FAIRCHILD KA3014

www.fairchildsemi.com
KA3014
Spindle + 4-CH Motor Driver
Features
Description
•
•
•
•
•
•
•
•
•
•
•
•
The KA3014 is a monolithic integrated circuit suitable for a
4-ch motor driver which drives the tracking actuator, focus
actuator, sled motor, loading motor and 3-phase BLDC spindle motor of the MDP/CAR-MD/CAR-NAVIGATION system.
Built-in power save circuit
Built-in current limit circuit
Built-in thermal shutdown circuit (TSD)
Built-in hall bias
Built-in FG signal output circuit
Built-in rotational direction detecting circuit
Built-in protection circuit for reverse rotation
Built-in short brake circuit
Built-in variable-regulator
Built-in 4-CH balanced transformerless (BTL) driver
Built-in BTL mute circuit (CH1/2, CH3 and CH4)
Corresponds to 3.3V DSP
48-QFPH-1414
Target Application
•
•
•
•
Ordering Information
Mini disk player
Digital video disk player
Car mini disk player
Car navigation system
Device
Package
Operating Temp.
KA3014
48-QFPH-1414
−35°C ~ +85°C
Rev. 1.0.2
May. 2000.
©2000 Fairchild Semiconductor International
1
KA3014
43
MUTE4
H1 −
44
MUTE3
H1 +
45
MUTE12
H2 −
46
AVM4
H2 +
47
BIAS
H3 −
48
FIN
(GND)
BTLSNGD
H3 +
Pin Assignments
42
41
40
39
38
37
DO4 +
FG
2
35
DO4 −
ECR
3
34
AVM3
EC
4
33
DO3 +
VCC2
5
32
DO3 −
PC1
6
31
BTLPGND2
(GND)
FIN
36
FIN
1
(GND)
VH
KA3014
29
DO2 +
CS1
9
28
DO2 −
SS
10
27
DO1 +
DIR
11
26
DO1 −
SB
12
25
DI1
18
VREGX
17
RESX
16
A1
15
A2
14
A3
PWRGND
13
(GND)
FIN
2
19
20
21
22
23
24
DI2
8
DI3
VM
DI4
BTLPGND1
AVM12
30
VCC1
7
REGOX
SIGGND
KA3014
Pin Definitions
Pin Number
Pin Name
I/O
Pin Function Descrition
1
VH
I
Hall bias
2
FG
O
FG signal output
3
ECR
I
Torque control reference
4
EC
I
Torque control signal
5
VCC2
-
Supply voltage
6
PC1
-
Phase compensation capacitor
7
SIGGND
-
Signal ground
8
VM
-
Motor supply voltage
9
CS1
I
Current sensor
10
S/S
I
Start/stop
11
DIR
O
3-phase rotational direction output
12
SB
I
Short brake
13
PWRGND
-
Power ground
14
A3
O
3-phase output 3
15
A2
O
3-phase output 2
16
A1
O
3-phase output 1
17
RESX
I
Variable regulator reset
18
VREGX
O
Variable regulator
19
REGOX
O
Variable regulator output
20
VCC1
-
Supply voltage
21
AVM12
-
BTL CH-1, 2 motor supply voltage
22
DI4
I
BTL drive input 4
23
DI3
I
BTL drive input 3
24
DI2
I
BTL drive input 2
25
DI1
I
BTL drive input 1
26
DO1−
O
BTL drive 1 output (−)
27
DO1+
O
BTL drive 1 output (+)
28
DO2−
O
BTL drive 2 output (−)
29
DO2+
O
BTL drive 2 output (+)
30
BTLPGND1
-
BTL power ground 1
31
BTLPGND2
–
BTL power ground 2
3
KA3014
Pin Definitions (Continued)
Pin Number
Pin Name
I/O
Pin Function Descrition
32
DO3–
O
BTL drive 3 output (–)
33
DO3+
O
BTL drive 3 output (+)
34
AVM3
–
BTL CH3 motor supply voltage
35
DO4–
O
BTL drive 4 output (–)
36
DO4+
O
BTL drive 4 output (+)
37
MUTE4
I
BTL drive mute CH 4
38
MUTE3
I
BTL drive mute CH 3
39
MUTE12
I
BTL drive mute CH 1, 2
40
AVM4
–
BTL CH 4 motor supply voltage
41
BIAS
–
BTL bias voltage
42
BTLSGND
–
BTL drive signal ground
43
H1–
I
Hall1(–) input
44
H1+
I
Hall1(+) input
45
H2–
I
Hall2(–) input
46
H2+
I
Hall2(+) input
47
H3–
I
Hall3(–) input
48
H3+
I
Hall3(+) input
4
KA3014
7
Short vrake
5
4
3
2
1
Power
Save
Absolute
Values
+−
Direction
Detector
FIN (GND)
VREGX 18
45 H2−
Hall amp matrix
Upper
Distributor
RESX 17
46 H2+
Detector
Direction select
Lower
Distributor
A1 16
47 H3−
44 H1+
43 H1−
2P
+ −
−
FIN (GND)
A2 15
48 H3+
Hall bias
+ −
FG
Comparator
A3 14
6
TSD
PWRGND 13
VH
SIGGND
8
FG
VM
9
ECR
CS1
10
EC
SS
11
VCC2
DIR
12
FIN (GND)
PC1
SB
Internal Block Diagram
+
REGOX 19
42 BTLSGND
VCC1 20
41 BIAS
−
+
+
−
+
39 MUTE12
x2
x2
x2
x2
MUTE
MUTE
MUTE
38 MUTE3
2P
2P
2P
2P
2P
2P
2P
DI3 23
2P
40 AVM4
−
+
x2
x2
−
+
−
+
x2
x2
−
10k
−
10k
AVM12 21
DI4 22
+
10k
−
10k
+
37 MUTE4
DO1 −
DO1 +
DO2 −
DO2 +
BTLPGND1
FIN (GND)
5
31
32
33
34
35
36
DO4 +
30
DO4 −
29
AVM3
28
DO3 +
27
DO3 −
26
BTLPGND2
25
DI1
DI2 24
KA3014
Equivalent Circuits
Hall bias
FG signal output
10kΩ
1
2
5Ω
50Ω
50kΩ
Torque control reference & signal
Phase compensation capacitor
2kΩ
6
3
4
50Ω
1kΩ
2kΩ
Current detector
Start / Stop
50Ω
2.7kΩ
50kΩ
10
9
30kΩ
120Ω
6
KA3014
Equivalent Circuits (Continued)
3-phase rotational direction output
Short brake
25kΩ
50Ω
1kΩ
17
11
50Ω
80kΩ
3-phase output
Variable regulator reset
60kΩ
50Ω
14
50kΩ
12
15
30kΩ
16
Variable regulator
Variable regulator output
18
50Ω
19
50Ω
7
KA3014
Equivalent Circuits (Continued)
BTL drive input
BTL drive output
26
27
28
22
50Ω
23
10kΩ
100Ω
29
24
32
25
33
35
20kΩ
BTL drive mute
37
50Ω
BTL bias voltage
50kΩ
38
41
39
50Ω
30kΩ
Hall input
43
45
36
44
50Ω
1kΩ
1kΩ
50Ω
47
46
48
8
200Ω
KA3014
Absolute Maximum Ratings ( Ta=25°°C)
Parameter
Symbol
Value
Unit
Supply voltage (BTL signal)
VCC1MAX
15
V
Supply voltage (Spindle signal)
VCC2MAX
7
V
Supply voltage (Spindle motor)
VMMAX
15
V
VMBTLMAX
15
V
Supply voltage (BTL motor)
Power dissipation
3.0
PD
Operating temperature
note
W
TOPR
−35 ~ +85
°C
TSTG
−55 ~ +150
°C
Maximum output current (Spindle part)
IOMAXS
1.3
A
Maximum output current (BTL part)
IOMAXB
1
A
Storage temperature range
Notes:
1. When mounted on 70mm × 70mm × 1.6mm PCB (Phenolic resin material)
2. Power dissipation is reduced 24mW / °C for using above Ta=25°C
3. Do not exceed Pd and SOA (Safe Operating Area)
Pd (mW)
3,000
2,000
1,000
0
0
25
50
75
100
125
150
175
Ambient temperature, Ta [°C]
Recommended Operating Conditions ( Ta=25°°C)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Operating supply voltage (BTL signal)
VCC1
4.5
-
13.2
V
Operating supply voltage (Spindle signal)
VCC2
4.5
-
5.5
V
Operating supply voltage (Spindle motor)
VM
4.5
-
13.2
V
VMBTL
4.5
-
5.5
V
Operating supply voltage (BTL motor)
9
KA3014
Electrical Charateristics
(SPINDLE PART, Ta=25°C, VCC2=5V, VM=12V)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Units
Circuit current 1
ICC 1
Power save=0V
–
0
0.1
mA
Circuit current 2
ICC2
Power save=5V
–
8.0
–
mA
START / STOP
On voltage range
VPSON
L-H circuit on
2.5
–
–
V
Off voltage range
VPSOFF
H-L circuit off
–
–
0.5
V
IHB=20mA
–
1.2
1.8
V
HALL BIAS
Hall bias voltage
VHB
HALL AMP
IHA
–
–
1
5
µA
In-phase in voltage range
VHAR
–
1.5
–
4.0
V
Minimum in level
VINH
–
60
–
–
mVpp
In voltage range
EC
–
0.5
–
3.3
V
Offset voltage (−)
ECOFF–
ECR=2.5V
−80
−50
−20
mV
Offset voltage (+)
ECOFF+
ECR=2.5V
20
50
80
mV
−5
−1
–
µA
Hall bias current
TORQUE CONTROL
In current
ECIN
EC=ECR=2.5V
In/output gain
GEC
ECR=2.5V, RCS=0.5Ω
0.41
0.51
0.61
A/V
FG output voltage (H)
VFGH
IFG= −10µA
3.0
–
VCC
V
FG output voltage (L)
VFHL
IFG=10µA
–
–
0.5
V
Input voltage range
VFGR
Hn+, Hn− input D-range
1.5
–
4.0
V
Saturation voltage (upper TR)
VOH
IO= −300mA
–
0.9
1.6
V
Saturation voltage (lower TR)
VOL
IO=300mA
–
0.2
0.6
V
Torque limit current
ITL
RCS=0.5Ω
560
700
840
mA
Dir output voltage (H)
VDIRH
IFG=−10µA
3.0
–
VCC
V
Dir output voltage (L)
VDIRL
IFG=10µA
–
–
0.5
V
FG
OUTPUT BLOCK
DIRECTION DETECTOR
SHORT BRAKE
On voltage range
VSBON
–
2.5
–
VCC
V
Off voltage range
VSBOFF
–
0
–
0.5
V
10
KA3014
Electrical Charateristics (Continued)
(BTL DRIVE PART, Ta=25°C, VCC1=12V, VMBTL=12V, RL=24Ω)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Units
9
12
mA
Ω)
BTL DRIVE PART (Ta=25°°C, VCC1=12V, VMBTL=12V, RL=24Ω
Quiescent circuit current
ICC
–
–
Output offset voltage
VOO
–
−30
–
30
mV
Maximum output
Amplitude voltage
VOM
–
9.5
10.5
–
V
Voltage gain
GVC
VIN=0.1VRMS, 1kHz
10.5
12.0
13.5
dB
Ripple rejection ratio
RR
VIN=0.1VRMS, 120kHz
–
60
–
dB
SR
120Hz, 2Vpp
Slew rate
–
1.0
–
V/µs
Mute off voltage
VMOFF
–
–
–
0.5
V
Mute on voltage
VMON
–
2.5
–
–
V
2.0
–
5.25
V
VARIABLE-REGULATOR
Regulator output range
∆VREG
IL=100mA
Load regulation
∆VR1
IL=0 → 200mA
−40
0
10
mV
Line regulation
∆VCC
IL=200mA, VCC=6V→ 9V
−20
0
30
mV
Regulator output voltage 1
VREG1
IL=100mA
4.75
5.0
5.25
V
Regulator output voltage 2
VREG2
IL=100mA
3.135
3.3
3.465
V
Calculation of Gain & Torque Limit Current
VM
VM
IO
−
VS Output
Current sense
+
CS1 (Pin 9)
RS
Current / Voltage
Convertor
−
Vin
EC
+
ECR
−
Negative
Feedback loop
R1
U
V
−
+
+
Gm
Driver
Power
Transistors
W
+
Absolute
Values
+
Commutation
Distributor
Vmax
−
H1
VM
Max. output current limiting
0.255 is GM times R1 and it is a fixed value within IC.
0.255
Gain = --------------RS
Vmax (see above block diagram) is set to 350mV.
Vmax
350 [ mV ]
Itl [ mA ] = ---------------- = -----------------------RS
RS
11
H2
H3
IO
KA3014
Application Information
1. MUTE FUNCTION
• Mute control voltage condition
When using the mute function, the applied control voltage condition is as follows.
Mute on voltage
2.5[V] above
Mute function operation
Mute off voltage
Open or 0.5[V] below
Normal operation
• Individual channel mute function
These pins are used for individual channel mute operation.
- When the mute pins (pin 37, 38 and 39) are open or the voltages at the mute pins are below 0.5[V], the mute circuit is
stopped and BTL output circuits operate normally.
- When the mute pins (pin 37, 38 and 39) are above 2.5[V], the mute circuits are activated so that the BTL
output circuit is muted.
- If the junction temperature rises above 175°C, then the thermal shutdown (TSD) circuit is activated and all the output
circuits (4-CH BTL drivers and 3-phase BLDC driver) are muted.
2. 4-CH BALANCED TRANSFORMERLESS (BTL) DRIVER
VCC
Q1
Q2
DRIVE
AMP
27
X2
Q3
26
DRIVE
AMP
29
28
X2
33
32
36
35
M
Q4
GND
41
Vbias
+
AMP1
−
Vin
Rextern
LEVEL
SHIFT
22 23
24 25
10k
• The voltage, Vbias, is the reference voltage given by the external bias voltage of pin 41.
• The input signals, Vin, through the pins (pin 22, 23, 24 and 25) are amplified 10k/rextern times and then fed to
the level shift.
• The level shift produces the current due to the difference between the input signal (Vin) and the arbitrary
reference voltage (Vbias). The current produced as + ∆I and − ∆I are fed into the drive buffers.
• The drive buffer operates the power TR of the output stage according to the state of the input signal (Vin).
• The output stage is the BTL driver, and the motor (or actuator) rotates in forward direction when TR
Q1 and TR Q4 are on. On the other hand, if TR Q2 and TR Q3 are on, the motor (or actuator) is rotating in
reverse direction.
• When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is below the Vbias, then the motor (actuator) moves in
forward direction.
• When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is above the Vbias, then the motor (actuator)
moves in reverse direction.
• To change the gain, Modify the external resistor's value (Rextern)
12
KA3014
3. TORQUE & OUTPUT CURRENT CONTROL
Torque & output current control
VM
VM
RNF
+
Torque sense amp
+
+
−
VRNF
IO
Current sense amp
VAMP
EC
−
−
Gain
Controller
Driver
M
TSD
ECR
• By amplifying the voltage difference between EC and ECR from the servo IC, the torque sense amp produces the input
(VAMP) for the current sense amp.
• The current sense amp produces the input for the gain controller to allow the output current (IO) of the driver to be
controlled by the input voltage (VAMP), where the output current (IO) is detected by the sense resistor (RNF) and is
converted into VRNF.
• In the end, the signals of the servo IC control the velocity of the motor by controlling the output current (IO) of the driver.
• When the junction temperature rises up to about 175°C, then the output drive circuit will shut down.
• The range of the torque control input voltage is as shown below.
VRNF
[V]
Reverse
Rotation
Forward
Ecoff−
Ecoff+
3 mV
0
ECR-EC[V]
The input range (EC) of the torque sense amp is 0.5V ~ 3.3V.
13
Ec < ECR
Forward rotation
Ec > ECR
Stop after detecting
reverse rotation
KA3014
4. POWER SAVE FUNCTION
• .
Bias block
VCC
100k
Start
10
30KΩ
Q1
Stop
12KΩ
• The power save circuit is activated by operating TR Q1.
• When the SS (Start / Stop) pin 10 is high (VCC), the TR Q1 is turned on and the bias circuit is enabled.
On the other hand, when the SS (Start/Stop) pin 10 is open or low (GND), the TR Q1 is turned off and the bias circuit is
disabled.
• The power save operation controlled by SS (pin 10) input conditions is as follows;
Pin #10
KA3014
High
Start
Opin / Low
Stop
14
KA3014
5. SHORT BRAKE FUNCTION
VM
Drive logic
MOTOR
OFF
VCC
14
ON
12
15
1KΩ
Q1
OFF
16
ON
80KΩ
When the pick-up moves from the inner to the outer spindle of the MD(Mini Disk), the brake function of the reverse voltage is
commonly employed to rate the rotational velocity of the spindle motor.
However, if the spindle motor rotates rapidly, the brake function of the reverse voltage may produce too much heat at the drive
IC.
To remove these shortcomings and to enhance efficiency, the short brake function is added to KA3014. When the short brake
function is active, all upper power transistors are turned off and the lower power transistors turned on, so as to reduce the rotational velocity of the motor. The short brake operation controlled by SB (pin 12), and the input conditions are as follows.
Pin #12
Short brake
High
On
Low
Off
6. THERMAL SHUTDOWN (TSD) FUNCTION
When the junction temperature rises up to 175°C, then the output drive circuit shuts down, when the junction temperature falls
off to 160°C, the output drive circuit operates normally. It has the temperature hysteresis of about 15°C.
15
KA3014
7. ROTATING DIRECTION DETECTION FUNCTION
VCC
H2+
+
H2−
−
11
DIR
R
Rotation
11
D
CK
H3+
+
H3−
−
DIR
Q
EC < ECR
Forward
Low
EC > ECR
Reverse
High
D-F/F
• The forward and reverse rotations of the MD are detected by the circuit, as shown in the above table.
• The rotational direction of the MD can be learned by the output waveforms of the hall sensor and/or the driver.
If the hall sensors turn on in the order, H1→H2→H3, then this indicates reverse rotation. The output waveforms of the hall
sensors are as shown below.
H1
H2
H3
( a)
Inversely, if the hall sensors turn on in the order, H3 → H2 → H1, then this shows forward rotation. The output waveforms of
the hall sensors are as shown below\.
H1
H2
H3
( b)
.
16
KA3014
8. REVERSE ROTATION PREVENTING FUNCTION
EC
+
ECR
−
H2+
+
H2−
−
H3+
+
H3−
−
Current
Sense
Amp
D
Q
CK
Gain
Controller
D-F/F
Driver
M
• The forward and reverse rotation of the motor are detected, as shown in the table below. Consequently at reverse rotation,
the D-F/F output Q becomes low and cuts off the output current sense amp, resulting in the stoppage of the gain controller
function.
• When the MD is rotating in forward direction, EC>ECR is sometimes controlled to retard and/or stop the MD.
As the controlling time of EC>ECR gets longer, MD slows down, stops, and then rotates in the reverse direction. To prevent
the MD from rotating in the reverse direction, a reverse rotation preventing function is required.
Its operational principles are discussed below.
Rotation
H2
H3
D-F/F
Forward
H
H→L
Reverse
L
H→L
Reverse rotation preventer
EC<ECR
EC>ECR
H
Forward
Brake and stop
L
–
stop
9. FG OUTPUT FUNCTION
The FG output detects the number of rotations of the MD. This is generated from zero-crossing of the hall sensor output waveforms. The FG output circuit is as shown below.
+
H1
−
+
H2
−
FG OUTPUT
+
H3
−
17
KA3014
10. HALL SENSOR CONNECTION
External hall sensors are used in series or in parallel connection as shown below.
VCC
VCC
HALL 1
HALL 1
HALL 2
HALL 3
HALL 2
HALL 3
1
1
VH
18
VH
KA3014
11. HALL INPUT OUTPUT TIMING CHART
The 3-phase hall signal is amplified in the hall amplifiers and sent to the matrix section, where the signal is further amplified.
After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which then
provides a motor drive current. The phases of the hall input signal, output voltage, and output current are shown below.
H1 +
H2 +
H3 +
A1 output current
A1 output voltage
A2 output current
A2 output voltage
A3 output current
A3 output voltage
19
KA3014
Typical Performance Characteristics
Icc1(A)
Icc2(A)
Vcc vs Icc1
0.015
Vcc vs Icc2
10
8
0.010
6
4
0.005
SS = 5V
2
0.000
0
0
2
4
6
8
10
12
14
16
18
0
20
2
4
6
8
10
Vcc(V)
Icc1(mA)
Vcc(V)
Icc2(mA)
Temp vs Icc1
11.0
Temp vs Icc2
8.0
10.9
10.8
7.8
10.7
10.6
7.6
10.5
7.4
10.4
10.3
Vcc = 12V
10.2
Vcc =12V
SS = 5V
7.2
10.1
10.0
-35
-25
0
25
50
75
7.0
-35
90
-25
0
25
50
Temp (°C)
75
90
Temp (°C)
Vom(V)
Gvo(dB)
Vcc vs Vom
5.0
Vcc vs Gvo (5V)
13.0
4.5
12.5
4.0
3.5
12.0
3.0
2.5
11.5
2.0
11.0
Input = 0.5V, 4.5V
Bias = 2.5V
Rin = 10KΩ
1.5
1.0
Vcc1 = 5V
Vin = 0.1V rms
f = 1KHz
Rin=10KΩ
10.5
0.5
0.0
10.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
4.0
Vcc(V)
20
4.5
5.0
5.5
6.0
6.5
7.0
Vcc(V)
KA3014
Typical Performance Characteristics (Continued)
Vout(V)
Gvo(dB)
Vcc1 vs Gvo(12V)
13.0
Vin vs Vout (5V)
4
3
12.5
2
12.0
1
11.5
0
11.0
-1
Vcc1 = 12V
Vin = 0.1V rms
f = 1KHz
Rin=10KΩ
10.5
-2
Vcc1 = 5V
Bias = 2.5V
Rin=10KΩ
-3
-4
10.0
9
10
11
12
13
14
0
15
1
2
3
4
5
6
7
Vcc(V)
8
Vin(V)
Vout(V)
Vin vs Vout (12V)
15
10
5
0
-5
Vcc1 = 12V
Bias = 2.5V
Rin=10KΩ
-10
-15
0
1
2
3
4
5
6
7
8
Vin(V)
Vol(mV)
Voh(V)
Io vs Voh
1.2
500
1.0
Io vs Vol
400
0.8
300
0.6
200
0.4
Io = source current
0.2
0
50
100
Io = source current
0
150
225
275
325
375
50 100 150 200 250 300 350 400 450 500
450
Io(mA)
21
Io(mA)
KA3014
Typical Performance Characteristics (Continued)
Vrnf(mV)
Vrnf(mV)
Ec vs Vrnf
350
300
300
250
250
200
200
150
150
100
100
Ecr = 2.5V
RNF=0.5Ω
50
1
2
3
4
Ecr = 1.6V
RNF=0.5Ω
50
0
0
Ec vs Vrnf
350
0
0
5
Ec(V)
1
2
3
4
5
Ec(V)
22
KA3014
Test Circuits 1
BTL Drive Part
10µF
VMUTE
38
37
V
MUE4
VMUTE
39
MUTE3
40
AVM4
BTLSGND
41
BIAS
42
43
H1−
44
H1+
45
H2−
46
H2+
47
H3−
H3+
48
MUTE12
2.5V
VMUTE
12V
RL4’
1
VH
2
FG
DO4− 35
3
ECR
AVM3 34
4
EC
DO3+ 33
5
VCC2
DO3− 32
6
PC1
DO4+
36
RL4
SW4
12V
10µF
SW3
RL3’
RL3
BTLPGND2 31
V
KA3014
7
V
RL2
BTLPGND1 30
SIGGND
SW2
8
VM
DO2+ 29
9
CS1
DO2− 28
VCC1
AVM12
DI4
DI3
DI2
15
REGOX
14
VREFX
13
RESX
12 SB
A1
DO1− 26
A2
11 DIR
A3
DO1+ 27
PWRGND
10 SS
16
17
18
19
20
21
22
23
24
A
10µF
12V
SW1
RL1
DI1 25
V
SERVO AMP
TRACKING
10µF
FOCUS
BTL SVCC
12V
SLED
CONTROL TRAY
23
KA3014
Test Circuits 2
Spindle Motor Drive Part
A
A
A
A
A
A
48
47
46
45
44
43
42
41
40
39
38
37
H3−
H2+
H2−
H1+
H1−
BTLSGND
BIAS
AVM4
MUTE12
MUTE3
MUE4
V
H3+
H3+ H3− H2+ H2− H1+ H1−
V
SW12
VH
2
FG
DO4− 35
3
ECR
AVM3 34
4
EC
DO3+ 33
5
VCC2
DO3− 32
6
PC1
SW13
2.5V
EC
SW14
5V
A
DO4+ 36
1
BTLPGND2 31
KA3014
SW15
12V
8
VM
DO2+ 29
9
CS1
DO2− 28
SW16
AVM12
DI4
DI3
DI2
SW18
VCC1
IFR
REGOX
12 SB
VREFX
DO1− 26
RESX
11 DIR
A1
DO1+ 27
A2
SW17
10 SS
A3
V
SIGGND
PWRGND
V
BTLPGND1 30
7
13
14
15
16
17
18
19
20
21
22
23
24
VSB
SW19 SW20
24
DI1 25
KA3014
SLED MUTE
TRAY MUTE
45
44
43
42
41
40
39
38
37
H3−
H2+
H2−
H1+
H1−
BTLSGND
BIAS
AVM4
MUTE12
MUTE3
MUE4
HALL1
BTL BIAS
VOLTAGE
46
HALL2
47
HALL3
48
H3+
FOCUS TRACKING
MUTE
Application Circuits
+5V
1
VH
2
FG
DO4− 35
SERVO
TORQUE
CONTROL
3
ECR
AVM3 34
4
EC
DO3+ 33
VCC
5
VCC2
DO3− 32
6
PC1
10K
FG SIGNAL
100pF
DO4+ 36
TRAY
MOTOR
+5V
SLED
MOTOR
BTLPGND2 31
0.1µF
KA3014
DO2+ 29
9
CS1
DO2− 28
DI2
15
DI3
14
DI4
13
AVM12
12 SB
VCC1
DO1− 26
REGOX
11 DIR
VREFX
DO1+ 27
RESX
10 SS
A1
SHORT
BREAK
VM
A2
ROTATE
DIRECTION
8
A3
SYSTEM
CONTROL
SIGGND
PWRGND
12V
BTLPGND1 30
7
16
17
18
19
20
21
22
23
24
FOCUS
ACTUATOR
TRACKING
ACTUATOR
DI1 25
SERVO AMP
VCC
+5V
FOCUS
SLED
xxV
RESET
S/S
TRACKING
VCC
25
VARIABLE
VOLTAGE
CONTROL TRAY
KA3014
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
INTERNATIONAL. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
12/1/00 0.0m 001
Stock#DSxxxxxxxx
 2000 Fairchild Semiconductor International