ETC LM833/D

LM833
Dual Low Noise,
Audio Amplifier
The LM833 is a standard low–cost monolithic dual general–purpose
operational amplifier employing Bipolar technology with innovative
high–performance concepts for audio systems applications. With high
frequency PNP transistors, the LM833 offers low voltage noise
(4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/µs slew rate,
0.3 mV input offset voltage with 2.0 µV/°C temperature coefficient of
input offset voltage. The LM833 output stage exhibits no deadband
crossover distortion, large output voltage swing, excellent phase and
gain margins, low open loop high frequency output impedance and
symmetrical source/sink AC frequency response.
For an improved performance dual/quad version, see the MC33079
family.
• Low Voltage Noise: 4.5 nV/ Hz
• High Gain Bandwidth Product: 15 MHz
• High Slew Rate: 7.0 V/µs
• Low Input Offset Voltage: 0.3 mV
• Low T.C. of Input Offset Voltage: 2.0 µV/°C
• Low Distortion: 0.002%
• Excellent Frequency Stability
• Dual Supply Operation
http://onsemi.com
MARKING
DIAGRAMS
8
PDIP–8
N SUFFIX
CASE 626
8
1
LM833N
AWL
YYWW
1
8
SO–8
D SUFFIX
CASE 751
8
1
LM833
ALYW
1
A
WL, L
YY, Y
WW, W
= Assembly Location
= Wafer Lot
= Year
= Work Week
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
Input Differential Voltage Range
(Note 1.)
VIDR
30
V
Input Voltage Range (Note 1.)
VIR
±15
V
Output Short Circuit Duration (Note 2.)
tSC
Indefinite
Operating Ambient Temperature
Range
TA
–40 to +85
Operating Junction Temperature
TJ
+150
Storage Temperature
Tstg
–60 to +150
°C
Maximum Power Dissipation
(Notes 2. and 3.)
PD
500
mW
Supply Voltage (VCC to VEE)
°C
February, 2001 – Rev. 1
Output 1
1
2
1
8
VCC
7
Output 2
Inputs 1
3
6
Inputs 2
2
°C
1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction
temperature (TJ) is not exceeded (see power dissipation performance
characteristic).
3. Maximum value at TA ≤ 85°C.
 Semiconductor Components Industries, LLC, 2001
PIN CONNECTIONS
1
VEE
4
5
(Top View)
ORDERING INFORMATION
Device
Package
Shipping
LM833N
PDIP–8
50 Units/Rail
LM833D
SO–8
98 Units/Rail
LM833DR2
SO–8
2500 Tape & Reel
Publication Order Number:
LM833/D
LM833
ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
VIO
–
0.3
5.0
mV
∆VIO/∆T
–
2.0
–
µV/°C
Input Offset Current (VCM = 0 V, VO = 0 V)
IIO
–
10
200
nA
Input Bias Current (VCM = 0 V, VO = 0 V)
IIB
–
300
1000
nA
Common Mode Input Voltage Range
VICR
–
–12
+14
–14
+12
–
V
Large Signal Voltage Gain (RL = 2.0 kΩ, VO = ±10 V
AVOL
90
110
–
dB
Output Voltage Swing:
RL = 2.0 kΩ, VID = 1.0 V
RL = 2.0 kΩ, VID = 1.0 V
RL = 10 kΩ, VID = 1.0 V
RL = 10 kΩ, VID = 1.0 V
VO+
VO–
VO+
VO–
10
–
12
–
13.7
–14.1
13.9
–14.7
–
–10
–
–12
Common Mode Rejection (Vin = ±12 V)
CMR
80
100
–
dB
Power Supply Rejection (VS = 15 V to 5.0 V, –15 V to –5.0 V)
PSR
80
115
–
dB
ID
–
4.0
8.0
mA
Unit
Input Offset Voltage (RS = 10 Ω, VO = 0 V)
Average Temperature Coefficient of Input Offset Voltage
RS = 10 Ω, VO = 0 V, TA = Tlow to Thigh
V
Power Supply Current (VO = 0 V, Both Amplifiers)
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, AV = +1.0)
SR
5.0
7.0
–
V/µs
GBW
10
15
–
MHz
Unity Gain Frequency (Open Loop)
fU
–
9.0
–
MHz
Unity Gain Phase Margin (Open Loop)
θm
–
60
–
Deg
Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz)
en
–
4.5
–
nV Hz
Equivalent Input Noise Current (f = 1.0 kHz)
in
–
0.5
–
pA Hz
Power Bandwidth (VO = 27 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%)
BWP
–
120
–
kHz
Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms,
AV = +1.0)
THD
–
0.002
–
%
CS
–
–120
–
dB
Gain Bandwidth Product (f = 100 kHz)
1000
800
IIB , INPUT BIAS CURRENT (nA)
PD , MAXIMUM POWER DISSIPATION (mW)
Channel Separation (f = 20 Hz to 20 kHz)
600
400
200
0
-50
0
50
100
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = -15 V
VCM = 0 V
800
600
400
200
0
-55
150
Figure 1. Maximum Power Dissipation
versus Temperature
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
Figure 2. Input Bias Current versus Temperature
http://onsemi.com
2
LM833
10
TA = 25°C
600
IS , SUPPLY CURRENT (mA)
I IB , INPUT BIAS CURRENT (nA)
800
400
200
0
5.0
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCC
8.0
6.0
VO
+
VEE
4.0
2.0
0
20
0
5.0
Figure 3. Input Bias Current versus
Supply Voltage
RL = 2.0 kΩ
TA = 25°C
100
100
95
90
-55
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
90
80
5.0
125
0
100
45
80
Phase
60
20
0
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
TA = 25°C
1.0
10
Gain
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
90
135
1.0 M
180
10 M
GBW, GAIN BANDWIDTH PRODUCT (MHz)
120
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
20
Figure 6. DC Voltage Gain versus
Supply Voltage
∅ , EXCESS PHASE (DEGREES)
AVOL, OPEN LOOP VOLTAGE GAIN (dB)
Figure 5. DC Voltage Gain
versus Temperature
40
20
110
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
105
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 4. Supply Current versus
Supply Voltage
AVOL, DC VOLTAGE GAIN (dB)
AVOL, DC VOLTAGE GAIN (dB)
110
RL = ∞
TA = 25°C
IS
20
15
10
5.0
0
-55
Figure 7. Open Loop Voltage Gain and
Phase versus Frequency
VCC = +15 V
VEE = -15 V
f = 100 kHz
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
Figure 8. Gain Bandwidth Product
versus Temperature
http://onsemi.com
3
125
LM833
GBW, GAIN BANDWIDTH PRODUCT (MHz)
30
10
SR, SLEW RATE (V/ µs)
f = 100 kHz
TA = 25°C
20
10
0
5.0
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
8.0
Falling
Rising
6.0
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
AV = +1.0
4.0
2.0
-55
20
Figure 9. Gain Bandwidth Product versus
Supply Voltage
SR, SLEW RATE (V/ µ s)
8.0
RL = 2.0k Ω
AV = +1.0
TA = 25°C
Falling
4.0
Vin
2.0
0
5.0
+
-
VO
RL
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
20
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
THD 1.0%
TA = 25°C
15
10
5.0
10
VO +
5.0
0
-5.0
VO -
-15
-20
5.0
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
100
1.0 k
10 k
1.0 M
f, FREQUENCY (Hz)
10 M
100 k
Figure 12. Output Voltage versus Frequency
10
-10
125
25
0
20
V sat , OUTPUT SATURATION VOLTAGE |V|
VO, OUTPUT VOLTAGE (Vpp )
15
RL = 10 kΩ
TA = 25°C
100
30
Figure 11. Slew Rate versus Supply Voltage
20
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
VO
RL
35
Rising
6.0
+
Figure 10. Slew Rate versus Temperature
VO, OUTPUT VOLTAGE (Vpp )
10
-25
Vin
20
15
+Vsat
-Vsat
14
VCC = +15 V
VEE = -15 V
RL = 10 kΩ
13
-55
Figure 13. Maximum Output Voltage
versus Supply Voltage
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
Figure 14. Output Saturation Voltage
versus Temperature
http://onsemi.com
4
125
PSR, POWER SUPPLY REJECTION (dB)
140
VCC = +15 V
VEE = -15 V
TA = 25°C
120
100
80
-PSR
20
+PSR = 20 Log
-PSR = 20 Log
0
100
∆VCC
ADM
+
∆VO
∆VEE
+PSR
60
40
-
CMR, COMMON MODE REJECTION (dB)
LM833
1.0 k
∆VO/ADM
( ∆VCC )
( ∆V∆VO/AEEDM )
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
160
140
120
10 M
RL
0.01
0.001
10
e n, INPUT NOISE VOLTAGE (nV/√ Hz )
THD, TOTAL HARMONIC DISTORTION (%)
0.1
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
TA = 25°C
VO
VO = 1.0 Vrms
VO = 3.0 Vrms
100
1.0 k
+
80
60
40
20
100
VCC = +15 V
VEE = -15 V
VCM = 0 V
∆VCM = ±1.5 V
TA = 25°C
1.0 k
10 k
VCC = +15 V
VEE = -15 V
RS = 100 Ω
TA = 25°C
2.0
100
e n, INPUT NOISE VOLTAGE (nV/√ Hz )
i n , INPUT NOISE CURRENT (pA/√ Hz )
10 M
100
0.7
0.5
0.4
0.3
10 k
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 18. Input Referred Noise Voltage
versus Frequency
1.0
1.0 k
f, FREQUENCY (Hz)
1.0 M
5.0
1.0
10
100 k
VCC = +15 V
VEE = -15 V
TA = 25°C
100
10 k
100 k
f, FREQUENCY (Hz)
10
Figure 17. Total Harmonic Distortion
versus Frequency
0.2
10
∆VCM
× ADM
∆V0
CMR = 20 Log
f, FREQUENCY (Hz)
2.0
∆VO
Figure 16. Common Mode Rejection
versus Frequency
1.0
-
-
ADM
100
Figure 15. Power Supply Rejection
versus Frequency
+
∆VCM
100 k
VCC = +15 V
VEE = -15 V
Vn(total) = (inRS)2 +en2 + 4KTRS
TA = 25°C
10
1.0
1.0
10
100
1.0 k
10 k
100 k
RS, SOURCE RESISTANCE (Ω)
Figure 20. Input Referred Noise Voltage
versus Source Resistance
Figure 19. Input Referred Noise Current
versus Frequency
http://onsemi.com
5
1.0 M
VO , OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
CL = 0 pF
AV = -1.0
TA = 25°C
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
CL = 0 pF
AV = +1.0
TA = 25°C
t, TIME (2.0 µs/DIV)
t, TIME (2.0 µs/DIV)
Figure 21. Inverting Amplifier
VO , OUTPUT VOLTAGE (10 mV/DIV)
VO , OUTPUT VOLTAGE (5.0 V/DIV)
LM833
Figure 22. Noninverting Amplifier Slew Rate
VCC = +15 V
VEE = -15 V
RL = 2.0 kΩ
CL = 0 pF
AV = +1.0
TA = 25°C
t, TIME (200 ns/DIV)
Figure 23. Noninverting Amplifier Overshoot
http://onsemi.com
6
LM833
PACKAGE DIMENSIONS
PDIP–8
N SUFFIX
CASE 626–05
ISSUE L
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
–B–
1
4
DIM
A
B
C
D
F
G
H
J
K
L
M
N
F
–A–
NOTE 2
L
C
J
–T–
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
--10
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
--10
0.030
0.040
N
SEATING
PLANE
D
M
K
G
H
0.13 (0.005)
M
T A
M
B
M
SO–8
D SUFFIX
CASE 751–07
ISSUE W
–X–
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
A
8
5
0.25 (0.010)
S
B
1
M
Y
M
4
K
–Y–
G
C
N
X 45 SEATING
PLANE
–Z–
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
S
http://onsemi.com
7
J
DIM
A
B
C
D
G
H
J
K
M
N
S
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0
8
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0
8
0.010
0.020
0.228
0.244
LM833
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: [email protected]
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
LM833/D