ONSEMI MC33078PG

MC33078, MC33079
Low Noise Dual/Quad
Operational Amplifiers
The MC33078/9 series is a family of high quality monolithic
amplifiers employing Bipolar technology with innovative high
performance concepts for quality audio and data signal processing
applications. This family incorporates the use of high frequency PNP
input transistors to produce amplifiers exhibiting low input voltage
noise with high gain bandwidth product and slew rate. The all NPN
output stage exhibits no deadband crossover distortion, large output
voltage swing, excellent phase and gain margins, low open loop high
frequency output impedance and symmetrical source and sink AC
frequency performance.
The MC33078/9 family offers both dual and quad amplifier
versions and is available in the plastic DIP and SOIC packages (P and
D suffixes).
http://onsemi.com
MARKING
DIAGRAMS
DUAL
MC33078P
AWL
YYWWG
PDIP−8
P SUFFIX
CASE 626
8
1
1
Features
•
•
•
•
•
•
•
•
•
•
•
•
8
Dual Supply Operation: $5.0 V to $18 V
8
Low Voltage Noise: 4.5 nV/ ǸHz
Low Input Offset Voltage: 0.15 mV
Low T.C. of Input Offset Voltage: 2.0 mV/°C
Low Total Harmonic Distortion: 0.002%
High Gain Bandwidth Product: 16 MHz
High Slew Rate: 7.0 V/ms
High Open Loop AC Gain: 800 @ 20 kHz
Excellent Frequency Stability
Large Output Voltage Swing: +14.1 V/ −14.6 V
ESD Diodes Provided on the Inputs
Pb−Free Packages are Available
8
1
14
PDIP−14
P SUFFIX
CASE 646
14
1
14
R2
Q9
Q5
Neg
Pos
J1 Amplifier
Biasing
D3
Q11
R7
C2
Q8
Q3
D4
Z1
Q1
R1
D2
C1
R3
R4
Q7
R6
MC33079DG
AWLYWW
1
A
WL, L
YY, Y
WW, W
G or G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
C3 R9
Q6
Q2
SOIC−14
D SUFFIX
CASE 751A
VCC
Q4
MC33079P
AWLYYWWG
1
1
Q3
1
33078
ALYW
G
QUAD
14
D1
SOIC−8
D SUFFIX
CASE 751
Q10
Q12
Vout
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
R5
VEE
Figure 1. Representative Schematic Diagram
(Each Amplifier)
© Semiconductor Components Industries, LLC, 2006
October, 2006 − Rev. 7
1
Publication Order Number:
MC33078/D
MC33078, MC33079
PIN CONNECTIONS
Output 1
DUAL
QUAD
CASE 626/751
CASE 646/751A
1
8 VCC
−
1
+
2
Inputs 1
VEE
3
7 Output 2
−
2
+
4
Output 1
Inputs 1
6
VCC
Inputs 2
5
Inputs 2
(Dual, Top View)
Output 2
1
14
2
13
*
1
3 )
*
) 12
4
4
11
5
) 10
3
*
9
)2
6 *
Output 4
7
8
Inputs 4
VEE
Inputs 3
Output 3
(Quad, Top View)
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
VIDR
Note 1
V
Input Voltage Range
VIR
Note 1
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Supply Voltage (VCC to VEE)
Input Differential Voltage Range
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
− 60 to +150
°C
ESD Protection at any Pin
MC33078
MC33079
− Human Body Model
− Machine Model
− Human Body Model
− Machine Model
Vesd
600
200
550
150
V
Maximum Power Dissipation
PD
Note 2
mW
Operating Temperature Range
TA
−40 to +85
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).
http://onsemi.com
2
MC33078, MC33079
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Symbol
|VIO|
Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V)
(MC33078) TA = +25°C
TA = −40° to +85°C
(MC33079) TA = +25°C
TA = −40° to +85°C
Average Temperature Coefficient of Input Offset Voltage
RS = 10 W, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh
DVIO/DT
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = −40° to +85°C
IIB
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = −40° to +85°C
IIO
Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V)
VICR
Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW)
TA = +25°C
TA = −40° to +85°C
AVOL
Min
Typ
Max
−
−
−
−
0.15
−
0.15
−
2.0
3.0
2.5
3.5
−
2.0
−
−
−
300
−
750
800
−
−
25
−
150
175
±13
±14
−
90
85
110
−
−
−
Unit
mV
mV/°C
nA
nA
V
dB
Output Voltage Swing (VID = $1.0V)
RL = 600 W
RL = 600 W
RL = 2.0 kW
RL = 2.0 kW
RL = 10 kW
RL = 10 kW
VO +
VO −
VO +
VO −
VO +
VO −
−
−
+13.2
−
+13.5
−
+10.7
−11.9
+13.8
−13.7
+14.1
−14.6
−
−
−
−13.2
−
−14
V
Common Mode Rejection (Vin = ±13V)
CMR
80
100
−
dB
Power Supply Rejection (Note 3)
VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V
PSR
80
105
−
dB
+15
−20
+29
−37
−
−
−
−
−
−
4.1
−
8.4
−
5.0
5.5
10
11
Output Short Circuit Current (VID = 1.0 V, Output to Ground)
Source
Sink
ISC
Power Supply Current (VO = 0 V, All Amplifiers)
(MC33078) TA = +25°C
(MC33078) TA = −40° to +85°C
(MC33079) TA = +25°C
(MC33079) TA = −40° to +85°C
ID
3. Measured with VCC and VEE differentially varied simultaneously.
http://onsemi.com
3
mA
mA
MC33078, MC33079
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Symbol
Min
Typ
Max
Unit
SR
5.0
7.0
−
V/ms
GBW
10
16
−
MHz
Unity Gain Bandwidth (Open Loop)
BW
−
9.0
−
MHz
Gain Margin (RL = 2.0 kW)
CL = 0 pF
CL = 100 pF
Am
−
−
−11
− 6.0
−
−
Phase Margin (RL = 2.0 kW)
CL = 0 pF
CL = 100 pF
fm
−
−
55
40
−
−
Slew Rate (Vin = −10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0)
Gain Bandwidth Product (f = 100 kHz)
Deg
CS
−
−120
−
dB
Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%)
BWp
−
120
−
kHz
Total Harmonic Distortion
(RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)
THD
−
0.002
−
%
Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz)
|ZO|
−
37
−
W
Differential Input Resistance (VCM = 0 V)
Rin
−
175
−
kW
Differential Input Capacitance (VCM = 0 V)
Cin
−
12
−
pF
Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz)
en
−
4.5
−
nV/ √ Hz
Equivalent Input Noise Current (f = 1.0 kHz)
in
−
0.5
−
P,
D MAXIMUM POWER DISSIPATION (mW)
Channel Separation (f = 20 Hz to 20 kHz)
dB
2400
I,
IB INPUT BIAS CURRENT (nA)
800
2000
MC33078P & MC33079P
1600
MC33079D
1200
800
MC33078D
400
0
−55 −40 −20
VCM = 0 V
TA = 25°C
600
400
200
0
0
20 40 60 80 100 120 140 160
TA, AMBIENT TEMPERATURE (°C)
0
Figure 2. Maximum Power Dissipation
versus Temperature
5.0
10
15
VCC, | VEE |, SUPPLY VOLTAGE (V)
20
Figure 3. Input Bias Current versus
Supply Voltage
1000
2.0
VCC = +15 V
VEE = −15 V
VCM = 0 V
800
V,
IO INPUT OFFSET VOLTAGE (mV)
I,
IB INPUT BIAS CURRENT (nA)
Hz√pA/
600
400
200
0
−55
−25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
VCC = +15 V
VEE = −15 V
RS = 10 W
1.0 VCM = 0 V
AV = +1
Unit 2
0
Figure 4. Input Bias Current versus Temperature
Unit 3
−1.0
−2.0
−55
125
Unit 1
−25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
Figure 5. Input Offset Voltage versus Temperature
http://onsemi.com
4
I,
IB INPUT BIAS CURRENT (nA)
600
VCC = +15 V
VEE = −15 V
TA = 25°C
500
400
300
200
100
0
−15
−10
−5.0
0
5.0
10
15
VCM, COMMON MODE VOLTAGE (V)
V ICR , INPUT COMMON MODE VOLTAGE RANGE (V)
MC33078, MC33079
VCC −0
VCC −0.5
VCC −1.5
Voltage
Range
VEE +1.5
VEE +1.0
VEE +0
−55
VCC −5.0
125°C
125°C
25°C
VEE +5.0
VEE +3.0
VEE +1.0
−55°C
0
1.0
2.0
3.0
I,
CC SUPPLY CURRENT (mA)
75
100
4.0
VCC = +15 V
VEE = −15 V
RL < 100 W
VID = 1.0 V
Sink
40
Source
30
20
10
−55
Figure 9. Output Short Circuit Current
versus Temperature
±15 V
VCM = 0 V
RL = ∞
VO = 0 V
±10 V
±5.0 V
7.0
6.0
MC33079
5.0
±15 V
4.0
±10 V
MC33078
±5.0 V
±4.0 V
−25
Supply Voltages
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
50
Figure 8. Output Saturation Voltage versus
Load Resistance to Ground
8.0
0
−55
50
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
9.0
2.0
1.0
25
RL, LOAD RESISTANCE TO GROUND (kW)
10
3.0
0
Figure 7. Input Common Mode Voltage
Range versus Temperature
VCC = +15 V
VEE = −15 V
25°C
−25
TA, AMBIENT TEMPERATURE (°C)
| I|,
SC OUTPUT SHORT CIRCUIT CURRENT (mA)
VCC −3.0
−VCM
VEE +0.5
CMR, COMMON MODE REJECTION (dB)
Vsat , OUTPUT SATURATION VOLTAGE (V)
−55°C
VCC = +3.0 V to +15 V
VEE = −3.0 V to −15 V
DVIO = 5.0 mV
VO = 0 V
VCC −1.0
Figure 6. Input Bias Current versus
Common Mode Voltage
VCC −1.0
+VCM
100
D VCM
140
120
CMR = 20Log
100
80
60
40
Figure 10. Supply Current versus
Temperature
−
ADM
+
D VCM
D VO
D VO
× ADM
VCC = +15 V
VEE = −15 V
VCM = 0 V
DVCM = ±1.5 V
TA = 25°C
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
Figure 11. Common Mode Rejection
versus Frequency
http://onsemi.com
5
125
160
20
100
125
−25
10 M
140
DVO/ADM
+PSR = 20Log
120
DVCC
DVO/ADM
−PSR = 20Log
DVCC
DVCC
+PSR
100
GWB, GAIN BANDWIDTH PRODUCT (MHz)
PSR, POWER SUPPLY REJECTION (dB)
MC33078, MC33079
−
ADM
DVO
+
80
−PSR
VEE
60
40
VCC = +15 V
VEE = −15 V
TA = 25°C
20
0
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
30
20
10
0
10 M
1.0 M
RL = 10 kW
CL = 0 pF
f = 100 kHz
TA = 25°C
0
20
20
20
TA = 25°C
15
VO , OUTPUT VOLTAGE (Vp)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
15
Figure 13. Gain Bandwidth Product
versus Supply Voltage
15
10
VCC = +15 V
VEE = −15 V
f = 100 kHz
RL = 10 kW
CL = 0 pF
5.0
0
−55
−25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
RL = 10 kW
RL = 2.0 kW
5.0
0
−5.0
RL = 2.0 kW
−10
RL = 10 kW
−15
100
−20
125
VO −
0
A,
VOL OPEN LOOP VOLTAGE GAIN (dB)
30
25
20
VCC = +15 V
VCC = −15 V
RL = 2.0 kW
AV = +1.0
THD ≤ 1.0%
TA = 25°C
10
5.0
10
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
5.0
10
15
VCC |VEE| , SUPPLY VOLTAGE (V)
20
Figure 15. Maximum Output Voltage
versus Supply Voltage
35
15
VO +
10
Figure 14. Gain Bandwidth Product
versus Temperature
VO , OUTPUT VOLTAGE (Vpp )
10
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 12. Power Supply Rejection
versus Frequency
0
5.0
110
100
90
80
10 M
RL = 2.0 kW
f ≤ 10 Hz
DVO = 2/3 (VCC −VEE)
TA = 25°C
0
Figure 16. Output Voltage versus Frequency
5.0
10
15
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 17. Open Loop Voltage Gain
versus Supply Voltage
http://onsemi.com
6
20
110
50
105
| Z|,
Ω
O OUTPUT IMPEDANCE ()
VCC = +15 V
VEE = −15 V
RL = 2.0 kW
f ≤ 10 Hz
DVO = −10 V to +10 V
100
95
90
−55
−25
0
25
50
75
CS, CHANNEL SEPARATION (dB)
20
10
AV = 1000
125
AV = 10
100 k
Figure 19. Output Impedance
versus Frequency
Drive Channel
VCC = +15 V
VEE = −15 V
RL = 2.0 KW
DVOD = 20 Vpp
TA = 25°C
150
140
MC33079
100 W
10 kW
−
120
VOM
+
100 W
DVOA
CS = 20 Log
DVOM
100
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
VCC = +15 V
VEE = −15 V
VO = 1.0 Vrms
TA = 25°C
0.1
VO
+
2.0 kW
0.001
100 k
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 21. Total Harmonic Distortion
versus Frequency
10
SR, SLEW RATE (V/μ s)
AV = 100
RA
0.05
Vin
Vin = 2/3 (VCC −VEE)
TA = 25°C
9.0
AV = 1000
0.1
−
+
10 kW
VO
2.0 kW
AV = 10
AV = 1.0
0.005
−
0.01
1.0
0.01
10 M
1.0
Figure 20. Channel Separation
versus Frequency
VCC = +15 V
VEE = −15 V
0.5 f = 2.0 kHz
TA = 25°C
AV = 1.0
1.0 M
Figure 18. Open Loop Voltage Gain
versus Temperature
Measurement Channel
THD, TOTAL HARMONIC DISTORTION (%)
10 k
AV = 100
f, FREQUENCY (Hz)
MC33078
110
30
TA, AMBIENT TEMPERATURE (°C)
160
130
100
VCC = +15 V
VEE = −15 V
VO = 0 V
TA = 25°C
40
0
1.0 k
THD, TOTAL HARMONIC DISTORTION (%)
A,
VOL OPEN LOOP VOLTAGE GAIN (dB)
MC33078, MC33079
Falling
8.0
7.0
Rising
6.0
5.0
4.0
−
3.0
DVin
2.0
+
VO
2.0
kW
1.0
0.001
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
VO, OUTPUT VOLTAGE (Vrms)
8.0
0
9.0
4
Figure 22. Total Harmonic Distortion
versus Output Voltage
6
8
10
12
14
16
VCC |VEE| , SUPPLY VOLTAGE (V)
18
Figure 23. Slew Rate versus Supply Voltage
http://onsemi.com
7
20
VCC = +15 V
VEE = −15 V
DVin = 20 V
8.0
Falling
Rising
6.0
−
DVin
4.0
2.0
−55
−25
VO
+
2.0
kW
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
120
100
80
40
135
20
Phase
25°C
20
−55°C
8.0
30
125°C
125°C
6.0
40
4.0
50
VCC = +15 V
VEE = −15 V
VO = 0 V
0
e,
nV/ √ Hz
n INPUT REFERRED NOISE VOLTAGE ()
1
25°C
−55°C
60
1.0 M
10
DVin
125°C
VO
+
25°C
CL
−55 °C
60
40
VCC = +15 V
VEE = −15 V
DVin = 100 mV
0
10
70
1000
100
100
1.0 k
10 k
CL, OUTPUT LOAD CAPACITANCE (pF)
CL, OUTPUT LOAD CAPACITANCE (pF)
Figure 26. Open Loop Gain Margin and
Phase Margin versus Load Capacitance
Figure 27. Overshoot versus Output
Load Capacitance
10
VCC = +15 V
VEE = −15 V
TA = 25°C
50
30
20
10
8.0
5.0
Voltage
3.0
2.0
Current
1.0
100
180
10 M
Gain
100
80
10
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
20
1.0 k
10 k
0.1
100 k
Vn, REFERRED NOISE VOLTAGE nV/
( √ Hz)
2.0
100
−
80
os, OVERSHOOT (%)
CL
10
10
φ m, PHASE MARGIN (DEGREES)
VO
+
2.0 kW
10
100
in, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz )
A,
m OPEN LOOP GAIN MARGIN (dB)
12 Vin
90
Figure 25. Voltage Gain and Phase
versus Frequency
0
−
Phase
Gain
Figure 24. Slew Rate versus Temperature
14
45
60
0
1.0
125
0
VCC = +15 V
VEE = −15 V
RL = 2.0 kW
TA = 25°C
φ, EXCESS PHASE (DEGREES)
SR, SLEW RATE (V/s)
μ
10
A,
VOL OPEN LOOP VOLTAGE GAIN (dB)
MC33078, MC33079
1000
100
VCC = +15 V
VEE = −15 V
f = 1.0 kHz
TA = 25°C
Vn(total) = Ǹ(inRs)2 ) en2 ) 4KTRS
10
1.0
10
100
1.0 k
10 k
100 k
1.0 M
f, FREQUENCY (Hz)
RS, SOURCE RESISTANCE (W)
Figure 28. Input Referred Noise Voltage and
Current versus Frequency
Figure 29. Total Input Referred Noise Voltage
versus Source Resistance
http://onsemi.com
8
MC33078, MC33079
14
Am, GAIN MARGIN (dB)
12
R1
8.0
6.0
4.0
2.0
0
60
Gain
10
R2
50
Phase
−
+
φ m , PHASE MARGIN (DEGREES)
70
40
VO
30
VCC = +15 V
VEE = −15 V
RT = R1 +R2
AV = +100
VO = 0 V
TA = 25°C
20
10
10
100
1.0 k
10 k
0
100 k
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
V,
O OUTPUT VOLTAGE (5.0 V/DIV)
V,
O OUTPUT VOLTAGE (5.0 V/DIV)
Figure 30. Phase Margin and Gain Margin versus
Differential Source Resistance
VCC = +15 V
VEE = −15 V
AV = −1.0
RL = 2.0 kW
CL = 100 pF
TA = 25°C
t, TIME (2.0 ms/DIV)
t, TIME (2.0 ms/DIV)
Figure 32. Non−inverting Amplifier Slew Rate
e,
n INPUT NOISE VOLTAGE (100 nV/DIV)
Figure 31. Inverting Amplifier Slew Rate
V,
O OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V
VEE = −15 V
AV = +1.0
RL = 2.0 kW
CL = 100 pF
TA = 25°C
VCC = +15 V
VEE = −15 V
RL = 2.0 kW
CL = 100 pF
AV = +1.0
TA = 25°C
t, TIME (200 ms/DIV)
VCC = +15 V
VEE = −15 V
BW = 0.1 Hz to 10 Hz
TA = 25°C
t, TIME (1.0 sec/DIV)
Figure 33. Non−inverting Amplifier Overshoot
Figure 34. Low Frequency Noise Voltage
versus Time
http://onsemi.com
9
MC33078, MC33079
0.1 mF
10 W
100 kW
−
2.0 kW
+
D.U.T.
+
1/2
4.7 mF
4.3 kW
MC33078
−
100 kW
Voltage Gain = 50,000
22 mF
Scope
×1
Rin = 1.0 MW
2.2 mF
110 kW
24.3 kW
0.1 mF
Note: All capacitors are non−polarized.
Figure 35. Voltage Noise Test Circuit
(0.1 Hz to 10 Hzp−p)
ORDERING INFORMATION
Device
MC33078D
Package
SOIC−8
MC33078DG
SOIC−8
(Pb−Free)
MC33078DR2
SOIC−8
MC33078DR2G
MC33078P
Shipping †
SOIC−8
(Pb−Free)
98 Units / Rail
2500 / Tape & Reel
PDIP−8
MC33078PG
PDIP−8
(Pb−Free)
MC33079D
SOIC−14
MC33079DG
SOIC−14
(Pb−Free)
MC33079DR2
SOIC−14
MC33079DR2G
SOIC−14
(Pb−Free)
MC33079P
PDIP−14
MC33079PG
PDIP−14
(Pb−Free)
50 Units / Rail
55 Units / Rail
2500 / Tape & Reel
25 Units / Rail
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
10
MC33078, MC33079
PACKAGE DIMENSIONS
PDIP−8
P SUFFIX
CASE 626−05
ISSUE L
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
−B−
1
4
F
−A−
NOTE 2
L
C
J
−T−
N
SEATING
PLANE
D
H
M
K
G
0.13 (0.005)
M
T A
M
B
M
http://onsemi.com
11
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
−−−
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
−−−
10_
0.030
0.040
MC33078, MC33079
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AH
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
1
0.25 (0.010)
M
Y
M
4
−Y−
K
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
12
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8 _
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
MC33078, MC33079
PACKAGE DIMENSIONS
PDIP−14
CASE 646−06
ISSUE P
14
8
1
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
A
F
L
N
C
−T−
SEATING
PLANE
H
G
D 14 PL
J
K
0.13 (0.005)
M
M
http://onsemi.com
13
DIM
A
B
C
D
F
G
H
J
K
L
M
N
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
−−−
10 _
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
−−−
10 _
0.38
1.01
MC33078, MC33079
SOIC−14
CASE 751A−03
ISSUE H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.127
(0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
−A−
14
8
−B−
P 7 PL
0.25 (0.010)
M
7
1
G
−T−
D 14 PL
0.25 (0.010)
T B
S
A
DIM
A
B
C
D
F
G
J
K
M
P
R
J
M
K
M
F
R X 45 _
C
SEATING
PLANE
B
M
S
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337 0.344
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
0_
7_
0.228 0.244
0.010 0.019
SOLDERING FOOTPRINT*
7X
7.04
14X
1.52
1
14X
0.58
1.27
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
14
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC33078/D