
SW12
VCC
8Ω
3
SW14
2
8Ω
3
SW20
1
SW10
3
8Ω
1
VCC
VCC
2
8Ω
SW19
1
~
VCC
SLED
CTL
100µF
Ripple ~
SW9
~
VCC
+
8Ω
3
2
TRACKING
SW21
3
2
+
2
1
1
SW18
8Ω
1
10µF
2 +
45Ω
2 +
10µF
3
20Ω
SW17
3
1
SW16
SW15
SW11
3
8Ω
1
2
IL
2.5V
VCC
VCC
28
27
26
25
24
23
22
21
GND3 DO4.2 DO4.1 DI4.2 DI4.1 VREF VCC2
20
19
18
17
16
15
VCC1 LD ctl DI3
DO3.2 DO3.1 DO5.2 DO5.1
GND
DO2.1 DO2.2 GND2 DI5.2
KA9259D
DO1.1 DO1.2 DI1.1 DI1.2 REB
1
2
3
4
6
MUTE
7
9
10
11
12
13
14
VCC
SW4
1
SW1
2
Mute
3 KSB772
1
8Ω
3
+ 2
8Ω
VCC
SW2
Focus
Spindle
3
Loading
reverse
8Ω
VCC
~
100µF
1
2
8Ω
+ 2
Loading
forwaed
IL
~
SW3
SW7
3
SW5
+
1
DI5.1 DI2
8
VCC
VCC
1
REO
5
SW6
SW8
1
2
2
3
12
8Ω
8Ω
3
KA9259D(KA9259ED)
Application Circuits
SERVO PRE-AMP
FOUCS
TRACKING
BIAS
CONTROLLER
SLED
SPINDLE
TRACKING
ACTUATOR
CONTROL
FORWARD
VCC
REVERSE
SLED
MOTOR
LOADING
MOTOR
M
M
102
28
27
26
25
GND3 DO4.2 DO4.1 DI4.2
24
23
22
21
DI4.1 VREF VCC2
20
19
18
17
16
15
VCC1 LD ctl
DI3 DO3.2 DO3.1 DO5.2 DO5.1
GND
DI5.1
DI2
8
9
10
KA9259D
DO1.1 DO1.2 DI1.1 DI1.2
1
2
3
4
REB
REO
5
6
MUTE
7
DO2.1 DO2.2 GND2 DI5.2
11
12
13
14
VCC
KSB772
FOCUS
ACTUATOR
100µF
5V
out
+
M
MUTE
Low: ON
High: OFF
SPINDLE
MOTOR
13
KA9259D(KA9259ED)
Mechanical Dimensions
Package
28-SSOPH-375
MIN
0.05
0.002
2.20 ±0.20
0.087 ±0.008
#28
#14
#15
10.00 ±0.30
0.394 ±0.012
14
0.40 ±0.10
0.016 ±0.004
0.80
0.031
MAX0.10
MAX0.004
0~
8°
+0.10
0.25 -0.05
+0.004
0.010 -0.002
0.80 ±0.20
0.031 ±0.008
2.50
MAX
0.098
7.50 ±0.20
0.295 ±0.008
9.53
0.375
18.40 ±0.20
0.724 ±0.008
18.80 MAX
0.740
(
1.20
)
0.047
#1
KA9259D(KA9259ED)
15
KA9259D(KA9259ED)
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
9/13/02 0.0m 001
Stock#DSxxxxxxxx
 2002 Fairchild Semiconductor Corporation