LM833 Dual Low Noise, Audio Amplifier The LM833 is a standard low–cost monolithic dual general–purpose operational amplifier employing Bipolar technology with innovative high–performance concepts for audio systems applications. With high frequency PNP transistors, the LM833 offers low voltage noise (4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/µs slew rate, 0.3 mV input offset voltage with 2.0 µV/°C temperature coefficient of input offset voltage. The LM833 output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response. For an improved performance dual/quad version, see the MC33079 family. • Low Voltage Noise: 4.5 nV/ Hz • High Gain Bandwidth Product: 15 MHz • High Slew Rate: 7.0 V/µs • Low Input Offset Voltage: 0.3 mV • Low T.C. of Input Offset Voltage: 2.0 µV/°C • Low Distortion: 0.002% • Excellent Frequency Stability • Dual Supply Operation http://onsemi.com MARKING DIAGRAMS 8 PDIP–8 N SUFFIX CASE 626 8 1 LM833N AWL YYWW 1 8 SO–8 D SUFFIX CASE 751 8 1 LM833 ALYW 1 A WL, L YY, Y WW, W = Assembly Location = Wafer Lot = Year = Work Week MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V Input Differential Voltage Range (Note 1.) VIDR 30 V Input Voltage Range (Note 1.) VIR ±15 V Output Short Circuit Duration (Note 2.) tSC Indefinite Operating Ambient Temperature Range TA –40 to +85 Operating Junction Temperature TJ +150 Storage Temperature Tstg –60 to +150 °C Maximum Power Dissipation (Notes 2. and 3.) PD 500 mW Supply Voltage (VCC to VEE) °C February, 2001 – Rev. 1 Output 1 1 2 1 8 VCC 7 Output 2 Inputs 1 3 6 Inputs 2 2 °C 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see power dissipation performance characteristic). 3. Maximum value at TA ≤ 85°C. Semiconductor Components Industries, LLC, 2001 PIN CONNECTIONS 1 VEE 4 5 (Top View) ORDERING INFORMATION Device Package Shipping LM833N PDIP–8 50 Units/Rail LM833D SO–8 98 Units/Rail LM833DR2 SO–8 2500 Tape & Reel Publication Order Number: LM833/D LM833 ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristic Symbol Min Typ Max Unit VIO – 0.3 5.0 mV ∆VIO/∆T – 2.0 – µV/°C Input Offset Current (VCM = 0 V, VO = 0 V) IIO – 10 200 nA Input Bias Current (VCM = 0 V, VO = 0 V) IIB – 300 1000 nA Common Mode Input Voltage Range VICR – –12 +14 –14 +12 – V Large Signal Voltage Gain (RL = 2.0 kΩ, VO = ±10 V AVOL 90 110 – dB Output Voltage Swing: RL = 2.0 kΩ, VID = 1.0 V RL = 2.0 kΩ, VID = 1.0 V RL = 10 kΩ, VID = 1.0 V RL = 10 kΩ, VID = 1.0 V VO+ VO– VO+ VO– 10 – 12 – 13.7 –14.1 13.9 –14.7 – –10 – –12 Common Mode Rejection (Vin = ±12 V) CMR 80 100 – dB Power Supply Rejection (VS = 15 V to 5.0 V, –15 V to –5.0 V) PSR 80 115 – dB ID – 4.0 8.0 mA Unit Input Offset Voltage (RS = 10 Ω, VO = 0 V) Average Temperature Coefficient of Input Offset Voltage RS = 10 Ω, VO = 0 V, TA = Tlow to Thigh V Power Supply Current (VO = 0 V, Both Amplifiers) AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristic Symbol Min Typ Max Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, AV = +1.0) SR 5.0 7.0 – V/µs GBW 10 15 – MHz Unity Gain Frequency (Open Loop) fU – 9.0 – MHz Unity Gain Phase Margin (Open Loop) θm – 60 – Deg Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz) en – 4.5 – nV Hz Equivalent Input Noise Current (f = 1.0 kHz) in – 0.5 – pA Hz Power Bandwidth (VO = 27 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%) BWP – 120 – kHz Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD – 0.002 – % CS – –120 – dB Gain Bandwidth Product (f = 100 kHz) 1000 800 IIB , INPUT BIAS CURRENT (nA) PD , MAXIMUM POWER DISSIPATION (mW) Channel Separation (f = 20 Hz to 20 kHz) 600 400 200 0 -50 0 50 100 TA, AMBIENT TEMPERATURE (°C) VCC = +15 V VEE = -15 V VCM = 0 V 800 600 400 200 0 -55 150 Figure 1. Maximum Power Dissipation versus Temperature -25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 Figure 2. Input Bias Current versus Temperature http://onsemi.com 2 LM833 10 TA = 25°C 600 IS , SUPPLY CURRENT (mA) I IB , INPUT BIAS CURRENT (nA) 800 400 200 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) VCC 8.0 6.0 VO + VEE 4.0 2.0 0 20 0 5.0 Figure 3. Input Bias Current versus Supply Voltage RL = 2.0 kΩ TA = 25°C 100 100 95 90 -55 -25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 90 80 5.0 125 0 100 45 80 Phase 60 20 0 VCC = +15 V VEE = -15 V RL = 2.0 kΩ TA = 25°C 1.0 10 Gain 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 90 135 1.0 M 180 10 M GBW, GAIN BANDWIDTH PRODUCT (MHz) 120 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 20 Figure 6. DC Voltage Gain versus Supply Voltage ∅ , EXCESS PHASE (DEGREES) AVOL, OPEN LOOP VOLTAGE GAIN (dB) Figure 5. DC Voltage Gain versus Temperature 40 20 110 VCC = +15 V VEE = -15 V RL = 2.0 kΩ 105 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) Figure 4. Supply Current versus Supply Voltage AVOL, DC VOLTAGE GAIN (dB) AVOL, DC VOLTAGE GAIN (dB) 110 RL = ∞ TA = 25°C IS 20 15 10 5.0 0 -55 Figure 7. Open Loop Voltage Gain and Phase versus Frequency VCC = +15 V VEE = -15 V f = 100 kHz -25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 Figure 8. Gain Bandwidth Product versus Temperature http://onsemi.com 3 125 LM833 GBW, GAIN BANDWIDTH PRODUCT (MHz) 30 10 SR, SLEW RATE (V/ µs) f = 100 kHz TA = 25°C 20 10 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 8.0 Falling Rising 6.0 VCC = +15 V VEE = -15 V RL = 2.0 kΩ AV = +1.0 4.0 2.0 -55 20 Figure 9. Gain Bandwidth Product versus Supply Voltage SR, SLEW RATE (V/ µ s) 8.0 RL = 2.0k Ω AV = +1.0 TA = 25°C Falling 4.0 Vin 2.0 0 5.0 + - VO RL 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 20 VCC = +15 V VEE = -15 V RL = 2.0 kΩ THD 1.0% TA = 25°C 15 10 5.0 10 VO + 5.0 0 -5.0 VO - -15 -20 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 100 1.0 k 10 k 1.0 M f, FREQUENCY (Hz) 10 M 100 k Figure 12. Output Voltage versus Frequency 10 -10 125 25 0 20 V sat , OUTPUT SATURATION VOLTAGE |V| VO, OUTPUT VOLTAGE (Vpp ) 15 RL = 10 kΩ TA = 25°C 100 30 Figure 11. Slew Rate versus Supply Voltage 20 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) VO RL 35 Rising 6.0 + Figure 10. Slew Rate versus Temperature VO, OUTPUT VOLTAGE (Vpp ) 10 -25 Vin 20 15 +Vsat -Vsat 14 VCC = +15 V VEE = -15 V RL = 10 kΩ 13 -55 Figure 13. Maximum Output Voltage versus Supply Voltage -25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 Figure 14. Output Saturation Voltage versus Temperature http://onsemi.com 4 125 PSR, POWER SUPPLY REJECTION (dB) 140 VCC = +15 V VEE = -15 V TA = 25°C 120 100 80 -PSR 20 +PSR = 20 Log -PSR = 20 Log 0 100 ∆VCC ADM + ∆VO ∆VEE +PSR 60 40 - CMR, COMMON MODE REJECTION (dB) LM833 1.0 k ∆VO/ADM ( ∆VCC ) ( ∆V∆VO/AEEDM ) 10 k 100 k f, FREQUENCY (Hz) 1.0 M 160 140 120 10 M RL 0.01 0.001 10 e n, INPUT NOISE VOLTAGE (nV/√ Hz ) THD, TOTAL HARMONIC DISTORTION (%) 0.1 VCC = +15 V VEE = -15 V RL = 2.0 kΩ TA = 25°C VO VO = 1.0 Vrms VO = 3.0 Vrms 100 1.0 k + 80 60 40 20 100 VCC = +15 V VEE = -15 V VCM = 0 V ∆VCM = ±1.5 V TA = 25°C 1.0 k 10 k VCC = +15 V VEE = -15 V RS = 100 Ω TA = 25°C 2.0 100 e n, INPUT NOISE VOLTAGE (nV/√ Hz ) i n , INPUT NOISE CURRENT (pA/√ Hz ) 10 M 100 0.7 0.5 0.4 0.3 10 k 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 18. Input Referred Noise Voltage versus Frequency 1.0 1.0 k f, FREQUENCY (Hz) 1.0 M 5.0 1.0 10 100 k VCC = +15 V VEE = -15 V TA = 25°C 100 10 k 100 k f, FREQUENCY (Hz) 10 Figure 17. Total Harmonic Distortion versus Frequency 0.2 10 ∆VCM × ADM ∆V0 CMR = 20 Log f, FREQUENCY (Hz) 2.0 ∆VO Figure 16. Common Mode Rejection versus Frequency 1.0 - - ADM 100 Figure 15. Power Supply Rejection versus Frequency + ∆VCM 100 k VCC = +15 V VEE = -15 V Vn(total) = (inRS)2 +en2 + 4KTRS TA = 25°C 10 1.0 1.0 10 100 1.0 k 10 k 100 k RS, SOURCE RESISTANCE (Ω) Figure 20. Input Referred Noise Voltage versus Source Resistance Figure 19. Input Referred Noise Current versus Frequency http://onsemi.com 5 1.0 M VO , OUTPUT VOLTAGE (5.0 V/DIV) VCC = +15 V VEE = -15 V RL = 2.0 kΩ CL = 0 pF AV = -1.0 TA = 25°C VCC = +15 V VEE = -15 V RL = 2.0 kΩ CL = 0 pF AV = +1.0 TA = 25°C t, TIME (2.0 µs/DIV) t, TIME (2.0 µs/DIV) Figure 21. Inverting Amplifier VO , OUTPUT VOLTAGE (10 mV/DIV) VO , OUTPUT VOLTAGE (5.0 V/DIV) LM833 Figure 22. Noninverting Amplifier Slew Rate VCC = +15 V VEE = -15 V RL = 2.0 kΩ CL = 0 pF AV = +1.0 TA = 25°C t, TIME (200 ns/DIV) Figure 23. Noninverting Amplifier Overshoot http://onsemi.com 6 LM833 PACKAGE DIMENSIONS PDIP–8 N SUFFIX CASE 626–05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 DIM A B C D F G H J K L M N F –A– NOTE 2 L C J –T– MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10 0.030 0.040 N SEATING PLANE D M K G H 0.13 (0.005) M T A M B M SO–8 D SUFFIX CASE 751–07 ISSUE W –X– NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. A 8 5 0.25 (0.010) S B 1 M Y M 4 K –Y– G C N X 45 SEATING PLANE –Z– 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X S http://onsemi.com 7 J DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 LM833 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–[email protected] French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit–[email protected] English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: [email protected] CENTRAL/SOUTH AMERICA: Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–[email protected] Toll–Free from Mexico: Dial 01–800–288–2872 for Access – then Dial 866–297–9322 ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–[email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781 *Available from Germany, France, Italy, UK, Ireland For additional information, please contact your local Sales Representative. http://onsemi.com 8 LM833/D