TLMK/O/S/Y320. Vishay Semiconductors Power SMD LED PLCC-4 19210 DESCRIPTION The TLM.32.. series is an advanced development in terms of heat dissipation. The leadframe profile of this PLCC-3 SMD package is optimized to reduce the thermal resistance. This allows higher drive current and doubles the light output compared to Vishay’s high intensity SMD LED in PLCC-2 package. PRODUCT GROUP AND PACKAGE DATA • Product group: LED • Package: SMD PLCC-4 • Product series: power • Angle of half intensity: ± 60° FEATURES • Utilizing AlInGaP technology • Available in 8 mm tape • Luminous intensity, color and forward voltage categorized per packing unit • Luminous intensity ratio per packing unit IVmax/IVmin ≤ 1.6 • ESD class 2 • Suitable for all soldering methods according to CECC • Lead (Pb)-free device e3 APPLICATIONS • Traffic Signals and Signs • Interior and exterior lighting • Dashboard illumination • Indicator and backlighting purposes for audio, video, LCDs switches, symbols, illuminated advertising etc. PARTS TABLE PART COLOR, LUMINOUS INTENSITY DOMINANT WAVELENGTH TLMK3200 Red, IV > 200 mcd (typ. 500 mcd) 611 nm to 622 nm TLMK3201 Red, IV = (250 to 800) mcd 611 nm to 622 nm TLMK3202 Red, IV = (320 to 800) mcd 611 nm to 622 nm TLMK3203 Red, IV = (400 to 1250) mcd 611 nm to 622 nm TLMS3200 Red, IV > 160 mcd (typ. 300 mcd) 626 nm to 638 nm TLMS3201 Red, IV = (160 to 400) mcd 626 nm to 638 nm TLMS3202 Red, IV = (250 to 800) mcd 626 nm to 638 nm TLMO3200 Soft orange, IV > 200 mcd (typ. 500 mcd) 600 nm to 611 nm TLMO3201 Soft orange, IV = (250 to 800) mcd 600 nm to 611 nm TLMO3202 Soft orange, IV = (320 to 800) mcd 600 nm to 611 nm TLMO3203 Soft orange, IV = (400 to 1250) mcd 600 nm to 611 nm TLMY3200 Yellow, IV > 200 mcd (typ. 450 mcd) 583 nm to 594 nm TLMY3201 Yellow, IV = (250 to 800) mcd 583 nm to 594 nm TLMY3202 Yellow, IV = (320 to 800) mcd 583 nm to 594 nm TLMY3203 Yellow, IV = (400 to 1250) mcd 583 nm to 594 nm Document Number 83146 Rev. 1.5, 24-Sep-07 www.vishay.com 1 TLMK/O/S/Y320. Vishay Semiconductors ABSOLUTE MAXIMUM RATINGS1) TLMK32.., TLMS32.., TLMO32.., TLMY32.. SYMBOL VALUE Reverse voltage PARAMETER VR 5 V Forward current IF 70 mA Ptot 180 mW Power dissipation TEST CONDITION Tamb ≤ 65 °C (290 K/W), Tamb ≤ 70 °C (270 K/W) UNIT Tj 125 °C Operating temperature range Tamb - 40 to + 100 °C Storage temperature range Tstg - 40 to + 100 °C mounted on PC board FR4 optional paddesign (see page 11) RthJA 290 K/W mounted on PC board FR4 recommended paddesign (see page 10) RthJA 270 K/W Junction temperature Thermal resistance junction/ ambient Note: 1) Tamb = 25 °C, unless otherwise specified OPTICAL AND ELECTRICAL CHARACTERISTICS1) TLMK32.., RED PARAMETER TEST CONDITION IF = 50 mA Luminous intensity PART SYMBOL MIN TYP. TLMK3200 IV 200 500 TLMK3201 IV TLMK3202 TLMK3203 Luminous flux/Luminous intensity MAX UNIT 250 800 mcd IV 320 800 mcd IV 400 1250 mcd φV/IV mcd 3 mlm/mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 624 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 18 nm Angle of half intensity IF = 50 mA ϕ ± 60 deg Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR 611 1.85 617 622 nm 2.1 2.55 V 0.01 10 µA MAX UNIT Note: 1) T amb = 25 °C, unless otherwise specified OPTICAL AND ELECTRICAL CHARACTERISTICS1) TLMS32.., RED PARAMETER TEST CONDITION Luminous intensity IF = 50 mA Luminous flux/Luminous intensity PART SYMBOL MIN TYP. TLMS3200 IV 160 300 TLMS3201 IV 160 400 mcd TLMS3202 IV 250 800 mcd φV/IV mcd 3 mlm/mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 641 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 17 nm Angle of half intensity IF = 50 mA ϕ ± 60 deg Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR 626 1.85 630 638 nm 2.1 2.55 V 0.01 10 µA Note: 1) Tamb = 25 °C, unless otherwise specified www.vishay.com 2 Document Number 83146 Rev. 1.5, 24-Sep-07 TLMK/O/S/Y320. Vishay Semiconductors OPTICAL AND ELECTRICAL CHARACTERISTICS1) TLMO32.., SOFT ORANGE PARAMETER TEST CONDITION IF = 50 mA Luminous intensity PART SYMBOL MIN TYP. TLMO3200 IV 200 500 TLMO3201 IV 250 TLMO3202 IV TLMO3203 IV Luminous flux/Luminous intensity MAX UNIT mcd 800 mcd 320 800 mcd 400 1250 mcd φV/IV 3 mlm/mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 611 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 17 nm Angle of half intensity IF = 50 mA ϕ ± 60 deg Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR 600 605 1.85 611 nm 2.1 2.55 V 0.01 10 µA MAX UNIT Note: 1) Tamb = 25 °C, unless otherwise specified OPTICAL AND ELECTRICAL CHARACTERISTICS1) TLMY32.., YELLOW PARAMETER TEST CONDITION IF = 50 mA Luminous intensity PART SYMBOL MIN TYP. TLMY3200 IV 200 450 TLMY3201 IV 250 800 mcd TLMY3202 IV 320 800 mcd TLMY3203 IV 400 1250 mcd Luminous flux/Luminous intensity φV/IV mcd 3 mlm/mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 590 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 18 nm Angle of half intensity IF = 50 mA ϕ Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR 583 588 594 ± 60 1.85 nm deg 2.1 2.55 V 0.01 10 µA Note: 1) Tamb = 25 °C, unless otherwise specified FORWARD VOLTAGE CLASSIFICATION GROUP FORWARD VOLTAGE (V) MIN MAX 1 1.85 2.25 2 2.15 2.55 Document Number 83146 Rev. 1.5, 24-Sep-07 www.vishay.com 3 TLMK/O/S/Y320. Vishay Semiconductors COLOR CLASSIFICATION DOMINANT WAVELENGTH (NM) GROUP RED SOFT ORANGE YELLOW MIN MIN MAX MIN MAX MAX 1 611 618 598 601 581 584 2 614 622 600 603 583 586 3 602 605 585 588 4 604 607 587 590 5 606 609 589 592 6 608 611 591 594 LUMINOUS INTENSITY CLASSIFICATION LUMINOUS INTENSITY (MCD) GROUP MIN MAX Xa 160 250 Xb 200 320 Ya 250 400 Yb 320 500 Za 400 630 Zb 500 800 0a 630 1000 0b 800 1250 GROUP NAME ON LABEL LUMINOUS INTENSITY GROUP HALFGROUP WAVELENGTH FORWARD VOLTAGE Z b 2 1 One packing unit/tape contains only one classification group of luminous intensity, color and forward voltage. Only one single classification groups is not available. The given groups are not order codes, customer specific group combinations require marketing agreement. No color subgrouping for Super Red. TYPICAL CHARACTERISTICS Tamb = 25 °C, unless otherwise specified 100 180 90 270 K/W 160 IF - Forward Current (mA) PV - Power Dissipation (mW) 200 RthJA = 290 K/W 140 120 100 80 60 40 20 80 70 40 30 20 10 0 0 25 50 75 100 0 125 Tamb - Ambient Temperature (°C) Figure 1. Power Dissipation vs. Ambient Temperature www.vishay.com 4 RthJA = 290 K/W 50 0 18567 270 K/W 60 18568 25 50 75 100 Tamb - Ambient Temperature (°C) 125 Figure 2. Forward Current vs. Ambient Temperature Document Number 83146 Rev. 1.5, 24-Sep-07 TLMK/O/S/Y320. Vishay Semiconductors 0° 10° 20° 2.5 40° 1.0 0.9 50° 0.8 60° 70° 0.7 80° 95 10319 0.6 0.4 0.2 0 0.2 0.4 IV rel - Relative Luminous Intensity IV rel - Relative Luminous Intensity 30° red 2.0 1.5 1.0 0.5 0.0 - 50 0.6 1.2 IV rel - Relative Luminous Intensity red 1.0 0.8 0.6 0.4 50 75 100 6 red 4 2 0 -2 -4 -6 - 50 0.0 570 590 610 630 650 670 λ - Wavelength (nm) 16007 25 50 75 100 IV rel - Relative Luminous Intensity 10 200 red 50 mA 150 100 30 mA 0 - 50 10 mA - 100 - 150 - 200 - 50 17034 0 Figure 7. Change of Dominant Wavelength vs. Ambient Temperature 250 50 - 25 Tamb - Ambient Temperature (°C) 17036 Figure 4. Relative Intensity vs. Wavelength VF - Change of Forward Voltage (mV) 25 d 0.2 0 Figure 6. Relative Luminous Intensity vs. Amb. Temperature - Change of Dom. Wavelength (nm) Figure 3. Rel. Luminous Intensity vs. Angular Displacement - 25 Tamb - Ambient Temperature (°C) 17035 red 1 0.1 0.01 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) Figure 5. Change of Forward Voltage vs. Ambient Temperature Document Number 83146 Rev. 1.5, 24-Sep-07 1 100 17037 10 IF - Forward Current (mA) 100 Figure 8. Relative Luminous Intensity vs. Forward Current www.vishay.com 5 TLMK/O/S/Y320. VF - Change of Forward Voltage (mV) 1.5 1.0 0.5 0.0 - 0.5 d - 1.0 - 1.5 17038 10 20 30 40 50 60 70 80 90 100 IF - Forward Current (mA) Figure 9. Change of Dominant Wavelength vs. Forward Current I Vrel - Relative Luminous Intensity 1.2 1.1 red 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 600 610 620 630 640 650 660 670 680 690 700 λ - Wavelength (nm) 17045 Figure 10. Relative Intensity vs. Wavelength 100 I F - Forward Current (mA) 90 80 red 70 60 50 40 30 20 10 17047 0 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 VF - Forward Voltage (V) Figure 11. Forward Current vs. Forward Voltage www.vishay.com 6 250 200 30 mA red 150 100 50 mA 50 0 10 mA - 50 - 100 - 150 - 200 - 50 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) 17039 Figure 12. Change of Forward Voltage vs. Ambient Temperature 2.5 I Vrel - Relative Luminous Intensity red red 2.0 1.5 1.0 0.5 0.0 - 50 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) 17040 Figure 13. Relative Luminous Intensity vs. Amb. Temperature Δ λ d - Change of Dom. W avelength (nm) - Change of Dom. Wavelength (nm) Vishay Semiconductors 17041 3 red 2 1 0 -1 -2 -3 -4 -5 - 50 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) Figure 14. Change of Dominant Wavelength vs. Ambient Temperature Document Number 83146 Rev. 1.5, 24-Sep-07 TLMK/O/S/Y320. VF - Change of Forward Voltage (mV) Vishay Semiconductors IV rel - Relative Luminous Intensity 10 super red 1 0 250 50 mA 200 100 10 0 - 100 - 150 - 200 - 50 17020 1.5 100 2.5 red 1.0 0.5 0.0 - 0.5 - 1.0 soft orange 2.0 1.5 1.0 0.5 - 1.5 0.0 - 50 10 20 30 40 50 60 70 80 90 100 17043 IF - Forward Current (mA) 17021 1.2 soft orange 1.0 0.8 0.6 0.4 6 soft orange 4 2 0 -2 -4 d 0.2 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) Figure 19. Relative Luminous Intensity vs. Amb. Temperature - Change of Dom. Wavelength (nm) Figure 16. Change of Dominant Wavelength vs. Forward Current IV rel - Relative Luminous Itensity - 25 0 25 50 75 Tamb - Ambient Temperature (°C) Figure 18. Change of Forward Voltage vs. Ambient Temperature IV rel - Relative Luminous Intensity Δ λ d - Change of Dom. Wavelength (nm) Figure 15. Relative Luminous Intensity vs. Forward Current 10 mA - 50 100 IF - Forward Current (mA) 17042 soft orange 50 0.01 1 30 mA 150 0.0 560 16314 580 600 620 640 660 λ - Wavelength (nm) Figure 17. Relative Intensity vs. Wavelength Document Number 83146 Rev. 1.5, 24-Sep-07 -6 - 50 17022 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) Figure 20. Change of Dominant Wavelength vs. Ambient Temperature www.vishay.com 7 TLMK/O/S/Y320. Vishay Semiconductors IV rel - Relative Luminous Intensity soft orange 1 0.1 0.01 1 10 IF - Forward Current (mA) 17023 50 mA yellow 150 100 50 0 10 mA - 50 - 100 - 150 - 200 - 50 17015 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) 100 Figure 24. Change of Forward Voltage vs. Ambient Temperature 2.5 1.5 yellow IV rel - Relative Luminous Intensity soft orange 1.0 0.5 0.0 - 0.5 d - 1.0 2.0 1.5 1.0 0.5 0.0 - 50 - 1.5 10 20 30 40 50 60 70 80 90 100 17024 IF - Forward Current (mA) yellow 1.0 0.8 0.6 0.4 25 50 75 100 6 yellow 4 2 0 -2 -4 d 0.2 0 Figure 25. Relative Luminous Intensity vs. Amb. Temperature - Change of Dom. Wavelength (nm) 1.2 - 25 Tamb - Ambient Temperature (°C) 17016 Figure 22. Change of Dominant Wavelength vs. Forward Current IV rel - Relative Luminous Intensity 30 mA 200 100 Figure 21. Relative Luminous Intensity vs. Forward Current - Change of Dom. Wavelength (nm) 250 Δ VF - Change of Forward Voltage (mV) 10 0.0 540 16008 560 580 600 620 640 λ - Wavelength (nm) Figure 23. Relative Intensity vs. Wavelength www.vishay.com 8 -6 - 50 17017 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) 100 Figure 26. Change of Dominant Wavelength vs. Ambient Temperature Document Number 83146 Rev. 1.5, 24-Sep-07 TLMK/O/S/Y320. Vishay Semiconductors IV rel - Relative Luminous Intensity 10 100 90 yellow I F - Forward Current (mA) 1 0.1 yellow soft orange red super red 80 70 60 50 40 30 20 10 0.01 1 10 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 100 IF - Forward Current (mA) 17018 Figure 27. Relative Luminous Intensity vs. Forward Current Figure 29. Forward Current vs. Forward Voltage 1.5 0.12 yellow 1.0 IF - Forward Current (A) 0.10 0.5 0.0 - 0.5 - 1.0 0.08 tP/T = 0.005 0.05 0.5 0.06 0.04 0.02 d - Change of Dom. Wavelength (nm) VF - Forward Voltage (V) 17046 - 1.5 0.00 10 -5 10 20 30 40 50 60 70 80 90 100 10 -4 10 -3 Figure 28. Change of Dominant Wavelength vs. Forward Current 10 -2 10 -1 10 0 101 10 2 tP - Pulse Length (s) 17044 IF - Forward Current (mA) 17019 Figure 30. Forward Current vs. Pulse Length TAPING in millimeters Anode 3.5 3.1 Cathode 2.2 2.0 4.0 3.6 5.75 5.25 3.6 3.4 Cathode 8.3 7.7 1.85 1.65 1.6 1.4 4.1 3.9 4.1 3.9 0.25 2.05 1.95 18596 Document Number 83146 Rev. 1.5, 24-Sep-07 www.vishay.com 9 TLMK/O/S/Y320. Vishay Semiconductors RECOMMENDED PAD DESIGN in millimeters (Wave-Soldering), RthJA = 270 K/W 16260 RECOMMENDED PAD DESIGN in millimeters (Reflow-Soldering), RthJA = 270 K/W 16261 www.vishay.com 10 Document Number 83146 Rev. 1.5, 24-Sep-07 TLMK/O/S/Y320. Vishay Semiconductors OPTIONAL PAD DESIGN in millimeters (Wave-Soldering), RthJA = 290 K/W 16262 OPTIONAL PAD DESIGN in millimeters (Reflow-Soldering), RthJA = 290 K/W 16263 Document Number 83146 Rev. 1.5, 24-Sep-07 www.vishay.com 11 TLMK/O/S/Y320. Vishay Semiconductors PACKAGE DIMENSIONS in millimeters Mounting Pad Layout area covered with solder resist 4 0.5 2.6 (2.8) 1.2 4 1.6 (1.9) Drawing-No. : 6.541-5054.01-4 Issue: 2; 02.12.05 Dimensions: IR and Vaporphase (Wave Soldering) 16276_1 www.vishay.com 12 Document Number 83146 Rev. 1.5, 24-Sep-07 TLMK/O/S/Y320. Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Document Number 83146 Rev. 1.5, 24-Sep-07 www.vishay.com 13 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1