FAIRCHILD KA3017

www.fairchildsemi.com
KA3017
Spindle + 4-CH Motor Driver
Features
Description
•
•
•
•
•
•
•
•
•
•
•
•
The KA3017 is a monolithic integrated circuit suitable for a
4-CH motor driver which drives the tracking actuator, focus
actuator, sled motor, loading motor and 3-phase BLDC
spindle motor of the MDP/CAR-MD/CAR-NAVIGATION
system.
Built-in Power Save Circuit
Built-in Current Limit Circuit
Built-in Thermal Shutdown Circuit (TSD)
Built-in Hall Bias
Built-in FG Signal Output Circuit
Built-in Rotational Direction Detecting Circuit
Built-in Protection Circuit For Reverse Rotation
Built-in Short Brake Circuit
Built-in Normal OP-AMP
Built-in 4-CH Balanced Transformerless (BTL) Driver
Built-in BTL MUTE Circuit (CH1-2, CH3 and CH4)
Corresponds to 3.3V DSP
Target Application
•
•
•
•
Mini Disk Player
Digital Video Disk Player
Car Mini Disk Player
Car Navigation System
48-QFPH-1414
Ordering Information
Device
Package
Operating Temp.
KA3017
48-QFPH-1414
-35°°C ~ +85°°C
Rev. 1.0.3
©2002 Fairchild Semiconductor Corporation
KA3017
43
42
41
40
39
38
37
DO4 +
FG
2
35
DO4 −
ECR
3
34
AVM3
EC
4
33
DO3 +
VCC2
5
32
DO3 −
PC1
6
31
BTLPGND2
(GND)
FIN
36
FIN
1
(GND)
VH
KA3017
29
DO2 +
CS1
9
28
DO2 −
SS
10
27
DO1 +
DIR
11
26
DO1 −
SB
12
25
DI1
18
OPIN−
17
OPIN+
16
A1
15
A2
A3
PWRGND
14
(GND)
FIN
19
20
21
22
23
24
DI2
8
DI3
VM
DI4
BTLPGND1
AVM12
30
VCC1
7
OPOUT
SIGGND
13
2
MUTE4
H1 −
44
MUTE3
H1 +
45
MUTE12
H2 −
46
AVM4
H2 +
47
BIAS
H3 −
48
FIN
(GND)
BTLSNGD
H3 +
Pin Assignments
KA3017
Pin Definitions
Pin Number
Pin Name
I/O
Pin Function Description
1
VH
I
Hall Bias
2
FG
O
FG Signal Output
3
ECR
I
Torque Control Reference
4
EC
I
Torque Control Signal
5
VCC2
-
Supply Voltage
6
PC1
-
Phase Compensation Capacitor
7
SIGGND
-
Signal Ground
8
VM
-
Motor Supply Voltage
9
CS1
I
Current Sensor
10
S/S
I
Start/Stop
11
DIR
O
3-Phase Rotational Direction Output
12
SB
I
Short Brake
13
PWRGND
-
Power Ground
14
A3
O
3-Phase Output 3
15
A2
O
3-Phase Output 2
16
A1
O
3-Phase Output 1
17
OPIN+
I
OP-AMP Input (+)
18
OPIN-
I
OP-AMP Input (-)
19
OPOUT
O
OP-AMP Output
20
VCC1
-
Supply Voltage
21
AVM12
-
BTL CH-1, 2 Motor Supply Voltage
22
DI4
I
BTL Drive Input 4
23
DI3
I
BTL Drive Input 3
24
DI2
I
BTL Drive Input 2
25
DI1
I
BTL Drive Input 1
26
DO1-
O
BTL Drive 1 Output (-)
27
DO1+
O
BTL Drive 1 Output (+)
28
DO2-
O
BTL Drive 2 Output (-)
29
DO2+
O
BTL Drive 2 Output (+)
30
BTLPGND1
-
BTL Power Ground 1
31
BTLPGND2
-
BTL Power Ground 2
32
DO3-
O
BTL Drive 3 Output (-)
33
DO3+
O
BTL Drive 3 Output (+)
3
KA3017
Pin Definitions (Continued)
4
Pin Number
Pin Name
I/O
Pin Function Descrition
34
AVM3
-
BTL CH3 Motor Supply Voltage
35
DO4-
O
BTL Drive 4 Output (-)
36
DO4+
O
BTL Drive 4 Output (+)
37
MUTE4
I
BTL Drive Mute CH4
38
MUTE3
I
BTL Drive Mute CH3
39
MUTE12
I
BTL Drive Mute CH1, 2
40
AVM4
-
BTL CH4 Motor Supply Voltage
41
BIAS
-
BTL Bias Voltage
42
BTLSGND
-
BTL Drive Signal Ground
43
H1-
I
Hall1(-) Input
44
H1+
I
Hall1(+) Input
45
H2-
I
Hall2(-) Input
46
H2+
I
Hall2(+) Input
47
H3-
I
Hall3(-) Input
48
H3+
I
Hall3(+) Input
KA3017
7
Short vrake
4
3
2
1
Power
Save
Absolute
Values
+ −
Direction
Detector
+
44 H1+
43 H1−
2P
−
45 H2−
−
FIN (GND)
OPIN − 18
46 H2+
Hall amp matrix
Upper
Distributor
OPIN + 17
47 H3−
Detector
Direction select
Lower
Distributor
A1 16
48 H3+
Hall bias
+ −
A2 15
FIN (GND)
5
FG
Comparator
A3 14
6
TSD
PWRGND 13
VH
SIGGND
8
FG
VM
9
ECR
CS1
10
EC
SS
11
VCC2
DIR
12
FIN (GND)
PC1
SB
Internal Block Diagram
+
OPOUT 19
42 BTLSGND
VCC1 20
41 BIAS
−
+
−
+
x2
+
−
+
−
+
39 MUTE12
x2
MUTE
MUTE
MUTE
x2
x2
x2
38 MUTE3
2P
2P
2P
2P
2P
2P
2P
DI3 23
2P
40 AVM4
−
+
x2
x2
x2
−
10k
−
10k
AVM12 21
DI4 22
+
10k
−
10k
+
37 MUTE4
DO1 −
DO1 +
DO2 −
DO2 +
BTLPGND1
FIN (GND)
31
32
33
34
35
36
DO4 +
30
DO4 −
29
AVM3
28
DO3 +
27
DO3 −
26
BTLPGND2
25
DI1
DI2 24
5
KA3017
Equivalent Circuits
Hall Bias
FG Signal Output
10kΩ
1
2
5Ω
50Ω
50kΩ
Torque Control Reference & Signal
Phase Compensation Capacitor
2kΩ
6
3
4
50Ω
1kΩ
2kΩ
Current Detector
Start/Stop
50Ω
2.7kΩ
50kΩ
10
9
30kΩ
120Ω
6
KA3017
Equivalent Circuits (Continued)
3-Phase Rotational Direction Output
Short Brake
25kΩ
50Ω
1kΩ
12
11
50Ω
80kΩ
3-Phase Output
OP-AMP Input
7kΩ
7kΩ
60kΩ
14
15
18
17
16
50Ω
7kΩ
OP-AMP Ouput
50Ω
10k
7kΩ
BTL Drive Input
22
23
50Ω
19
50Ω
50Ω
100Ω
24
25
7
KA3017
Equivalent Circuits (Continued)
BTL Drive Output
BTL Drive Mute
26
27
10kΩ
28
37
29
38
32
39
50Ω
50kΩ
30kΩ
33
35
20kΩ
36
BTL Bias Voltage
Hall Input
43
45
41
50Ω
8
200Ω
47
44
50Ω
1kΩ
1kΩ
50Ω
46
48
KA3017
Absolute Maximum Ratings ( Ta=25°°C)
Parameter
Supply Voltage (BTL Signal)
Supply Voltage (Spindle Signal)
Supply Voltage (Motor)
Supply Voltage (BTL Motor)
Power Dissipation
Operating Temperature Range
Storge Temperature Range
Maximum Output Current (Spindle Part)
Maximum Output Current (BTL Part)
Symbol
Value
Unit
VCC1max
VCC2max
VMmax
VMBTLmax
Pd
Topr
Tstg
IOMAXS
IOMAXB
15
7
15
15
3.0note
-35 ~ +85
-55 ~ +150
1.3
1
V
V
V
V
W
°C
°C
A
A
Note:
1. When mounted on 70mm × 70mm × 1.6mm PCB (Phenolic resin material)
2. Power dissipation is reduced 24mW/°C for using above Ta=25°C
3. Do not exceed Pd and SOA (Safe Operating Area).
Pd [mW]
3,000
2,000
1,000
0
0
25
50
75
100
125
150
Ambient Temperature, Ta [°C]
175
Recommended Operating Conditions ( Ta=25°°C)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Operating Supply Voltage (BTL Signal)
VCC1
4.5
-
13.2
V
Operating Supply Voltage (Spindle Signal)
VCC2
4.5
-
5.5
V
Operating Supply Voltage ( Spindle Motor)
VM
4.5
-
13.2
V
VMBTL
4.5
-
VCC1
V
Operating Supply Voltage (BTL Motor)
9
KA3017
Electrical Characteristics (Ta=25°C, VCC2=5V, VM=12V)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Circuit Current 1
ICC 1
Power Save = 0V
-
0
0.1
mA
Circuit Current 2
ICC2
Power Save = 5V
-
8.0
-
mA
START/STOP
On Voltage Range
VPSON
L-H Circuit On
2.5
-
-
V
Off Voltage Range
VPSOFF
H-L Circuit Off
-
-
0.5
V
VHB
IHB = 20mA
-
1.2
1.8
V
IHA
-
-
1
5
uA
VHAR
-
1.5
-
4.0
V
VINH
-
60
-
-
mVpp
0.5
-
3.3
V
HALL BIAS
Hall Bias Voltage
HALL AMP
Hall Bias Current
In-phase in Voltage Range
Minimum in Level
note
TORQUE CONTROL
In Voltage Range
Offset Voltage (-)
note
Offset Voltage (+)
EC
ECOFF-
ECR = 2.5V
-80
-50
-20
mV
ECOFF+
ECR = 2.5V
20
50
80
mV
In Current
ECIN
EC = ECR = 2.5V
-5
-1
-
uA
In/Output Gain
GEC
ECR = 2.5V, RCS = 0.5Ω
0.41
0.51
0.61
A/V
FG Output Voltage (H)
VFGH
IFG = -10uA
3.0
-
VCC
V
FG Output Voltage (L)
VFHL
IFG = 10uA
-
-
0.5
V
VFGR
Hn+, Hn- input D-range
1.5
-
4.0
V
Saturation Voltage (upper TR)
VOH
IO = -300mA
-
0.9
1.6
V
Saturation Voltage (lower TR)
VOL
IO = 300mA
-
0.2
0.6
V
Torque Limit Current
ITL
RCS = 0.5Ω
560
700
840
mA
Dir Output Voltage (H)
VDIRH
IFG = -10uA
3.0
-
VCC
V
Dir Output Voltage (L)
VDIRL
IFG = 10uA
-
-
0.5
V
FG
Input Voltage
Rangenote
OUTPUT BLOCK
DIRECTION DETECTOR
SHORT BRAKE
On Voltage Range
VSBON
-
2.5
-
VCC
V
Off Voltage Range
VSBOFF
-
0
-
0.5
V
Note: Guranteed field. (No EDS / Final test)
10
KA3017
Electrical Characteristics (Continued)
BTL Drive Part (Ta=25°C, VCC1=12V, VMBTL=12V, RL=24Ω)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Quiescent Circuit Current
ICC
-
-
9
15
mA
Output Offset Voltage
VOO
-
-30
-
30
mV
-
9.5
10.5
-
V
10.5
12.0
13.5
dB
VIN=0.1Vrms, 120kHz
-
60
-
dB
120Hz, 2Vpp
-
1.0
-
V/us
Maximum Output Amplitude Voltage
VOM
Voltage Gain
GVC
VIN=0.1Vrms, 1kHz
Ripple Rejection Rationote
RR
SR
Slew Rate
note
CH Mute Off Voltage
VMOFFCH
Pin37, 38, 39 = Variation
-
-
0.5
V
CH Mute On Voltage
VMONCH
Pin37, 38, 39 = Variation
2.5
-
-
V
Input Offset Voltage
VOF
-
-10
-
+10
mV
Input Bias Current
IB1
-
-
-
300
nA
NORMAL OP- AMP
High Level Output Voltage
VOH1
-
11
-
-
V
Low Level Output Voltage
VOL1
-
-
-
0.1
V
Output Sink Current
ISINK
-
10
20
-
mA
ISOU1
-
10
20
-
mA
Output Source Current
Open Loop Voltage
Gainnote
GVO1
f=1kHz, VIN= -75dB
-
75
-
dB
note
RR1
f=120Hz, VIN= -20dB
-
65
-
dB
SR1
f=120Hz, 2Vp-p
-
1
-
V/us
f=1kHz, VIN= -20dB
-
80
-
dB
Ripple Rejection Ratio
Slew Rate
note
Common Mode Rejection Rationote
CMRR1
Note: Guranteed field. (No EDS / Final test)
11
KA3017
Calculation of Gain & Torque Limit Current
VM
VM
IO
−
VS Output
Current sense
+
CS1 (Pin 9)
RS
Current / Voltage
Convertor
−
Vin
EC
+
ECR
−
Negative
Feedback loop
R1
U IO
V
W
−
+
+
Gm
Driver
Power
Transistors
+
Absolute
Values
+
Commutation
Distributor
Vmax
−
VM
Max. output current limiting
0.255 is made from GM times R1 and is a fixed value within IC.
0.255
Gain = --------------RS
Vmax (see above block diagram) is set to 350mV.
350 [ mV -]
---------------- = ----------------------Itl [ mA ] = Vmax
RS
RS
12
H1
H2
H3
KA3017
Application Information
1. Mute Function
1) Mute Control Voltage Condition
When using the mute function, the applied control voltage condition is as follows.
Mute On Voltage
2.5[V] Above
Mute Function Operation
Mute Off Voltage
OPEN or 0.5[V] Below
Normal Operation
2) Individual channel Mute Function
These pins are used for individual channel mute operation.
- When the mute pins (pin 37, 38 and 39) are OPEN or the voltages at the mute pins are below 0.5[V], the mute circuit is
disabled and BTL output circuits operate normally.
- When the mute pins (pin 37, 38 and 39) are above 2.5[V], the mute circuits are activated so that the BTL output circuit
will be muted.
- If the junction temperature rises above 175°C, then the thermal shutdown (TSD) circuit is activated and all the output
circuits (4-CH BTL Drivers and 3-phase BLDC Driver) are muted.
2. 4-CH Balanced Transformerless (Btl) Driver
VCC
Q1
Q2
DRIVE
AMP
27
X2
Q3
26
DRIVE
AMP
29
28
X2
33
32
36
35
M
Q4
GND
41
Vbias
+
AMP1
−
Vin
Rextern
LEVEL
SHIFT
22 23
24 25
10k
- The voltage, Vbias, is the reference voltage given by the external bias voltage of pin 41.
- The input signals, Vin, through the pins (pin 22, 23, 24 and 25) are amplified 10K/Rextern times and then fed to the level
shift.
- The level shift produces the current due to the difference between the input signal (Vin) and the arbitrary reference
voltage (Vbias). The current produced as + ∆I and - ∆I are fed into the drive buffers.
- The drive buffer operates the power TR of the output stage according to the state of the input signal(Vin).
- The output stage is the BTL driver, and the motor (or actuator) rotates in forward direction, when TR Q1 and TR Q4 are
on. On the other hand, if TR Q2 and TR Q3 are on, the motor (or actuator) rotates in reverse direction.
- When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is below the Vbias, then the motor (actuator) moves in
forward direction.
13
KA3017
- When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is above the Vbias, then the motor (actuator) moves in
reverse direction.
-To change the gain, modify the external resistor's value (Rextern)
3. Torque & Output Current Control
Torque & Output Current Control
VM
VM
RNF
+
Torque sense amp
VAMP
EC
+
+
−
−
VRNF
IO
Current sense amp
−
Gain
Controller
Driver
M
TSD
ECR
- By amplifying the voltage difference between EC and ECR from the Servo IC, the torque sense AMP produces the input
voltage (VAMP) for the current sense AMP.
- The current sense AMP produces the input for the Gain controller to allow the output current (IO) of the driver to be
controlled by the input voltage (VAMP), where the output current (IO) is detected by the sense resistor (RNF) and is
converted into VRNF.
- In the end, the signals of the Servo IC control the velocity of the motor by controlling the output current (IO) of the
driver.
- When the junction temperature rises up to 175°C, the output drive circuit shuts down.
- The range of the torque control input voltage is as shown below.
VRNF
[V]
Reverse
Rotation
Forward
Ecoff−
Ecoff+
3 mV
0
The input range (EC) of the Torque Sense AMP is 0.5V ~ 3.3V
14
ECR-EC[V]
Ec < ECR
Forward rotation
Ec > ECR
Stop after detecting
reverse rotation
KA3017
4. Power Save Function
Bias block
VCC
100k
Start
10
30KΩ
Q1
Stop
12KΩ
- The power save circuit is activated by operating TR Q1.
- When the SS (Start/Stop) pin 10 is high (VCC), the TR Q1 is turned on and the bias circuit is enabled. On the other hand,
when the SS (Start/Stop) pin 10 is Open or Low (GND), the TR Q1 is turned off and the bias circuit is disabled.
- The power save operation controlled by SS (pin 10) input conditions is as follows;
Pin#10
KA3017
High
Start
Open/Low
Stop
5. Short Brake Function
VM
Drive logic
MOTOR
OFF
VCC
14
ON
12
15
1KΩ
Q1
OFF
16
ON
80KΩ
When the pick-up mechanism moves from the inner to the outer spindle of the MD(Mini Disk), the brake function of the
reverse voltage is commonly employed to rate the rotational velocity of the spindle motor.However, if the spindle motor
rotates rapidly, the brake function of the reverse voltage may produce too much heat at the drive IC.
To remove these shortcomings and to enhance efficiency, the short brake function is added to KA3017. When the short brake
function is active, all upper Power transistors are turned off and the lower Power transistors turned on, so as to reduce the rotational velocity of the motor. The short brake operation controlled by SB (pin 12), and the input conditions are as follows.
6. Thermal Shutdown (Tsd) Function
Pin#12
SHORT BRAKE
HIGH
ON
LOW
OFF
When the junction temperature rises up to 175°C, the output drive circuit shuts down, when the junction temperature falls off
to 160°C, the output drive circuit operates normally. It has the temperature hysteresis of about 15°C.
15
KA3017
7. Rotating Direction Detecting Function
VCC
H2+
+
H2−
−
DIR
R
Rotation
11
D
CK
H3+
+
H3−
−
DIR
Q
EC < ECR
Forward
Low
EC > ECR
Reverse
High
D-F/F
- The forward and reverse rotations of the MD are detected by the circuit, as shown in the above Table.
- The rotational direction of the MD can be learned by the output waveforms of the hall sensor and/or the driver. Hall
sensors are turned on in the order, H1 → H2 → H3 for the reverse rotation. The output waveforms of the hall sensors are
as shown below.
H1
H2
H3
( a)
Inversely, if the hall sensors turn on in the order, H3→ H2→ H1, then this shows forward rotation. The output waveforms of
the hall sensors are as shown below.
16
KA3017
H1
H2
H3
( b)
8. Reverse Rotation Preventing Function
EC
+
ECR
−
H2+
+
H2−
−
H3+
+
H3−
−
Current
Sense
Amp
D
Q
CK
Gain
Controller
D-F/F
Driver
M
- The forward and reverse rotation of the motor are detected, as shown in the table below. Consequently at reverse rotation,
the D-F/F output Q becomes Low and cuts off the output current sense Amp, resulting in the stoppage of the Gain
controller function.
- When the MD is rotating in forward direction, EC>ECR is sometimes controlled to retard and/or stop the MD. As the
controlling time of EC>ECR gets longer, MD slows down, stops, and then rotates in the reverse direction. To prevent the
MD from rotating in the reverse direction, a reverse rotation resistant function is required. Its operational principles are
discussed below.
Rotation
H2
H3
D-F/F
Forward
H
H→L
Reverse
L
H→L
Reverse Rotation Preventer
EC<ECR
EC>ECR
H
Forward
Brake and Stop
L
–
Stop
17
KA3017
9. Fg Output Function
The FG output detects the number of rotations of the MD. This is generated from combination zero-crossing of the hall sensor
output waveforms. The FG output circuit is as shown below.
+
H1
−
+
H2
−
FG OUTPUT
+
H3
−
10. Hall Sensor Connection
External Hall sensors are used in series or in parallel connection as shown below.
VCC
VCC
HALL 1
HALL 1
HALL 2
HALL 3
HALL 2
HALL 3
1
18
VH
1
VH
KA3017
11. Hall Input Output Timming Chart
The 3-phase hall signal is amplified in the hall amplifiers and sent to the matrix section, where the signal is further amplified.
After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which
then provides a motor drive current. The phases of the hall input signal, output voltage, and output current are shown below.
H1 +
H2 +
H3 +
A1 output current
A1 output voltage
A2 output current
A2 output voltage
A3 output current
A3 output voltage
19
KA3017
Typical Performance Characteristics
Total Circuit
Icc2(mA)
Icc1(A)
Vcc vs Icc1
0.015
Vcc vs Icc2
10
8
0.010
6
4
0.005
2
0.000
SS = 5V
0
0
2
4
6
8
10
12
14
16
18
0
20
2
4
6
8
10
Vcc(V)
Icc1(mA)
11
10.9
10.8
10.7
10.6
10.5
10.4
10.3
10.2
10.1
10
-35
Vcc(V)
Icc2(mA)
Temp vs Icc1
Temp vs Icc2
8
7.8
7.6
7.4
-25
0
25
50
75
Vcc2 = 12V
SS = 5V
7.2
Vcc1 =12V
90
7
-35
-25
0
25
50
Temp(° C)
Vom(V)
90
Temp(° C)
Gvo(dB)
Vcc vs Vom
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
Vcc vs Gvo(5V)
13
12.5
12
11.5
11
Input = 0.5V, 4.5V
Bias = 2.5V
Rin=10KΩ
Vcc1 = 5V
Vin = 0.1V rms
f = 1KHz
Rin=10KΩ
10.5
10
3
3.5
4
4.5
5
5.5
6
6.5
7
Vcc(V)
20
75
4
4.5
5
5.5
6
6.5
7
Vcc(V)
KA3017
Typical Performance Characteristics (Continued)
Spindle Drive Part
Vout(V)
Gvo(dB)
Vcc1 vs Gvo(12V)
13
Vin vs Vout (5V)_
4
3
12.5
2
12
1
11.5
0
11
-1
Vcc1 = 12V
Vin = 0.1V rms
f = 1KHz
Rin=10KΩ
10.5
-2
Vcc1 = 5V
Bias = 2.5V
Rin=10KΩ
-3
10
-4
9
10
11
12
13
14
15
0
1
2
3
4
5
6
7
8
Vin(V)
Vcc(V)
Vout(V)
Vin vs Vout (12V)
15
10
5
0
-5
Vcc1 = 12V
Bias = 2.5V
Rin=10KΩ
-10
-15
0
1
2
3
4
5
6
7
8
Vin(V)
Voh(V)
Vol(mV)
Io vs Voh
1.2
Io vs Vol
500
1
400
0.8
300
0.6
200
0.4
Io = source current
0.2
0
50
150
225
275
325
375
450
Io(mA)
100
0
50
Io = source current
100
150
200
250
300
350
400
450
500
Io(mA)
21
KA3017
Typical Performance Characteristics (Continued)
OP AMP Part
Vrnf(mV)
Vrnf(mV)
Ec vs Vrnf
350
Ec vs Vrnf
350
300
300
250
250
200
200
150
150
100
100
Ecr = 2.5V
RNF=0.5Ω
50
Ecr = 1.6V
RNF=0.5Ω
50
0
0
0
1
2
3
4
5
0
1
2
3
4
5
Ec(V)
Ec(V)
Isink(mA)
Isource(mA)
Vcc vs Isource
40
Vcc vs Isink
40
35
35
30
30
25
25
20
15
20
10
Rout=50Ω
Rout=50Ω
15
5
0
3.5
10
4
4.5
5
5.5
6
6.5
7
Vcc(V)
22
3
3.5
4
4.5
5
5.5
6
6.5
7
Vcc(V)
KA3017
Test Circuits 1
BTL Drive Part
10µF
VMUTE
38
37
V
MUTE4
VMUTE
39
MUTE3
40
AVM4
BTLSGND
1 VH
41
BIAS
42
43
H1−
44
H1+
45
H2−
H3+
46
H2+
47
H3−
48
MUTE12
2.5V
VMUTE
12V
RL4’
DO4+ 36
RL4
SW4
2 FG
DO4− 35
3 ECR
AVM3 34
4 EC
DO3+ 33
5 VCC2
DO3− 32
12V
10µF
SW3
RL3’
RL3
BTLPGND2 31
6 PC1
V
KA3017
V
RL2
BTLPGND1 30
7 SIGGND
SW2
VCC1
AVM12
D14
D13
D12
DO1− 26
OPOUT
11 DIR
OPIN−
DO1+ 27
OPIN+
10 SS
A1
DO2− 28
A2
9 CS1
A3
DO2+ 29
PWRGND
8 VM
13
14
15
16
17
18
19
20
21
22
23
24
12 SB
SW1
RL1
DI1 25
V
SERVO AMP
TRACKING
A
10µF
12V
FOCUS
10µF
BTL SVCC
SLED
12V
CONTROL TRAY
OPIN (+)
OPIN (−)
OPOUT
VCC
SW5
1
V
V
V
1
3
2
1MΩ
3
VIN3
VIN1
+
−
Vs1
1 SW7
2
1MΩ
10µF
Vp1
1.2kΩ
SW6
2
3
V
VIN3
23
KA3017
Test Circuits 2
Spindle Motor Drive Part
A
A
A
A
A
A
48
47
46
45
44
43
42
41
40
39
38
37
H3−
H2+
H2−
H1+
H1−
BTLSGND
BIAS
AVM4
MUTE12
MUTE3
MUTE4
V
H3+
H3+ H3− H2+ H2− H1+ H1−
V
SW12
VH
2
FG
DO4− 35
3
ECR
AVM3 34
4
EC
DO3+ 33
5
VCC2
DO3− 32
6
PC1
SW13
2.5V
EC
DO4+ 36
1
SW14
5V
A
BTLPGND2 31
KA3017
SW15
12V
8
VM
DO2+ 29
9
CS1
DO2− 28
SW16
OPOUT
VCC1
AVM12
D14
D13
D12
SW18
OPIN−
DO1− 26
OPIN+
11 DIR
A1
DO1+ 27
A2
SW17
10 SS
12 SB
IFR
BTLPGND1 30
A3
V
SIGGND
PWRGND
V
7
13
14
15
16
17
18
19
20
21
22
23
24
VSB
SW19 SW20
24
DI1 25
KA3017
SLED MUTE
TRAY MUTE
45
44
43
42
41
40
39
38
37
H3−
H2+
H2−
H1+
H1−
BTLSGND
BIAS
AVM4
MUTE12
MUTE3
MUTE4
HALL1
BTL BIAS
VOLTAGE
46
HALL2
47
HALL3
48
H3+
FOCUS TRACKING
MUTE
Application Circuits
+5V
DO4+ 36
1
VH
2
FG
DO4− 35
SERVO
TORQUE
CONTROL
3
ECR
AVM3 34
4
EC
DO3+ 33
VCC
5
VCC2
DO3− 32
6
PC1
10K
FG SIGNAL
100pF
TRAY
MOTOR
+5V
SLED
MOTOR
BTLPGND2 31
0.1µF
KA3017
DO2+ 29
9
CS1
DO2− 28
AVM12
D14
D13
D12
12 SB
VCC1
DO1− 26
OPOUT
11 DIR
OPIN−
DO1+ 27
OPIN+
10 SS
A1
SHORT
BREAK
VM
A2
ROTATE
DIRECTION
8
A3
SYSTEM
CONTROL
SIGGND
PWRGND
12V
BTLPGND1 30
7
13
14
15
16
17
18
19
20
21
22
23
24
FOCUS
ACTUATOR
TRACKING
ACTUATOR
DI1 25
SERVO AMP
VCC
+5V
TRACKING
FOCUS
SLED
CONTROL TRAY
25
KA3017
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
9/6/02 0.0m 001
Stock#DSxxxxxxxx
 2002 Fairchild Semiconductor Corporation