www.fairchildsemi.com KA3014 Spindle + 4-CH Motor Driver Features Description • • • • • • • • • • • • The KA3014 is a monolithic integrated circuit suitable for a 4-ch motor driver which drives the tracking actuator, focus actuator, sled motor, loading motor and 3-phase BLDC spindle motor of the MDP/CAR-MD/CAR-NAVIGATION system. Built-in power save circuit Built-in current limit circuit Built-in thermal shutdown circuit (TSD) Built-in hall bias Built-in FG signal output circuit Built-in rotational direction detecting circuit Built-in protection circuit for reverse rotation Built-in short brake circuit Built-in variable-regulator Built-in 4-CH balanced transformerless (BTL) driver Built-in BTL mute circuit (CH1/2, CH3 and CH4) Corresponds to 3.3V DSP 48-QFPH-1414 Target Application • • • • Ordering Information Mini disk player Digital video disk player Car mini disk player Car navigation system Device Package Operating Temp. KA3014 48-QFPH-1414 −35°C ~ +85°C Rev. 1.0.2 May. 2000. ©2000 Fairchild Semiconductor International 1 KA3014 43 MUTE4 H1 − 44 MUTE3 H1 + 45 MUTE12 H2 − 46 AVM4 H2 + 47 BIAS H3 − 48 FIN (GND) BTLSNGD H3 + Pin Assignments 42 41 40 39 38 37 DO4 + FG 2 35 DO4 − ECR 3 34 AVM3 EC 4 33 DO3 + VCC2 5 32 DO3 − PC1 6 31 BTLPGND2 (GND) FIN 36 FIN 1 (GND) VH KA3014 29 DO2 + CS1 9 28 DO2 − SS 10 27 DO1 + DIR 11 26 DO1 − SB 12 25 DI1 18 VREGX 17 RESX 16 A1 15 A2 14 A3 PWRGND 13 (GND) FIN 2 19 20 21 22 23 24 DI2 8 DI3 VM DI4 BTLPGND1 AVM12 30 VCC1 7 REGOX SIGGND KA3014 Pin Definitions Pin Number Pin Name I/O Pin Function Descrition 1 VH I Hall bias 2 FG O FG signal output 3 ECR I Torque control reference 4 EC I Torque control signal 5 VCC2 - Supply voltage 6 PC1 - Phase compensation capacitor 7 SIGGND - Signal ground 8 VM - Motor supply voltage 9 CS1 I Current sensor 10 S/S I Start/stop 11 DIR O 3-phase rotational direction output 12 SB I Short brake 13 PWRGND - Power ground 14 A3 O 3-phase output 3 15 A2 O 3-phase output 2 16 A1 O 3-phase output 1 17 RESX I Variable regulator reset 18 VREGX O Variable regulator 19 REGOX O Variable regulator output 20 VCC1 - Supply voltage 21 AVM12 - BTL CH-1, 2 motor supply voltage 22 DI4 I BTL drive input 4 23 DI3 I BTL drive input 3 24 DI2 I BTL drive input 2 25 DI1 I BTL drive input 1 26 DO1− O BTL drive 1 output (−) 27 DO1+ O BTL drive 1 output (+) 28 DO2− O BTL drive 2 output (−) 29 DO2+ O BTL drive 2 output (+) 30 BTLPGND1 - BTL power ground 1 31 BTLPGND2 – BTL power ground 2 3 KA3014 Pin Definitions (Continued) Pin Number Pin Name I/O Pin Function Descrition 32 DO3– O BTL drive 3 output (–) 33 DO3+ O BTL drive 3 output (+) 34 AVM3 – BTL CH3 motor supply voltage 35 DO4– O BTL drive 4 output (–) 36 DO4+ O BTL drive 4 output (+) 37 MUTE4 I BTL drive mute CH 4 38 MUTE3 I BTL drive mute CH 3 39 MUTE12 I BTL drive mute CH 1, 2 40 AVM4 – BTL CH 4 motor supply voltage 41 BIAS – BTL bias voltage 42 BTLSGND – BTL drive signal ground 43 H1– I Hall1(–) input 44 H1+ I Hall1(+) input 45 H2– I Hall2(–) input 46 H2+ I Hall2(+) input 47 H3– I Hall3(–) input 48 H3+ I Hall3(+) input 4 KA3014 7 Short vrake 5 4 3 2 1 Power Save Absolute Values +− Direction Detector FIN (GND) VREGX 18 45 H2− Hall amp matrix Upper Distributor RESX 17 46 H2+ Detector Direction select Lower Distributor A1 16 47 H3− 44 H1+ 43 H1− 2P + − − FIN (GND) A2 15 48 H3+ Hall bias + − FG Comparator A3 14 6 TSD PWRGND 13 VH SIGGND 8 FG VM 9 ECR CS1 10 EC SS 11 VCC2 DIR 12 FIN (GND) PC1 SB Internal Block Diagram + REGOX 19 42 BTLSGND VCC1 20 41 BIAS − + + − + 39 MUTE12 x2 x2 x2 x2 MUTE MUTE MUTE 38 MUTE3 2P 2P 2P 2P 2P 2P 2P DI3 23 2P 40 AVM4 − + x2 x2 − + − + x2 x2 − 10k − 10k AVM12 21 DI4 22 + 10k − 10k + 37 MUTE4 DO1 − DO1 + DO2 − DO2 + BTLPGND1 FIN (GND) 5 31 32 33 34 35 36 DO4 + 30 DO4 − 29 AVM3 28 DO3 + 27 DO3 − 26 BTLPGND2 25 DI1 DI2 24 KA3014 Equivalent Circuits Hall bias FG signal output 10kΩ 1 2 5Ω 50Ω 50kΩ Torque control reference & signal Phase compensation capacitor 2kΩ 6 3 4 50Ω 1kΩ 2kΩ Current detector Start / Stop 50Ω 2.7kΩ 50kΩ 10 9 30kΩ 120Ω 6 KA3014 Equivalent Circuits (Continued) 3-phase rotational direction output Short brake 25kΩ 50Ω 1kΩ 17 11 50Ω 80kΩ 3-phase output Variable regulator reset 60kΩ 50Ω 14 50kΩ 12 15 30kΩ 16 Variable regulator Variable regulator output 18 50Ω 19 50Ω 7 KA3014 Equivalent Circuits (Continued) BTL drive input BTL drive output 26 27 28 22 50Ω 23 10kΩ 100Ω 29 24 32 25 33 35 20kΩ BTL drive mute 37 50Ω BTL bias voltage 50kΩ 38 41 39 50Ω 30kΩ Hall input 43 45 36 44 50Ω 1kΩ 1kΩ 50Ω 47 46 48 8 200Ω KA3014 Absolute Maximum Ratings ( Ta=25°°C) Parameter Symbol Value Unit Supply voltage (BTL signal) VCC1MAX 15 V Supply voltage (Spindle signal) VCC2MAX 7 V Supply voltage (Spindle motor) VMMAX 15 V VMBTLMAX 15 V Supply voltage (BTL motor) Power dissipation 3.0 PD Operating temperature note W TOPR −35 ~ +85 °C TSTG −55 ~ +150 °C Maximum output current (Spindle part) IOMAXS 1.3 A Maximum output current (BTL part) IOMAXB 1 A Storage temperature range Notes: 1. When mounted on 70mm × 70mm × 1.6mm PCB (Phenolic resin material) 2. Power dissipation is reduced 24mW / °C for using above Ta=25°C 3. Do not exceed Pd and SOA (Safe Operating Area) Pd (mW) 3,000 2,000 1,000 0 0 25 50 75 100 125 150 175 Ambient temperature, Ta [°C] Recommended Operating Conditions ( Ta=25°°C) Parameter Symbol Min. Typ. Max. Unit Operating supply voltage (BTL signal) VCC1 4.5 - 13.2 V Operating supply voltage (Spindle signal) VCC2 4.5 - 5.5 V Operating supply voltage (Spindle motor) VM 4.5 - 13.2 V VMBTL 4.5 - 5.5 V Operating supply voltage (BTL motor) 9 KA3014 Electrical Charateristics (SPINDLE PART, Ta=25°C, VCC2=5V, VM=12V) Parameter Symbol Condition Min. Typ. Max. Units Circuit current 1 ICC 1 Power save=0V – 0 0.1 mA Circuit current 2 ICC2 Power save=5V – 8.0 – mA START / STOP On voltage range VPSON L-H circuit on 2.5 – – V Off voltage range VPSOFF H-L circuit off – – 0.5 V IHB=20mA – 1.2 1.8 V HALL BIAS Hall bias voltage VHB HALL AMP IHA – – 1 5 µA In-phase in voltage range VHAR – 1.5 – 4.0 V Minimum in level VINH – 60 – – mVpp In voltage range EC – 0.5 – 3.3 V Offset voltage (−) ECOFF– ECR=2.5V −80 −50 −20 mV Offset voltage (+) ECOFF+ ECR=2.5V 20 50 80 mV −5 −1 – µA Hall bias current TORQUE CONTROL In current ECIN EC=ECR=2.5V In/output gain GEC ECR=2.5V, RCS=0.5Ω 0.41 0.51 0.61 A/V FG output voltage (H) VFGH IFG= −10µA 3.0 – VCC V FG output voltage (L) VFHL IFG=10µA – – 0.5 V Input voltage range VFGR Hn+, Hn− input D-range 1.5 – 4.0 V Saturation voltage (upper TR) VOH IO= −300mA – 0.9 1.6 V Saturation voltage (lower TR) VOL IO=300mA – 0.2 0.6 V Torque limit current ITL RCS=0.5Ω 560 700 840 mA Dir output voltage (H) VDIRH IFG=−10µA 3.0 – VCC V Dir output voltage (L) VDIRL IFG=10µA – – 0.5 V FG OUTPUT BLOCK DIRECTION DETECTOR SHORT BRAKE On voltage range VSBON – 2.5 – VCC V Off voltage range VSBOFF – 0 – 0.5 V 10 KA3014 Electrical Charateristics (Continued) (BTL DRIVE PART, Ta=25°C, VCC1=12V, VMBTL=12V, RL=24Ω) Parameter Symbol Condition Min. Typ. Max. Units 9 12 mA Ω) BTL DRIVE PART (Ta=25°°C, VCC1=12V, VMBTL=12V, RL=24Ω Quiescent circuit current ICC – – Output offset voltage VOO – −30 – 30 mV Maximum output Amplitude voltage VOM – 9.5 10.5 – V Voltage gain GVC VIN=0.1VRMS, 1kHz 10.5 12.0 13.5 dB Ripple rejection ratio RR VIN=0.1VRMS, 120kHz – 60 – dB SR 120Hz, 2Vpp Slew rate – 1.0 – V/µs Mute off voltage VMOFF – – – 0.5 V Mute on voltage VMON – 2.5 – – V 2.0 – 5.25 V VARIABLE-REGULATOR Regulator output range ∆VREG IL=100mA Load regulation ∆VR1 IL=0 → 200mA −40 0 10 mV Line regulation ∆VCC IL=200mA, VCC=6V→ 9V −20 0 30 mV Regulator output voltage 1 VREG1 IL=100mA 4.75 5.0 5.25 V Regulator output voltage 2 VREG2 IL=100mA 3.135 3.3 3.465 V Calculation of Gain & Torque Limit Current VM VM IO − VS Output Current sense + CS1 (Pin 9) RS Current / Voltage Convertor − Vin EC + ECR − Negative Feedback loop R1 U V − + + Gm Driver Power Transistors W + Absolute Values + Commutation Distributor Vmax − H1 VM Max. output current limiting 0.255 is GM times R1 and it is a fixed value within IC. 0.255 Gain = --------------RS Vmax (see above block diagram) is set to 350mV. Vmax 350 [ mV ] Itl [ mA ] = ---------------- = -----------------------RS RS 11 H2 H3 IO KA3014 Application Information 1. MUTE FUNCTION • Mute control voltage condition When using the mute function, the applied control voltage condition is as follows. Mute on voltage 2.5[V] above Mute function operation Mute off voltage Open or 0.5[V] below Normal operation • Individual channel mute function These pins are used for individual channel mute operation. - When the mute pins (pin 37, 38 and 39) are open or the voltages at the mute pins are below 0.5[V], the mute circuit is stopped and BTL output circuits operate normally. - When the mute pins (pin 37, 38 and 39) are above 2.5[V], the mute circuits are activated so that the BTL output circuit is muted. - If the junction temperature rises above 175°C, then the thermal shutdown (TSD) circuit is activated and all the output circuits (4-CH BTL drivers and 3-phase BLDC driver) are muted. 2. 4-CH BALANCED TRANSFORMERLESS (BTL) DRIVER VCC Q1 Q2 DRIVE AMP 27 X2 Q3 26 DRIVE AMP 29 28 X2 33 32 36 35 M Q4 GND 41 Vbias + AMP1 − Vin Rextern LEVEL SHIFT 22 23 24 25 10k • The voltage, Vbias, is the reference voltage given by the external bias voltage of pin 41. • The input signals, Vin, through the pins (pin 22, 23, 24 and 25) are amplified 10k/rextern times and then fed to the level shift. • The level shift produces the current due to the difference between the input signal (Vin) and the arbitrary reference voltage (Vbias). The current produced as + ∆I and − ∆I are fed into the drive buffers. • The drive buffer operates the power TR of the output stage according to the state of the input signal (Vin). • The output stage is the BTL driver, and the motor (or actuator) rotates in forward direction when TR Q1 and TR Q4 are on. On the other hand, if TR Q2 and TR Q3 are on, the motor (or actuator) is rotating in reverse direction. • When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is below the Vbias, then the motor (actuator) moves in forward direction. • When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is above the Vbias, then the motor (actuator) moves in reverse direction. • To change the gain, Modify the external resistor's value (Rextern) 12 KA3014 3. TORQUE & OUTPUT CURRENT CONTROL Torque & output current control VM VM RNF + Torque sense amp + + − VRNF IO Current sense amp VAMP EC − − Gain Controller Driver M TSD ECR • By amplifying the voltage difference between EC and ECR from the servo IC, the torque sense amp produces the input (VAMP) for the current sense amp. • The current sense amp produces the input for the gain controller to allow the output current (IO) of the driver to be controlled by the input voltage (VAMP), where the output current (IO) is detected by the sense resistor (RNF) and is converted into VRNF. • In the end, the signals of the servo IC control the velocity of the motor by controlling the output current (IO) of the driver. • When the junction temperature rises up to about 175°C, then the output drive circuit will shut down. • The range of the torque control input voltage is as shown below. VRNF [V] Reverse Rotation Forward Ecoff− Ecoff+ 3 mV 0 ECR-EC[V] The input range (EC) of the torque sense amp is 0.5V ~ 3.3V. 13 Ec < ECR Forward rotation Ec > ECR Stop after detecting reverse rotation KA3014 4. POWER SAVE FUNCTION • . Bias block VCC 100k Start 10 30KΩ Q1 Stop 12KΩ • The power save circuit is activated by operating TR Q1. • When the SS (Start / Stop) pin 10 is high (VCC), the TR Q1 is turned on and the bias circuit is enabled. On the other hand, when the SS (Start/Stop) pin 10 is open or low (GND), the TR Q1 is turned off and the bias circuit is disabled. • The power save operation controlled by SS (pin 10) input conditions is as follows; Pin #10 KA3014 High Start Opin / Low Stop 14 KA3014 5. SHORT BRAKE FUNCTION VM Drive logic MOTOR OFF VCC 14 ON 12 15 1KΩ Q1 OFF 16 ON 80KΩ When the pick-up moves from the inner to the outer spindle of the MD(Mini Disk), the brake function of the reverse voltage is commonly employed to rate the rotational velocity of the spindle motor. However, if the spindle motor rotates rapidly, the brake function of the reverse voltage may produce too much heat at the drive IC. To remove these shortcomings and to enhance efficiency, the short brake function is added to KA3014. When the short brake function is active, all upper power transistors are turned off and the lower power transistors turned on, so as to reduce the rotational velocity of the motor. The short brake operation controlled by SB (pin 12), and the input conditions are as follows. Pin #12 Short brake High On Low Off 6. THERMAL SHUTDOWN (TSD) FUNCTION When the junction temperature rises up to 175°C, then the output drive circuit shuts down, when the junction temperature falls off to 160°C, the output drive circuit operates normally. It has the temperature hysteresis of about 15°C. 15 KA3014 7. ROTATING DIRECTION DETECTION FUNCTION VCC H2+ + H2− − 11 DIR R Rotation 11 D CK H3+ + H3− − DIR Q EC < ECR Forward Low EC > ECR Reverse High D-F/F • The forward and reverse rotations of the MD are detected by the circuit, as shown in the above table. • The rotational direction of the MD can be learned by the output waveforms of the hall sensor and/or the driver. If the hall sensors turn on in the order, H1→H2→H3, then this indicates reverse rotation. The output waveforms of the hall sensors are as shown below. H1 H2 H3 ( a) Inversely, if the hall sensors turn on in the order, H3 → H2 → H1, then this shows forward rotation. The output waveforms of the hall sensors are as shown below\. H1 H2 H3 ( b) . 16 KA3014 8. REVERSE ROTATION PREVENTING FUNCTION EC + ECR − H2+ + H2− − H3+ + H3− − Current Sense Amp D Q CK Gain Controller D-F/F Driver M • The forward and reverse rotation of the motor are detected, as shown in the table below. Consequently at reverse rotation, the D-F/F output Q becomes low and cuts off the output current sense amp, resulting in the stoppage of the gain controller function. • When the MD is rotating in forward direction, EC>ECR is sometimes controlled to retard and/or stop the MD. As the controlling time of EC>ECR gets longer, MD slows down, stops, and then rotates in the reverse direction. To prevent the MD from rotating in the reverse direction, a reverse rotation preventing function is required. Its operational principles are discussed below. Rotation H2 H3 D-F/F Forward H H→L Reverse L H→L Reverse rotation preventer EC<ECR EC>ECR H Forward Brake and stop L – stop 9. FG OUTPUT FUNCTION The FG output detects the number of rotations of the MD. This is generated from zero-crossing of the hall sensor output waveforms. The FG output circuit is as shown below. + H1 − + H2 − FG OUTPUT + H3 − 17 KA3014 10. HALL SENSOR CONNECTION External hall sensors are used in series or in parallel connection as shown below. VCC VCC HALL 1 HALL 1 HALL 2 HALL 3 HALL 2 HALL 3 1 1 VH 18 VH KA3014 11. HALL INPUT OUTPUT TIMING CHART The 3-phase hall signal is amplified in the hall amplifiers and sent to the matrix section, where the signal is further amplified. After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which then provides a motor drive current. The phases of the hall input signal, output voltage, and output current are shown below. H1 + H2 + H3 + A1 output current A1 output voltage A2 output current A2 output voltage A3 output current A3 output voltage 19 KA3014 Typical Performance Characteristics Icc1(A) Icc2(A) Vcc vs Icc1 0.015 Vcc vs Icc2 10 8 0.010 6 4 0.005 SS = 5V 2 0.000 0 0 2 4 6 8 10 12 14 16 18 0 20 2 4 6 8 10 Vcc(V) Icc1(mA) Vcc(V) Icc2(mA) Temp vs Icc1 11.0 Temp vs Icc2 8.0 10.9 10.8 7.8 10.7 10.6 7.6 10.5 7.4 10.4 10.3 Vcc = 12V 10.2 Vcc =12V SS = 5V 7.2 10.1 10.0 -35 -25 0 25 50 75 7.0 -35 90 -25 0 25 50 Temp (°C) 75 90 Temp (°C) Vom(V) Gvo(dB) Vcc vs Vom 5.0 Vcc vs Gvo (5V) 13.0 4.5 12.5 4.0 3.5 12.0 3.0 2.5 11.5 2.0 11.0 Input = 0.5V, 4.5V Bias = 2.5V Rin = 10KΩ 1.5 1.0 Vcc1 = 5V Vin = 0.1V rms f = 1KHz Rin=10KΩ 10.5 0.5 0.0 10.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 4.0 Vcc(V) 20 4.5 5.0 5.5 6.0 6.5 7.0 Vcc(V) KA3014 Typical Performance Characteristics (Continued) Vout(V) Gvo(dB) Vcc1 vs Gvo(12V) 13.0 Vin vs Vout (5V) 4 3 12.5 2 12.0 1 11.5 0 11.0 -1 Vcc1 = 12V Vin = 0.1V rms f = 1KHz Rin=10KΩ 10.5 -2 Vcc1 = 5V Bias = 2.5V Rin=10KΩ -3 -4 10.0 9 10 11 12 13 14 0 15 1 2 3 4 5 6 7 Vcc(V) 8 Vin(V) Vout(V) Vin vs Vout (12V) 15 10 5 0 -5 Vcc1 = 12V Bias = 2.5V Rin=10KΩ -10 -15 0 1 2 3 4 5 6 7 8 Vin(V) Vol(mV) Voh(V) Io vs Voh 1.2 500 1.0 Io vs Vol 400 0.8 300 0.6 200 0.4 Io = source current 0.2 0 50 100 Io = source current 0 150 225 275 325 375 50 100 150 200 250 300 350 400 450 500 450 Io(mA) 21 Io(mA) KA3014 Typical Performance Characteristics (Continued) Vrnf(mV) Vrnf(mV) Ec vs Vrnf 350 300 300 250 250 200 200 150 150 100 100 Ecr = 2.5V RNF=0.5Ω 50 1 2 3 4 Ecr = 1.6V RNF=0.5Ω 50 0 0 Ec vs Vrnf 350 0 0 5 Ec(V) 1 2 3 4 5 Ec(V) 22 KA3014 Test Circuits 1 BTL Drive Part 10µF VMUTE 38 37 V MUE4 VMUTE 39 MUTE3 40 AVM4 BTLSGND 41 BIAS 42 43 H1− 44 H1+ 45 H2− 46 H2+ 47 H3− H3+ 48 MUTE12 2.5V VMUTE 12V RL4’ 1 VH 2 FG DO4− 35 3 ECR AVM3 34 4 EC DO3+ 33 5 VCC2 DO3− 32 6 PC1 DO4+ 36 RL4 SW4 12V 10µF SW3 RL3’ RL3 BTLPGND2 31 V KA3014 7 V RL2 BTLPGND1 30 SIGGND SW2 8 VM DO2+ 29 9 CS1 DO2− 28 VCC1 AVM12 DI4 DI3 DI2 15 REGOX 14 VREFX 13 RESX 12 SB A1 DO1− 26 A2 11 DIR A3 DO1+ 27 PWRGND 10 SS 16 17 18 19 20 21 22 23 24 A 10µF 12V SW1 RL1 DI1 25 V SERVO AMP TRACKING 10µF FOCUS BTL SVCC 12V SLED CONTROL TRAY 23 KA3014 Test Circuits 2 Spindle Motor Drive Part A A A A A A 48 47 46 45 44 43 42 41 40 39 38 37 H3− H2+ H2− H1+ H1− BTLSGND BIAS AVM4 MUTE12 MUTE3 MUE4 V H3+ H3+ H3− H2+ H2− H1+ H1− V SW12 VH 2 FG DO4− 35 3 ECR AVM3 34 4 EC DO3+ 33 5 VCC2 DO3− 32 6 PC1 SW13 2.5V EC SW14 5V A DO4+ 36 1 BTLPGND2 31 KA3014 SW15 12V 8 VM DO2+ 29 9 CS1 DO2− 28 SW16 AVM12 DI4 DI3 DI2 SW18 VCC1 IFR REGOX 12 SB VREFX DO1− 26 RESX 11 DIR A1 DO1+ 27 A2 SW17 10 SS A3 V SIGGND PWRGND V BTLPGND1 30 7 13 14 15 16 17 18 19 20 21 22 23 24 VSB SW19 SW20 24 DI1 25 KA3014 SLED MUTE TRAY MUTE 45 44 43 42 41 40 39 38 37 H3− H2+ H2− H1+ H1− BTLSGND BIAS AVM4 MUTE12 MUTE3 MUE4 HALL1 BTL BIAS VOLTAGE 46 HALL2 47 HALL3 48 H3+ FOCUS TRACKING MUTE Application Circuits +5V 1 VH 2 FG DO4− 35 SERVO TORQUE CONTROL 3 ECR AVM3 34 4 EC DO3+ 33 VCC 5 VCC2 DO3− 32 6 PC1 10K FG SIGNAL 100pF DO4+ 36 TRAY MOTOR +5V SLED MOTOR BTLPGND2 31 0.1µF KA3014 DO2+ 29 9 CS1 DO2− 28 DI2 15 DI3 14 DI4 13 AVM12 12 SB VCC1 DO1− 26 REGOX 11 DIR VREFX DO1+ 27 RESX 10 SS A1 SHORT BREAK VM A2 ROTATE DIRECTION 8 A3 SYSTEM CONTROL SIGGND PWRGND 12V BTLPGND1 30 7 16 17 18 19 20 21 22 23 24 FOCUS ACTUATOR TRACKING ACTUATOR DI1 25 SERVO AMP VCC +5V FOCUS SLED xxV RESET S/S TRACKING VCC 25 VARIABLE VOLTAGE CONTROL TRAY KA3014 DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 12/1/00 0.0m 001 Stock#DSxxxxxxxx 2000 Fairchild Semiconductor International