www.fairchildsemi.com KA3017 Spindle + 4-CH Motor Driver Features Description • • • • • • • • • • • • The KA3017 is a monolithic integrated circuit suitable for a 4-CH motor driver which drives the tracking actuator, focus actuator, sled motor, loading motor and 3-phase BLDC spindle motor of the MDP/CAR-MD/CAR-NAVIGATION system. Built-in Power Save Circuit Built-in Current Limit Circuit Built-in Thermal Shutdown Circuit (TSD) Built-in Hall Bias Built-in FG Signal Output Circuit Built-in Rotational Direction Detecting Circuit Built-in Protection Circuit For Reverse Rotation Built-in Short Brake Circuit Built-in Normal OP-AMP Built-in 4-CH Balanced Transformerless (BTL) Driver Built-in BTL MUTE Circuit (CH1-2, CH3 and CH4) Corresponds to 3.3V DSP Target Application • • • • Mini Disk Player Digital Video Disk Player Car Mini Disk Player Car Navigation System 48-QFPH-1414 Ordering Information Device Package Operating Temp. KA3017 48-QFPH-1414 -35°°C ~ +85°°C Rev. 1.0.3 ©2002 Fairchild Semiconductor Corporation KA3017 43 42 41 40 39 38 37 DO4 + FG 2 35 DO4 − ECR 3 34 AVM3 EC 4 33 DO3 + VCC2 5 32 DO3 − PC1 6 31 BTLPGND2 (GND) FIN 36 FIN 1 (GND) VH KA3017 29 DO2 + CS1 9 28 DO2 − SS 10 27 DO1 + DIR 11 26 DO1 − SB 12 25 DI1 18 OPIN− 17 OPIN+ 16 A1 15 A2 A3 PWRGND 14 (GND) FIN 19 20 21 22 23 24 DI2 8 DI3 VM DI4 BTLPGND1 AVM12 30 VCC1 7 OPOUT SIGGND 13 2 MUTE4 H1 − 44 MUTE3 H1 + 45 MUTE12 H2 − 46 AVM4 H2 + 47 BIAS H3 − 48 FIN (GND) BTLSNGD H3 + Pin Assignments KA3017 Pin Definitions Pin Number Pin Name I/O Pin Function Description 1 VH I Hall Bias 2 FG O FG Signal Output 3 ECR I Torque Control Reference 4 EC I Torque Control Signal 5 VCC2 - Supply Voltage 6 PC1 - Phase Compensation Capacitor 7 SIGGND - Signal Ground 8 VM - Motor Supply Voltage 9 CS1 I Current Sensor 10 S/S I Start/Stop 11 DIR O 3-Phase Rotational Direction Output 12 SB I Short Brake 13 PWRGND - Power Ground 14 A3 O 3-Phase Output 3 15 A2 O 3-Phase Output 2 16 A1 O 3-Phase Output 1 17 OPIN+ I OP-AMP Input (+) 18 OPIN- I OP-AMP Input (-) 19 OPOUT O OP-AMP Output 20 VCC1 - Supply Voltage 21 AVM12 - BTL CH-1, 2 Motor Supply Voltage 22 DI4 I BTL Drive Input 4 23 DI3 I BTL Drive Input 3 24 DI2 I BTL Drive Input 2 25 DI1 I BTL Drive Input 1 26 DO1- O BTL Drive 1 Output (-) 27 DO1+ O BTL Drive 1 Output (+) 28 DO2- O BTL Drive 2 Output (-) 29 DO2+ O BTL Drive 2 Output (+) 30 BTLPGND1 - BTL Power Ground 1 31 BTLPGND2 - BTL Power Ground 2 32 DO3- O BTL Drive 3 Output (-) 33 DO3+ O BTL Drive 3 Output (+) 3 KA3017 Pin Definitions (Continued) 4 Pin Number Pin Name I/O Pin Function Descrition 34 AVM3 - BTL CH3 Motor Supply Voltage 35 DO4- O BTL Drive 4 Output (-) 36 DO4+ O BTL Drive 4 Output (+) 37 MUTE4 I BTL Drive Mute CH4 38 MUTE3 I BTL Drive Mute CH3 39 MUTE12 I BTL Drive Mute CH1, 2 40 AVM4 - BTL CH4 Motor Supply Voltage 41 BIAS - BTL Bias Voltage 42 BTLSGND - BTL Drive Signal Ground 43 H1- I Hall1(-) Input 44 H1+ I Hall1(+) Input 45 H2- I Hall2(-) Input 46 H2+ I Hall2(+) Input 47 H3- I Hall3(-) Input 48 H3+ I Hall3(+) Input KA3017 7 Short vrake 4 3 2 1 Power Save Absolute Values + − Direction Detector + 44 H1+ 43 H1− 2P − 45 H2− − FIN (GND) OPIN − 18 46 H2+ Hall amp matrix Upper Distributor OPIN + 17 47 H3− Detector Direction select Lower Distributor A1 16 48 H3+ Hall bias + − A2 15 FIN (GND) 5 FG Comparator A3 14 6 TSD PWRGND 13 VH SIGGND 8 FG VM 9 ECR CS1 10 EC SS 11 VCC2 DIR 12 FIN (GND) PC1 SB Internal Block Diagram + OPOUT 19 42 BTLSGND VCC1 20 41 BIAS − + − + x2 + − + − + 39 MUTE12 x2 MUTE MUTE MUTE x2 x2 x2 38 MUTE3 2P 2P 2P 2P 2P 2P 2P DI3 23 2P 40 AVM4 − + x2 x2 x2 − 10k − 10k AVM12 21 DI4 22 + 10k − 10k + 37 MUTE4 DO1 − DO1 + DO2 − DO2 + BTLPGND1 FIN (GND) 31 32 33 34 35 36 DO4 + 30 DO4 − 29 AVM3 28 DO3 + 27 DO3 − 26 BTLPGND2 25 DI1 DI2 24 5 KA3017 Equivalent Circuits Hall Bias FG Signal Output 10kΩ 1 2 5Ω 50Ω 50kΩ Torque Control Reference & Signal Phase Compensation Capacitor 2kΩ 6 3 4 50Ω 1kΩ 2kΩ Current Detector Start/Stop 50Ω 2.7kΩ 50kΩ 10 9 30kΩ 120Ω 6 KA3017 Equivalent Circuits (Continued) 3-Phase Rotational Direction Output Short Brake 25kΩ 50Ω 1kΩ 12 11 50Ω 80kΩ 3-Phase Output OP-AMP Input 7kΩ 7kΩ 60kΩ 14 15 18 17 16 50Ω 7kΩ OP-AMP Ouput 50Ω 10k 7kΩ BTL Drive Input 22 23 50Ω 19 50Ω 50Ω 100Ω 24 25 7 KA3017 Equivalent Circuits (Continued) BTL Drive Output BTL Drive Mute 26 27 10kΩ 28 37 29 38 32 39 50Ω 50kΩ 30kΩ 33 35 20kΩ 36 BTL Bias Voltage Hall Input 43 45 41 50Ω 8 200Ω 47 44 50Ω 1kΩ 1kΩ 50Ω 46 48 KA3017 Absolute Maximum Ratings ( Ta=25°°C) Parameter Supply Voltage (BTL Signal) Supply Voltage (Spindle Signal) Supply Voltage (Motor) Supply Voltage (BTL Motor) Power Dissipation Operating Temperature Range Storge Temperature Range Maximum Output Current (Spindle Part) Maximum Output Current (BTL Part) Symbol Value Unit VCC1max VCC2max VMmax VMBTLmax Pd Topr Tstg IOMAXS IOMAXB 15 7 15 15 3.0note -35 ~ +85 -55 ~ +150 1.3 1 V V V V W °C °C A A Note: 1. When mounted on 70mm × 70mm × 1.6mm PCB (Phenolic resin material) 2. Power dissipation is reduced 24mW/°C for using above Ta=25°C 3. Do not exceed Pd and SOA (Safe Operating Area). Pd [mW] 3,000 2,000 1,000 0 0 25 50 75 100 125 150 Ambient Temperature, Ta [°C] 175 Recommended Operating Conditions ( Ta=25°°C) Parameter Symbol Min. Typ. Max. Unit Operating Supply Voltage (BTL Signal) VCC1 4.5 - 13.2 V Operating Supply Voltage (Spindle Signal) VCC2 4.5 - 5.5 V Operating Supply Voltage ( Spindle Motor) VM 4.5 - 13.2 V VMBTL 4.5 - VCC1 V Operating Supply Voltage (BTL Motor) 9 KA3017 Electrical Characteristics (Ta=25°C, VCC2=5V, VM=12V) Parameter Symbol Condition Min. Typ. Max. Unit Circuit Current 1 ICC 1 Power Save = 0V - 0 0.1 mA Circuit Current 2 ICC2 Power Save = 5V - 8.0 - mA START/STOP On Voltage Range VPSON L-H Circuit On 2.5 - - V Off Voltage Range VPSOFF H-L Circuit Off - - 0.5 V VHB IHB = 20mA - 1.2 1.8 V IHA - - 1 5 uA VHAR - 1.5 - 4.0 V VINH - 60 - - mVpp 0.5 - 3.3 V HALL BIAS Hall Bias Voltage HALL AMP Hall Bias Current In-phase in Voltage Range Minimum in Level note TORQUE CONTROL In Voltage Range Offset Voltage (-) note Offset Voltage (+) EC ECOFF- ECR = 2.5V -80 -50 -20 mV ECOFF+ ECR = 2.5V 20 50 80 mV In Current ECIN EC = ECR = 2.5V -5 -1 - uA In/Output Gain GEC ECR = 2.5V, RCS = 0.5Ω 0.41 0.51 0.61 A/V FG Output Voltage (H) VFGH IFG = -10uA 3.0 - VCC V FG Output Voltage (L) VFHL IFG = 10uA - - 0.5 V VFGR Hn+, Hn- input D-range 1.5 - 4.0 V Saturation Voltage (upper TR) VOH IO = -300mA - 0.9 1.6 V Saturation Voltage (lower TR) VOL IO = 300mA - 0.2 0.6 V Torque Limit Current ITL RCS = 0.5Ω 560 700 840 mA Dir Output Voltage (H) VDIRH IFG = -10uA 3.0 - VCC V Dir Output Voltage (L) VDIRL IFG = 10uA - - 0.5 V FG Input Voltage Rangenote OUTPUT BLOCK DIRECTION DETECTOR SHORT BRAKE On Voltage Range VSBON - 2.5 - VCC V Off Voltage Range VSBOFF - 0 - 0.5 V Note: Guranteed field. (No EDS / Final test) 10 KA3017 Electrical Characteristics (Continued) BTL Drive Part (Ta=25°C, VCC1=12V, VMBTL=12V, RL=24Ω) Parameter Symbol Condition Min. Typ. Max. Unit Quiescent Circuit Current ICC - - 9 15 mA Output Offset Voltage VOO - -30 - 30 mV - 9.5 10.5 - V 10.5 12.0 13.5 dB VIN=0.1Vrms, 120kHz - 60 - dB 120Hz, 2Vpp - 1.0 - V/us Maximum Output Amplitude Voltage VOM Voltage Gain GVC VIN=0.1Vrms, 1kHz Ripple Rejection Rationote RR SR Slew Rate note CH Mute Off Voltage VMOFFCH Pin37, 38, 39 = Variation - - 0.5 V CH Mute On Voltage VMONCH Pin37, 38, 39 = Variation 2.5 - - V Input Offset Voltage VOF - -10 - +10 mV Input Bias Current IB1 - - - 300 nA NORMAL OP- AMP High Level Output Voltage VOH1 - 11 - - V Low Level Output Voltage VOL1 - - - 0.1 V Output Sink Current ISINK - 10 20 - mA ISOU1 - 10 20 - mA Output Source Current Open Loop Voltage Gainnote GVO1 f=1kHz, VIN= -75dB - 75 - dB note RR1 f=120Hz, VIN= -20dB - 65 - dB SR1 f=120Hz, 2Vp-p - 1 - V/us f=1kHz, VIN= -20dB - 80 - dB Ripple Rejection Ratio Slew Rate note Common Mode Rejection Rationote CMRR1 Note: Guranteed field. (No EDS / Final test) 11 KA3017 Calculation of Gain & Torque Limit Current VM VM IO − VS Output Current sense + CS1 (Pin 9) RS Current / Voltage Convertor − Vin EC + ECR − Negative Feedback loop R1 U IO V W − + + Gm Driver Power Transistors + Absolute Values + Commutation Distributor Vmax − VM Max. output current limiting 0.255 is made from GM times R1 and is a fixed value within IC. 0.255 Gain = --------------RS Vmax (see above block diagram) is set to 350mV. 350 [ mV -] ---------------- = ----------------------Itl [ mA ] = Vmax RS RS 12 H1 H2 H3 KA3017 Application Information 1. Mute Function 1) Mute Control Voltage Condition When using the mute function, the applied control voltage condition is as follows. Mute On Voltage 2.5[V] Above Mute Function Operation Mute Off Voltage OPEN or 0.5[V] Below Normal Operation 2) Individual channel Mute Function These pins are used for individual channel mute operation. - When the mute pins (pin 37, 38 and 39) are OPEN or the voltages at the mute pins are below 0.5[V], the mute circuit is disabled and BTL output circuits operate normally. - When the mute pins (pin 37, 38 and 39) are above 2.5[V], the mute circuits are activated so that the BTL output circuit will be muted. - If the junction temperature rises above 175°C, then the thermal shutdown (TSD) circuit is activated and all the output circuits (4-CH BTL Drivers and 3-phase BLDC Driver) are muted. 2. 4-CH Balanced Transformerless (Btl) Driver VCC Q1 Q2 DRIVE AMP 27 X2 Q3 26 DRIVE AMP 29 28 X2 33 32 36 35 M Q4 GND 41 Vbias + AMP1 − Vin Rextern LEVEL SHIFT 22 23 24 25 10k - The voltage, Vbias, is the reference voltage given by the external bias voltage of pin 41. - The input signals, Vin, through the pins (pin 22, 23, 24 and 25) are amplified 10K/Rextern times and then fed to the level shift. - The level shift produces the current due to the difference between the input signal (Vin) and the arbitrary reference voltage (Vbias). The current produced as + ∆I and - ∆I are fed into the drive buffers. - The drive buffer operates the power TR of the output stage according to the state of the input signal(Vin). - The output stage is the BTL driver, and the motor (or actuator) rotates in forward direction, when TR Q1 and TR Q4 are on. On the other hand, if TR Q2 and TR Q3 are on, the motor (or actuator) rotates in reverse direction. - When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is below the Vbias, then the motor (actuator) moves in forward direction. 13 KA3017 - When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is above the Vbias, then the motor (actuator) moves in reverse direction. -To change the gain, modify the external resistor's value (Rextern) 3. Torque & Output Current Control Torque & Output Current Control VM VM RNF + Torque sense amp VAMP EC + + − − VRNF IO Current sense amp − Gain Controller Driver M TSD ECR - By amplifying the voltage difference between EC and ECR from the Servo IC, the torque sense AMP produces the input voltage (VAMP) for the current sense AMP. - The current sense AMP produces the input for the Gain controller to allow the output current (IO) of the driver to be controlled by the input voltage (VAMP), where the output current (IO) is detected by the sense resistor (RNF) and is converted into VRNF. - In the end, the signals of the Servo IC control the velocity of the motor by controlling the output current (IO) of the driver. - When the junction temperature rises up to 175°C, the output drive circuit shuts down. - The range of the torque control input voltage is as shown below. VRNF [V] Reverse Rotation Forward Ecoff− Ecoff+ 3 mV 0 The input range (EC) of the Torque Sense AMP is 0.5V ~ 3.3V 14 ECR-EC[V] Ec < ECR Forward rotation Ec > ECR Stop after detecting reverse rotation KA3017 4. Power Save Function Bias block VCC 100k Start 10 30KΩ Q1 Stop 12KΩ - The power save circuit is activated by operating TR Q1. - When the SS (Start/Stop) pin 10 is high (VCC), the TR Q1 is turned on and the bias circuit is enabled. On the other hand, when the SS (Start/Stop) pin 10 is Open or Low (GND), the TR Q1 is turned off and the bias circuit is disabled. - The power save operation controlled by SS (pin 10) input conditions is as follows; Pin#10 KA3017 High Start Open/Low Stop 5. Short Brake Function VM Drive logic MOTOR OFF VCC 14 ON 12 15 1KΩ Q1 OFF 16 ON 80KΩ When the pick-up mechanism moves from the inner to the outer spindle of the MD(Mini Disk), the brake function of the reverse voltage is commonly employed to rate the rotational velocity of the spindle motor.However, if the spindle motor rotates rapidly, the brake function of the reverse voltage may produce too much heat at the drive IC. To remove these shortcomings and to enhance efficiency, the short brake function is added to KA3017. When the short brake function is active, all upper Power transistors are turned off and the lower Power transistors turned on, so as to reduce the rotational velocity of the motor. The short brake operation controlled by SB (pin 12), and the input conditions are as follows. 6. Thermal Shutdown (Tsd) Function Pin#12 SHORT BRAKE HIGH ON LOW OFF When the junction temperature rises up to 175°C, the output drive circuit shuts down, when the junction temperature falls off to 160°C, the output drive circuit operates normally. It has the temperature hysteresis of about 15°C. 15 KA3017 7. Rotating Direction Detecting Function VCC H2+ + H2− − DIR R Rotation 11 D CK H3+ + H3− − DIR Q EC < ECR Forward Low EC > ECR Reverse High D-F/F - The forward and reverse rotations of the MD are detected by the circuit, as shown in the above Table. - The rotational direction of the MD can be learned by the output waveforms of the hall sensor and/or the driver. Hall sensors are turned on in the order, H1 → H2 → H3 for the reverse rotation. The output waveforms of the hall sensors are as shown below. H1 H2 H3 ( a) Inversely, if the hall sensors turn on in the order, H3→ H2→ H1, then this shows forward rotation. The output waveforms of the hall sensors are as shown below. 16 KA3017 H1 H2 H3 ( b) 8. Reverse Rotation Preventing Function EC + ECR − H2+ + H2− − H3+ + H3− − Current Sense Amp D Q CK Gain Controller D-F/F Driver M - The forward and reverse rotation of the motor are detected, as shown in the table below. Consequently at reverse rotation, the D-F/F output Q becomes Low and cuts off the output current sense Amp, resulting in the stoppage of the Gain controller function. - When the MD is rotating in forward direction, EC>ECR is sometimes controlled to retard and/or stop the MD. As the controlling time of EC>ECR gets longer, MD slows down, stops, and then rotates in the reverse direction. To prevent the MD from rotating in the reverse direction, a reverse rotation resistant function is required. Its operational principles are discussed below. Rotation H2 H3 D-F/F Forward H H→L Reverse L H→L Reverse Rotation Preventer EC<ECR EC>ECR H Forward Brake and Stop L – Stop 17 KA3017 9. Fg Output Function The FG output detects the number of rotations of the MD. This is generated from combination zero-crossing of the hall sensor output waveforms. The FG output circuit is as shown below. + H1 − + H2 − FG OUTPUT + H3 − 10. Hall Sensor Connection External Hall sensors are used in series or in parallel connection as shown below. VCC VCC HALL 1 HALL 1 HALL 2 HALL 3 HALL 2 HALL 3 1 18 VH 1 VH KA3017 11. Hall Input Output Timming Chart The 3-phase hall signal is amplified in the hall amplifiers and sent to the matrix section, where the signal is further amplified. After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which then provides a motor drive current. The phases of the hall input signal, output voltage, and output current are shown below. H1 + H2 + H3 + A1 output current A1 output voltage A2 output current A2 output voltage A3 output current A3 output voltage 19 KA3017 Typical Performance Characteristics Total Circuit Icc2(mA) Icc1(A) Vcc vs Icc1 0.015 Vcc vs Icc2 10 8 0.010 6 4 0.005 2 0.000 SS = 5V 0 0 2 4 6 8 10 12 14 16 18 0 20 2 4 6 8 10 Vcc(V) Icc1(mA) 11 10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10 -35 Vcc(V) Icc2(mA) Temp vs Icc1 Temp vs Icc2 8 7.8 7.6 7.4 -25 0 25 50 75 Vcc2 = 12V SS = 5V 7.2 Vcc1 =12V 90 7 -35 -25 0 25 50 Temp(° C) Vom(V) 90 Temp(° C) Gvo(dB) Vcc vs Vom 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Vcc vs Gvo(5V) 13 12.5 12 11.5 11 Input = 0.5V, 4.5V Bias = 2.5V Rin=10KΩ Vcc1 = 5V Vin = 0.1V rms f = 1KHz Rin=10KΩ 10.5 10 3 3.5 4 4.5 5 5.5 6 6.5 7 Vcc(V) 20 75 4 4.5 5 5.5 6 6.5 7 Vcc(V) KA3017 Typical Performance Characteristics (Continued) Spindle Drive Part Vout(V) Gvo(dB) Vcc1 vs Gvo(12V) 13 Vin vs Vout (5V)_ 4 3 12.5 2 12 1 11.5 0 11 -1 Vcc1 = 12V Vin = 0.1V rms f = 1KHz Rin=10KΩ 10.5 -2 Vcc1 = 5V Bias = 2.5V Rin=10KΩ -3 10 -4 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 Vin(V) Vcc(V) Vout(V) Vin vs Vout (12V) 15 10 5 0 -5 Vcc1 = 12V Bias = 2.5V Rin=10KΩ -10 -15 0 1 2 3 4 5 6 7 8 Vin(V) Voh(V) Vol(mV) Io vs Voh 1.2 Io vs Vol 500 1 400 0.8 300 0.6 200 0.4 Io = source current 0.2 0 50 150 225 275 325 375 450 Io(mA) 100 0 50 Io = source current 100 150 200 250 300 350 400 450 500 Io(mA) 21 KA3017 Typical Performance Characteristics (Continued) OP AMP Part Vrnf(mV) Vrnf(mV) Ec vs Vrnf 350 Ec vs Vrnf 350 300 300 250 250 200 200 150 150 100 100 Ecr = 2.5V RNF=0.5Ω 50 Ecr = 1.6V RNF=0.5Ω 50 0 0 0 1 2 3 4 5 0 1 2 3 4 5 Ec(V) Ec(V) Isink(mA) Isource(mA) Vcc vs Isource 40 Vcc vs Isink 40 35 35 30 30 25 25 20 15 20 10 Rout=50Ω Rout=50Ω 15 5 0 3.5 10 4 4.5 5 5.5 6 6.5 7 Vcc(V) 22 3 3.5 4 4.5 5 5.5 6 6.5 7 Vcc(V) KA3017 Test Circuits 1 BTL Drive Part 10µF VMUTE 38 37 V MUTE4 VMUTE 39 MUTE3 40 AVM4 BTLSGND 1 VH 41 BIAS 42 43 H1− 44 H1+ 45 H2− H3+ 46 H2+ 47 H3− 48 MUTE12 2.5V VMUTE 12V RL4’ DO4+ 36 RL4 SW4 2 FG DO4− 35 3 ECR AVM3 34 4 EC DO3+ 33 5 VCC2 DO3− 32 12V 10µF SW3 RL3’ RL3 BTLPGND2 31 6 PC1 V KA3017 V RL2 BTLPGND1 30 7 SIGGND SW2 VCC1 AVM12 D14 D13 D12 DO1− 26 OPOUT 11 DIR OPIN− DO1+ 27 OPIN+ 10 SS A1 DO2− 28 A2 9 CS1 A3 DO2+ 29 PWRGND 8 VM 13 14 15 16 17 18 19 20 21 22 23 24 12 SB SW1 RL1 DI1 25 V SERVO AMP TRACKING A 10µF 12V FOCUS 10µF BTL SVCC SLED 12V CONTROL TRAY OPIN (+) OPIN (−) OPOUT VCC SW5 1 V V V 1 3 2 1MΩ 3 VIN3 VIN1 + − Vs1 1 SW7 2 1MΩ 10µF Vp1 1.2kΩ SW6 2 3 V VIN3 23 KA3017 Test Circuits 2 Spindle Motor Drive Part A A A A A A 48 47 46 45 44 43 42 41 40 39 38 37 H3− H2+ H2− H1+ H1− BTLSGND BIAS AVM4 MUTE12 MUTE3 MUTE4 V H3+ H3+ H3− H2+ H2− H1+ H1− V SW12 VH 2 FG DO4− 35 3 ECR AVM3 34 4 EC DO3+ 33 5 VCC2 DO3− 32 6 PC1 SW13 2.5V EC DO4+ 36 1 SW14 5V A BTLPGND2 31 KA3017 SW15 12V 8 VM DO2+ 29 9 CS1 DO2− 28 SW16 OPOUT VCC1 AVM12 D14 D13 D12 SW18 OPIN− DO1− 26 OPIN+ 11 DIR A1 DO1+ 27 A2 SW17 10 SS 12 SB IFR BTLPGND1 30 A3 V SIGGND PWRGND V 7 13 14 15 16 17 18 19 20 21 22 23 24 VSB SW19 SW20 24 DI1 25 KA3017 SLED MUTE TRAY MUTE 45 44 43 42 41 40 39 38 37 H3− H2+ H2− H1+ H1− BTLSGND BIAS AVM4 MUTE12 MUTE3 MUTE4 HALL1 BTL BIAS VOLTAGE 46 HALL2 47 HALL3 48 H3+ FOCUS TRACKING MUTE Application Circuits +5V DO4+ 36 1 VH 2 FG DO4− 35 SERVO TORQUE CONTROL 3 ECR AVM3 34 4 EC DO3+ 33 VCC 5 VCC2 DO3− 32 6 PC1 10K FG SIGNAL 100pF TRAY MOTOR +5V SLED MOTOR BTLPGND2 31 0.1µF KA3017 DO2+ 29 9 CS1 DO2− 28 AVM12 D14 D13 D12 12 SB VCC1 DO1− 26 OPOUT 11 DIR OPIN− DO1+ 27 OPIN+ 10 SS A1 SHORT BREAK VM A2 ROTATE DIRECTION 8 A3 SYSTEM CONTROL SIGGND PWRGND 12V BTLPGND1 30 7 13 14 15 16 17 18 19 20 21 22 23 24 FOCUS ACTUATOR TRACKING ACTUATOR DI1 25 SERVO AMP VCC +5V TRACKING FOCUS SLED CONTROL TRAY 25 KA3017 DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 9/6/02 0.0m 001 Stock#DSxxxxxxxx 2002 Fairchild Semiconductor Corporation