ONSEMI NLAS4684MNR2G

NLAS4684
Ultra−Low Resistance
Dual SPDT Analog Switch
The NLAS4684 is an advanced CMOS analog switch fabricated in
Sub−micron silicon gate CMOS technology. The device is a dual
Independent Single Pole Double Throw (SPDT) switch featuring
Ultra−Low RON of 0.5 , for the Normally Closed (NC) switch, and
0.8 for the Normally Opened switch (NO) at 2.7 V.
The part also features guaranteed Break Before Make switching,
assuring the switches never short the driver.
The NLAS4684 is available in a 2.0 x 1.5 mm bumped die array.
The pitch of the solder bumps is 0.5 mm for easy handling.
• Ultra−Low RON, 0.5 at 2.7 V
• Threshold Adjusted to Function with 1.8 V Control at
•
•
MARKING
DIAGRAMS
Microbump−10
CASE 489AA
VCC = 2.7−3.3 V
Single Supply Operation from 1.8−5.5 V
Tiny 2 x 1.5 mm Bumped Die
Low Crosstalk, 83 dB at 100 kHz
Full 0−VCC Signal Handling Capability
High Isolation, −65 dB at 100 kHz
Low Standby Current, 50 nA
Low Distortion, 0.14% THD
RON Flatness of 0.15 Pin for Pin Replacement for MAX4684
High Continuous Current Capability
300 mA Through Each Switch
Large Current Clamping Diodes at Analog Inputs
300 mA Continuous Current Capability
Pb−Free Package is Available*
1
QFN−10
CASE 485C
A1
Cell Phone
Speaker Switching
Power Switching
Modems
Automotive
1
NLAS
4684
ALYW
1
Micro10
CASE 846B
A
L
Y
WW, W
4684
AYWW
A1
1
Applications
•
•
•
•
•
4684
AYWW
A1
Features
•
•
•
•
•
•
•
•
•
•
http://onsemi.com
NLAS
4684
ALYW
NLAS
4684
ALYW
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
FUNCTION TABLE
IN 1, 2
NO 1, 2
NC 1, 2
0
1
OFF
ON
ON
OFF
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
 Semiconductor Components Industries, LLC, 2004
August, 2004 − Rev. 11
1
Publication Order Number:
NLAS4684/D
NLAS4684
GND
6
5 NC1
NC2
7
4 IN1
IN2
8
3 COM1
COM2
9
2 NO1
NO2 10
1 VCC
(Top View)
Figure 1. Pin Connections and Logic Diagram
(QFN−10 and Micro10)
GND
B1
NC1
C1
A1
NC2
IN1
C2
A2
IN2
COM1
C3
A3
COM2
NO1
C4
A4
NO2
B4
VCC
(Top View)
Figure 2. Pin Connections and Logic Diagram
(Microbump−10)
http://onsemi.com
2
NLAS4684
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
0.5 to 7.0
V
0.5 VIS VCC 0.5
V
0.5 VI 7.0
V
VCC
Positive DC Supply Voltage
VIS
Analog Input Voltage (VNO, VNC, or VCOM)
VIN
Digital Select Input Voltage
Ianl1
Continuous DC Current from COM to NC/NO
300
mA
Ianl−pk 1
Peak Current from COM to NC/NO, 10 duty cycle (Note 1)
500
mA
Iclmp
Continuous DC Current into COM/NO/NC
300
mA
Iclmp 1
Peak Current into Input Clamp Diodes at COM/NC/NO
500
mA
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. Defined as 10% ON, 90% off duty cycle.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
1.8
5.5
V
VCC
DC Supply Voltage
VIN
Digital Select Input Voltage
GND
5.5
V
VIS
Analog Input Voltage (NC, NO, COM)
GND
VCC
V
TA
Operating Temperature Range
55
125
°C
tr, tf
Input Rise or Fall Time, SELECT
0
0
100
20
ns/V
VCC = 3.3 V 0.3 V
VCC = 5.0 V 0.5 V
DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Condition
VCC 10%
55C to 25C
85C
125C
Unit
VIH
Minimum High−Level Input
Voltage, Select Inputs
(Figure 10)
2.0
2.5
3.0
5.0
1.4
1.4
1.4
2.0
1.4
1.4
1.4
2.0
1.4
1.4
1.4
2.0
V
VIL
Maximum Low−Level Input
Voltage, Select Inputs
(Figure 10)
2.0
2.5
3.0
5.0
0.5
0.5
0.5
0.8
0.5
0.5
0.5
0.8
0.5
0.5
0.5
0.8
V
IIN
Maximum Input Leakage
Current, Select Inputs
VIN = 5.5 V or GND
5.5
1.0
1.0
1.0
A
IOFF
Power Off Leakage Current
VIN = 5.5 V or GND
0
10
10
10
A
ICC
Maximum Quiescent Supply
Current (Note 2)
Select and VIS = VCC or GND
5.5
50
200
200
nA
2. Guaranteed by design.
http://onsemi.com
3
NLAS4684
DC ELECTRICAL CHARACTERISTICS − Analog Section
Guaranteed Maximum Limit
−55C to 25C
Symbol
Parameter
VCC 10%
Condition
Min
Max
85C
Min
Max
125C
Min
Max
Unit
RON (NC)
NC “ON” Resistance
(Note 3)
VIN VIL
VIS = GND to VCC
IINI 100 mA
2.5
3.0
5.0
0.6
0.5
0.4
0.7
0.5
0.4
0.8
0.5
0.5
RON (NO)
NO “ON” Resistance
(Note 3)
VIN VIH
VIS = GND to VCC
IINI 100 mA
2.5
3.0
5.0
2.0
0.8
0.8
2.0
0.8
0.8
2.0
1.0
0.9
RFLAT (NC)
NC_On−Resistance
Flatness (Notes 3, 5)
ICOM = 100 mA
VIS = 0 to VCC
2.5
3.0
5.0
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
RFLAT (NO)
NO_On−Resistance
Flatness (Notes 3, 5)
ICOM = 100 mA
VIS = 0 to VCC
2.5
3.0
5.0
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
RON
On−Resistance Match
Between Channels
(Notes 3 and 4)
VIS = 1.3 V;
ICOM = 100 mA
VIS = 1.5 V;
ICOM = 100 mA
VIS = 2.8 V;
ICOM = 100 mA
2.5
0.18
0.18
0.18
3.0
0.06
0.06
0.06
5.0
0.06
0.06
0.06
INC(OFF)
INO(OFF)
NC or NO Off
Leakage Current
(Figure 13) (Note 3)
VIN = VIL or VIH
VNO or VNC = 1.0
VCOM = 4.5 V
5.5
−1
1
−10
10
−100
100
nA
ICOM(ON)
COM ON
Leakage Current
(Figure 13) (Note 3)
VIN = VIL or VIH
VNO 1.0 V or 4.5 V with
VNC floating or
VNC 1.0 V or 4.5 V with
VNO floating
VCOM = 1.0 V or 4.5 V
5.5
−2
2
−20
20
−200
200
nA
3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4. RON = RON(MAX) − RON(MIN) between NC1 and NC2 or between NO1 and NO2.
5. Flatness is defined as the difference between the maximum and minimum value of on−resistance as measured over the specified analog
signal ranges.
http://onsemi.com
4
NLAS4684
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns) (Typical characteristics are at 25°C)
Guaranteed Maximum Limit
Symbol
Parameter
Test Conditions
VCC
(V)
VIS
(V)
55C to 25C
Min
Typ
Max
85C
Min
Max
125C
Min
Max
Unit
tON
Turn−On Time
RL = 50 CL = 35 pF
(Figures 4 and 5)
2.5
3.0
5.0
1.3
1.5
2.8
60
50
30
70
60
35
70
60
35
ns
tOFF
Turn−Off Time
RL = 50 CL = 35 pF
(Figures 4 and 5)
2.5
3.0
5.0
1.3
1.5
2.8
50
40
30
55
50
35
55
50
35
ns
tBBM
Minimum Break−Before−Make
Time (Note 6)
VIS = 3.0
RL = 300 CL = 35 pF
(Figure 3)
3.0
1.5
ns
2
15
Typical @ 25, VCC = 5.0 V
CNC Off
CNO Off
CNC On
CNO On
NC Off Capacitance, f = 1 MHz
NO Off Capacitance, f = 1 MHz
NC On Capacitance, f = 1 MHz
NO On Capacitance, f = 1 MHz
102
104
322
330
pF
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
Symbol
BW
VONL
VISO
Parameter
Condition
Maximum On−Channel −3dB
Bandwidth or Minimum Frequency
Response
VIN = 0 dBm
VIN centered between VCC and GND
(Figure 6)
Maximum Feed−through On Loss
Off−Channel Isolation (Note 7)
VCC
V
Typical
25C
Unit
MHz
NC
3.0
6.5
NO
3.0
9.5
VIN = 0 dBm @ 100 kHz to 50 MHz
VIN centered between VCC and GND (Figure 6)
3.0
−0.05
f = 100 kHz; VIS = 1 V RMS; CL = 5 nF
VIN centered between VCC and GND(Figure 6)
3.0
−65
dB
dB
Q
Charge Injection Select Input to
Common I/O (Figures 10 and 11)
VIN = VCC to GND, RIS = 0 , CL = 1 nF
Q = CL − VOUT (Figure 7)
3.0
15
pC
THD
Total Harmonic Distortion THD +
Noise (Figure 9)
FIS = 20 Hz to 100 kHz, RL = Rgen = 600 , CL = 50 pF
VIS = 1 V RMS
3.0
0.14
%
VCT
Channel−to−Channel Crosstalk
f = 100 kHz; VIS = 1 V RMS, CL = 5 pF, RL = 50 VIN centered between VCC and GND (Figure 6)
3.0
−83
dB
6. −55°C specifications are guaranteed by design.
7. Off−Channel Isolation = 20log10 (Vcom/Vno) (See Figure 6).
http://onsemi.com
5
NLAS4684
VCC
DUT
VCC
Input
Output
GND
VOUT
0.1 F
50 tBMM
35 pF
90%
90% of VOH
Output
Switch Select Pin
GND
Figure 3. tBBM (Time Break−Before−Make)
VCC
Input
DUT
VCC
0.1 F
50%
0V
Output
VOUT
Open
50%
50 VOH
90%
35 pF
90%
Output
VOL
Input
tON
tOFF
Figure 4. tON/tOFF
VCC
VCC
Input
DUT
Output
50 50%
VOUT
Open
50%
0V
VOH
35 pF
Output
Input
tOFF
Figure 5. tON/tOFF
http://onsemi.com
6
10%
10%
VOL
tON
NLAS4684
50 DUT
Reference
Transmitted
Input
Output
50 Generator
50 Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is
the bandwidth of an On switch. VISO, Bandwidth and VONL are independent of the input signal direction.
VVOUT
for VIN at 100 kHz
IN
VOUT
for VIN at 100 kHz to 50 MHz
VONL = On Channel Loss = 20 Log VIN
VISO = Off Channel Isolation = 20 Log
Bandwidth (BW) = the frequency 3 dB below VONL
VCT = Use VISO setup and test to all other switch analog input/outputs terminated with 50 Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk
(On Channel to Off Channel)/VONL
DUT
VCC
VIN
Output
Open
GND
CL
Output
Off
On
VIN
Figure 7. Charge Injection: (Q)
10
THD (%)
1
NC1
0.1
NO1
0.01
1
10
100
1000
10000
100000
FREQUENCY (Hz)
Figure 8. Total Harmonic Distortion Plus Noise Versus Frequency
http://onsemi.com
7
Off
VOUT
NLAS4684
1.6
CHARGE INJECTION “Q” (pC)
200
CURRENT LEAKAGE (nA)
1.4
Threshold Rising
1.2
1
Threshold Falling
NO, VCC = 5 V
0
NC, VCC = 5 V
−200
0.8
−400
0.6
0.4
−600
0.2
0
0
2
4
−800
0
6
2
VCC (V)
6
Vin (V)
Figure 9. Voltage in Threshold on Logic Pins
Figure 10. Charge Injection versus Vis
70
100
90
60
80
T−on 2.5 V
50
T−on / T−off (ns)
T−on / T−off (ns)
4
T−off 2.5 V
40
T−on 3.0 V
30
T−off 3.0 V
20
T−on 5.0 V
T−off 5.0 V
70
T−on
60
50
40
T−off
30
20
10
10
0
−55
−30
−5
20
45
70
95
0
1.8
120
TEMPERATURE (°C)
3.8
4.8
VCC TEMPERATURE (°C)
Figure 11. T−on / T−off Time versus
Temperature
Figure 12. T−on / T−off Time versus Temperature
1000
ICC CURRENT LEAKAGE (nA)
1000
NO/NC CURRENT LEAKAGE (nA)
2.8
100
Comm / Closed Switch
10
1
0.1
Open Switch
0.01
0.001
−55
−5
45
100
10
1
0.1
0.01
0.001
−55
95
−5
45
95
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 14. ICC Current Leakage versus
Temperature VCC = 5.5 V
Figure 13. NO/NC Current Leakage Off and On,
VCC = 5 V
http://onsemi.com
8
NLAS4684
3
4.5
1.8 V
TA = +25°C
ICOM = 100 mA
1.8 V
2.5
TA = +25°C
ICOM = 100 mA
4
3.5
2.0 V
RON ()
RON ()
2.0 V
3
2
2.5 V
1.5
2.3 V
1
2.7 V
0.5
2.5
2.7 V
2.3 V
2
2.5 V
1.5
5.0 V
3.0 V
3.0 V
5.0 V
1
0.5
0
0.0
1.0
2.0
3.0
4.0
0
0.0
5.0
1.0
2.0
VCOM (V)
Figure 15. NC On−Resistance versus
COM Voltage
5.0
1.3
VCC = 2.5 V
ICOM = 100 mA
+85°C
0.4
VCC = 2.5 V
ICOM = 100 mA
1.1
+85°C
+25°C
+25°C
0.9
0.3
RON ()
RON ()
4.0
Figure 16. NO On−Resistance versus
COM Voltage
0.45
0.35
3.0
VCOM (V)
0.25
0.7
−40°C
0.5
0.2
−40°C
0.3
0.15
0.1
0.0
0.5
1.0
1.5
2.0
0.1
2.5
0.0
1.0
2.0
VCOM (V)
3.0
4.0
5.0
VCOM (V)
Figure 17. NC On−Resistance versus
COM Voltage
Figure 18. NO On−Resistance versus
COM Voltage
0.35
0.9
+85°C +25°C
0.8
+85°C
AVERAGE RON ()
AVERAGE RON ()
0.3
+25°C
0.25
−40°C
0.2
0.15
VCC = 3 V
ICOM = 100 mA
0.1
0.0
0.7
−40°C
0.6
0.5
0.4
0.3
0.2
1.0
2.0
0.1
0.0
3.0
VCOM (V)
VCC = 3 V
ICOM = 100 mA
1.0
2.0
VCOM (V)
Figure 19. NC On−Resistance versus
COM Voltage
Figure 20. NC On−Resistance versus
COM Voltage
http://onsemi.com
9
3.0
NLAS4684
0.26
0.9
0.24
0.8
+85°C
+25°C
0.2
AVERAGE RON ()
+25°C
0.18
0.16
+85°C
0.14
0.12
VCC = 5 V
ICOM = 100 mA
0.6
−40°C
0.5
0.4
0.3
VCC = 5 V
ICOM = 100 mA
0.2
0.1
0.0
0.1
0.0
0.7
1.0
2.0
3.0
4.0
5.0
1.0
2.0
VCOM (V)
3.0
4.0
5.0
VCOM (V)
Figure 21. NC On−Resistance versus
COM Voltage
Figure 22. NO On−Resistance versus
COM Voltage
0
Bandwidth (On − Loss)
BANDWIDTH (dB/Div)
−1
0
Phase Shift
(Degrees)
10
0
Phase Shift
(Degrees)
−10
VCC = 3.0 V
TA = 25°C
0.01
Bandwidth (On − Loss)
−1
10
−10
0.001
PHASE (Degrees)
BANDWIDTH (dB/Div)
0
−10
VCC = 3.0 V
TA = 25°C
0.1
1.0
10
100
−10
0.001
0.01
FREQUENCY (MHz)
0.1
1.0
10
100
FREQUENCY (MHz)
Figure 23. NC Bandwidth and Phase Shift
versus Frequency
Figure 24. NO Bandwidth and Phase Shift
versus Frequency
0
0
−10
−10
NC Off−Isolation
−100
0.001
PHASE (Degrees)
AVERAGE RON ()
−40°C
0.22
0.01
0.1
1.0
NO Off−Isolation
Crosstalk
Crosstalk
VCC = 3.0 V
TA = 25°C
VCC = 3.0 V
TA = 25°C
10
−100
0.001
100
FREQUENCY (MHz)
0.01
0.1
1.0
10
FREQUENCY (MHz)
Figure 25. NC Off Isolation and Crosstalk
Figure 26. NO Off Isolation and Crosstalk
http://onsemi.com
10
100
NLAS4684
ORDERING INFORMATION
Device
Package
Shipping†
NLAS4684FCT1
Microbump−10
3000 / Tape & Reel
NLAS4684FCT1G
Microbump−10
(Pb−Free)
3000 / Tape & Reel
NLAS4684MNR2
QFN−10
2500 / Tape & Reel
QFN−10
(Pb−Free)
2500 / Tape & Reel
Micro10
4000 / Tape & Reel
Micro10
(Pb−Free)
4000 / Tape & Reel
NLAS4684MNR2G
NLAS4684MR2
NLAS4684MR2G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
11
NLAS4684
PACKAGE DIMENSIONS
Microbump−10
CASE 489AA−01
ISSUE A
D
4X
A
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION:
MILLIMETERS.
3. COPLANARITY APPLIES TO SPHERICAL
CROWNS OF SOLDER BALLS.
B
0.10 C
MILLIMETERS
DIM MIN
MAX
A
−−− 0.650
A1 0.210 0.270
A2 0.280 0.380
D
1.965 BSC
E
1.465 BSC
b
0.250 0.350
e
0.500 BSC
D1
1.500 BSC
E1
1.000 BSC
E
PIN ONE
CORNER
A1
0.10 C
A2
A
0.075 C
C
SEATING
PLANE
D1
e
10 X
b
0.15 C A B
0.05 C
C
E1
B
A
1
2
3
4
e
http://onsemi.com
12
NLAS4684
PACKAGE DIMENSIONS
QFN−10 (DUAL SIDED)
CASE 485C−01
ISSUE O
−X−
A
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION D APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD
AS WELL AS THE TERMINALS.
−Y−
N
B
2 PL
0.25 (0.010) T
2 PL
0.25 (0.010) T
J
R
C
−T−
K
SEATING
PLANE
E
H
L
G
10
F
P
1
10 PL
D
NOTE 3
0.10 (0.004)
M
T X Y
http://onsemi.com
13
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
MILLIMETERS
MIN
MAX
3.00 BSC
3.00 BSC
0.80
1.00
0.20
0.30
2.45
2.55
1.75
1.85
0.50 BSC
1.23
1.28
0.20 REF
0.00
0.05
0.35
0.45
1.50 BSC
1.50 BSC
0.88
0.93
0.60
0.80
INCHES
MIN
MAX
0.118 BSC
0.118 BSC
0.031
0.039
0.008
0.012
0.096
0.100
0.069
0.073
0.020 BSC
0.048
0.050
0.008 REF
0.000
0.002
0.014
0.018
0.059 BSC
0.059 BSC
0.035
0.037
0.024
0.031
NLAS4684
PACKAGE DIMENSIONS
Micro10
CASE 846B−03
ISSUE C
−A−
−B−
K
D 8 PL
0.08 (0.003)
PIN 1 ID
G
0.038 (0.0015)
−T− SEATING
PLANE
M
T B
S
A
DIM
A
B
C
D
G
H
J
K
L
S
C
H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION “A” DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH, PROTRUSIONS OR GATE
BURRS SHALL NOT EXCEED 0.15 (0.006)
PER SIDE.
4. DIMENSION “B” DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. 846B−01 OBSOLETE. NEW STANDARD
846B−02
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.95
1.10
0.20
0.30
0.50 BSC
0.05
0.15
0.10
0.21
4.75
5.05
0.40
0.70
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.037
0.043
0.008
0.012
0.020 BSC
0.002
0.006
0.004
0.008
0.187
0.199
0.016
0.028
L
J
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
14
For additional information, please contact your
local Sales Representative.
NLAS4684/D